Accepted Manuscript

Numerical evaluation of methods approximating the distribution of a large quadratic form in normal variables

Tong Chen, Thomas Lumley

PII: \quad S0167-9473(19)30113-6
DOI: https://doi.org/10.1016/j.csda.2019.05.002
Reference: COMSTA 6790

To appear in: Computational Statistics and Data Analysis
Received date: 10 October 2018
Revised date: 2 May 2019
Accepted date: 2 May 2019

Please cite this article as: T. Chen and T. Lumley, Numerical evaluation of methods approximating the distribution of a large quadratic form in normal variables. Computational Statistics and Data Analysis (2019), https://doi.org/10.1016/j.csda.2019.05.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Numerical evaluation of methods approximating the distribution of a large quadratic form in normal variables

Tong Chen ${ }^{\mathrm{a}, *}$, Thomas Lumley ${ }^{\text {a }}$
${ }^{a}$ University of Auckland

Abstract

Quadratic forms of Gaussian variables occur in a wide rar of of applications in statistics. They can be expressed as a linear combination of chi-s~1areds The coefficients in the linear combination are the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of ΣA, where ${ }^{1}$ is the matrix representing the quadratic form and Σ is the covariance matrix of $t . \wedge$ Gar ssians. The previous literature mostly deals with approximations for small quadra'ic torms $(n<10)$ and moderate pvalues ($p>10^{-2}$). Motivated by genetic appli .vivis, moderate to large quadratic forms ($300<n<12,000$) and small to very small p-vai es ($p<10^{-4}$) are studied. Existing methods are compared under these settings aı 1 z iuding-eigenvalue approximation, which only takes the largest k eigenvalues, is sho n to ave the computational advantage without any important loss in accuracy. For time $c_{i} n_{1_{+}}{ }^{\text {l }}$ lexity, a leading-eigenvalue approximation reduces the computational complexity f. $\left.\cdot \ldots n_{1} \imath^{3}\right)$ to $O\left(n^{2} k\right)$ on extracting eigenvalues and avoids speed problems with computing the sum of n terms. For accuracy, the existing methods have some limits on calculat ${ }^{-\ldots}$ small p-values under large quadratic forms. Moment methods are inaccurate for very s' tall p- alues, and Farebrother's method is not usable if the minimum eigenvalue is much mat ${ }^{r}$ nan others. Davies's method is usable for p-values down to machine epsilon. The s, dd'spoint approximation is proved to have bounded relative error for any A and Σ in the rxtre ne ight tail, so it is usable for arbitrarily small p-values.

Keywords: small p-values, , ${ }^{\prime}{ }^{\prime}{ }^{\prime}$ 'ng-eigenvalue approximation, accuracy, computational complexity

1. Introduction

A quadratic f, rm c. n be expressed as $Q(X)=X^{\top} A X$, where $X=\left(X_{1}, \ldots, X_{n}\right)^{\top}$ is a multivariate no mal r ndom vector with mean vector $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ and covariance matrix Σ, and A is a $n \times n$ symmetric and non-negative definite matrix. The question of interest is to stimat s the upper tail probability of $Q(X)$

$$
\begin{equation*}
\operatorname{Pr}\left(\varepsilon_{i} \cdot \boldsymbol{\sim}-q\right), \tag{1}
\end{equation*}
$$

[^0]where q is a scalar.
The distribution of $Q(x)$ is a linear combination of noncentral χ_{1}^{2} arla ${ }^{\prime}$ les, where the coefficients are the non-zero eigenvalues $\lambda_{1}, \ldots \lambda_{n}$ of matrix $M=\Gamma_{.}=X X^{T}$. When $\mu=\mathbf{0}_{n}$, it is a linear combination of central χ_{1}^{2} variables.

These quadratic forms often occur when a set of asymptotical.-. Nu nal test statistics are combined using a weight matrix other than the inverse of $\mathrm{t}^{\text {l }-\mathrm{ir}} \mathrm{cu}$ ariance matrix. A famous example is the Rao-Scott test (Rao and Scott, 1981) in sur ey statistics. The true variance matrix of the individual test statistics tends to be poorly stimated; the Rao-Scott test replaces it with the variance matrix under iid samplir g. Ir. genomics, the Sequence Kernel Association Test (SKAT) (Wu et al., 2011) evaluate : the ssociation between rare variants and phenotype. It replaces the true variance natrix with a set of weights that ignore correlation and upweight less-common variants, (or esp nding to a diagonal matrix A.

The null distribution of these tests is a weighted sun of central χ_{1}^{2} variables, where the coefficients are the eigenvalues of M. Many me hors are proposed to evaluate the upper tail probability of the distribution of $Q(X)$. We lassified these existing methods into three categories: 'exact' methods (Davies, 1980; - arebrother, 1984; Bausch, 2013), moment methods (see, eg., the Satterthwaite approximation aıd Liu et al. (2009)) and a saddlepoint approximation (Kuonen, 1999).

The 'exact' methods are exact in the ser . tha an approximation with arbitrary accuracy could be obtained if arbitrary precision arith nevic were available. Davies (1980) exploited the fact that the characteristic function ι^{+}a sum is the product of characteristic functions, so the characteristic function for a weighted sum of χ_{1}^{2} variables is straightforward to obtain. Farebrother (1984) showed that thr can mrobability can be written as an infinite series of central chi-squared distributions, $L .:$ writj $1 g$ the linear combination as a mixture (Robbins and Pitman, 1949). Bausch (20.3) she ed that a linear combination of gamma densities form an algebra under convolut ins and derived the density for weighted sums of χ_{k}^{2} variables.

The Satterthwaite appro matın approximates the distribution of $Q(X)$ by $a \chi_{d}^{2}$ with a and d chosen to give the co -ect mean and variance. Liu et al. (2009) proposed a fourmoment approximation $u \operatorname{sing}$, a noncentral chi-squared distribution of the form $a+b \chi_{d}^{2}(\nu)$, where a is an offset, b is ι sc ling parameter and ν is the non-centrality parameter. Kuonen (1999) derived a form of \sim ddlepoint approximation to the sum. The accuracy of these approximations has k jen previous studied (Kuonen, 1999; Duchesne and De Micheaux, 2010; Bausch, 2013), but onh, for small quadratic forms ($n<10$) and moderate p-values.

However, genf ulcs stuales often involve a large number of terms ($n>1000$) and small p-values $\left(p<10{ }^{4}\right)$ rais ng concerns about both time complexity and accuracy. For time complexity, ex ${ }^{+} \ldots$ ctluy $_{5}$ all set of eigenvalues scales as cube of sample size n and it would take more time to compu e a tail probability when the number of terms n is large. For accuracy, moment metho a e anti-conservative in the right tail of the distribution.

Recent. a a mpanion paper (Lumley et al., 2018) developed a leading-eigenvalue approximation , solve above problems. This method is mainly developed for large quadratic forms and ends up with less computational time without any important loss in accuracy. This is done by extracting the largest k eigenvalues using a low-rank stochastic singular
value decomposition (SSVD) (Halko et al., 2011) and utilizing the cheap Jatterthwaite approximation to approximate the rest $n-k$ terms.

This work is motivated by genetic problems which often involve ${ }^{1}$. ${ }^{\text {e }}$ quadratic forms with thousands or tens of thousands of terms, under which the existin: me hods would have a computational deficiency and may be less accurate. The main objec 'ive $1 .+$) find an optimal way to perform convolutions for large quadratic forms. We prov: ${ }^{\boldsymbol{J}}$ o ell. irical evidence for the existing methods and a leading-eigenvalue approximation uns er moderate and large quadratic forms. Evaluations and discussions of the existing metı. ds $^{\text {under large quadratic }}$ forms are made in Section 2. In Section 3, accuracy and ompr tational complexity of a leading-eigenvalue approximation are discussed. Impact of s_{1} १rsity rank and definiteness of matrix M is discussed in Section 4. Discussions are mad in Section 5.

R codes for producing numerical examples can be fc in. in Supplementary information

2. Existing methods under genetic settings

This section evaluates the performance of the -xisting methods in the right tail of the distribution. Davies's (1980) and Farebrother's (1984) nethods are usable even for thousands of terms and achieve close to their nominal ac ur ıcy as long as the right tail probability is much larger than machine epsilon. As the, $\cdot \mathrm{m}_{\mathrm{l}} \cdot$ tte Equation (1) from $1-\operatorname{Pr}(Q(X)<q)$, they break down completely if the extreme rig't ω wil probabilities are near or beyond machine epsilon. The value of machine epsilon niviva d in this work is $2^{-52} \approx 2 \times 10^{-16}$.

We observed that Farebrother's (1984) nıthod ended up with fault indicator 1 when it was evaluated using the quadratic fo ${ }^{11} \cap_{1}-Q_{6}$ generated in this section. The fault indicator 1 represents the calculation has r n-fata underflow of a variable called a_{0} (Farebrother, 1984). If $Q(X)$ is a weighted su a of $\left\llcorner\cdot \operatorname{ral} \chi_{1}^{2}\right.$ variables, the quantity a_{0} in Farebrother's (1984) algorithm can be simpli'،.ed oo

$$
a_{0}=\exp \left(\frac{1}{2}\left(n \log \lambda_{, i}-\sum_{i}^{n} \log \lambda_{i}\right)\right)
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are sorte ${ }^{1}$ igenvalues in descending order. For large quadratic forms, if λ_{n} is much smaller than thrr elgenvalues, a large n can cause the variable a_{0} to underflow to 0 . We cannot use Fa. nh oth ar's (1984) method as a reference because the leading eigenvalues are much largr . . han ne minimum eigenvalue in our simulated genome sequence data. Bausch's (2013) i tethod has rounding errors especially in the left tail with double precision for moderate and $1 \mathrm{c} \cdot$ •ra _uadratic forms and is slow with multiple precision (see Supplementary informat on). Ve hereafter choose Davies's (1980) method as a reference to conduct numerical stui'es.

To eve' .nts the performance of these approximation methods, we simulated human genome seq. ${ }^{\circ}$ ce data using the Markov Coalescent Simulator (Chen et al., 2009). This was done by 1 xing the number of rows s (people) then choosing the length to make the number of columns m (variants) approximately equal to the number of rows. We discarded
variants with minor allele frequency greater than 5% to filter rare varia ts, giving a large sparse matrix. We generated six data sets $Q_{1}-Q_{6}$ and their dimensions a e sı`wn in Table 1. When we extracted eigenvalues, they are set to be zero if they are small ${ }^{1}$ than 10^{-10}. As the exact methods have internal estimates of accuracy, we compare Davic 's (.980) method with simulation p-value to verify Davies's (1980) method is exact and c. η be 'sed for moderate and large quadratic forms (see Supplementary information).

Name	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	
s	500	1000	2000	7000	900',	20n0
m	470	987	1643	7352	$888{ }^{7}$	22436
n	305	637	1063	3985	1034	1.259

Table 1: The dimensions of simulated human genome sequence data, whe es is the number of people, m is the number of variants and n is the number of non-zero eigenvalu

Next, we compare the accuracy of the Satterth vite approximation, Liu-Tang-Zhang's (2009) four-moment approximation and Kuoner'c (1n*) saddlepoint approximation when p-value is greater than machine epsilon. R (R Cort Team, 2017) packages survey (Lumley, 2011) and CompQuadForm (Duchesne and De wux 2010) are used to perform analysis in this section. The eigenvalues of Q_{1} to Q = art xtracted using a full eigendecomposition.

Figure 1 Compa wons between methods for the quadratic forms $Q_{1}-Q_{6}$ when p-value is greater than machine epsilor Exact ralues are computed using Davies's (1980) method with accuracy 10^{-16}.

Results are pasented in Figure 1 and Table 1 in Supplementary information. The xaxis represen : corresponding underlying true p-value from 10^{-1} down to 10^{-13}. The y-axis represents the logarithm of error ratio to the base 10 . It is computed by generating the underlying true p-values using Davies's (1980) method and then calculating the logarithm
ratio of each method to Davies's (1980) method. Our numerical studies st sw that Kuonen's (1999) saddlepoint approximation is highly accurate. The maximum log rithm of error ratio is less than 0.07 in all cases. Moment methods have better perfor .. ' yce than Kuonen's (1999) saddlepoint approximation in the left tail but are anti-conser ativ e in the right tail. The Satterthwaite approximation is accurate if the p-value is great - tha. 10^{-1}. Liu-TangZhang's (2009) four-moment approximation performs better and is - ccur ${ }^{+}$e until 10^{-2}. After that, the logarithm of error ratio for both two moment method ins ea es very fast. Figure 1 also shows that moment methods tend to have better performan \quad for moderate quadratic forms than large quadratic forms under our simulated hums 1 gen me sequence data.

If the p-value is smaller than machine epsilon, neither the nome to methods nor the exact methods work. All that's left is the saddlepoint approxim 10 analyse the extreme right tail performance of the saddlepoint approximation, we sid rexpontial tail rates. A linear combination of chi-squared variables have an $\operatorname{ex}_{\perp}$ ner. $^{{ }^{\prime}}{ }_{\mu l}$ tail in the sense of Berman (1992), with tail rate $1 / 2 \lambda_{1}$. We show in Appendix A tha the saddlepoint approximation has the same exponential tail rate in the extrem $\mathrm{rl}_{5}{ }^{-}++_{\text {il }}$, so that the relative error in $\operatorname{Pr}(Q(X)>q)$ is bounded as $q \rightarrow \infty$, for any A anc Γ. Kuonen (1999) showed that the relative error is of order $o\left(n^{-3 / 2}\right)$, so the approxi. ation improves with increasing n, and the saddlepoint approximation can be used as a raference in the extreme right tail.

3. A leading-eigenvalue approximatic - Inc or genetic settings

This section explores accuracy and $t \ldots n$...nlexity for a leading-eigenvalue approximation. It approximates the distribution of $Q(\approx)$ by formula (4) in Lumley et al. (2018) which is

$$
\begin{equation*}
T \sim\left(\sum_{i=1}^{k} \lambda_{i} \chi_{1}^{2}\right)+a \chi_{d}^{2} \tag{2}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{k}$ are the large st $k \in$ nvalues of matrix $M, a=\left(\sum_{k+1}^{n} \lambda_{i}^{2}\right) /\left(\sum_{k+1}^{n} \lambda_{i}\right)$ and $d=\left(\sum_{k+1}^{n} \lambda_{i}\right)^{2} /\left(\sum_{k+1}^{n} \lambda_{i}^{2}\right)$.

The leading eigenvalur are excracted using a low-rank SSVD (Halko et al., 2011). In Equation (2), the leadi g t rms can be combined using either the exact methods or the saddlepoint approximstion, and the remainder term is obtained by the Satterthwaite approximation. Followe 1 br the performance of approximation methods discussed in Section 2, the leading terms are $\mathrm{c} . \mathrm{mb}$ ned using Davies's (1980) method if the p-value is greater than machine epsilon a id using Kuonen's (1999) saddlepoint approximation if the p-value is near or beyond machis epsi on. If the number of leading eigenvalues k is much smaller than n, a leading-e ounvaue approximation also works well with Farebrother's (1984) method, because the v riable a_{0} would not underflow to zero for small quadratic forms.

For accurac, - - e compare the leading-eigenvalue approximation with Davies's (1980) method wı \mathfrak{n}, -...lue is greater than machine epsilon and with Kuonen's (1999) saddlepoint approximatic - in the extreme right tail using data generated in Section 2. R package bigQF (Lumley, 2019) is used to do the leading-eigenvalue approximation. SSVD uses 50, 50, 100, 100, 200 and 200 eigenvalues for quadratic forms $Q_{1}-Q_{6}$ respectively.

	q	D	L_{D}	$R_{L_{D}}$		q	D	L_{D}	$R_{L_{D}}$
Q_{1}	1.2×10^{04}	1.647×10^{-04}	1.654×10^{-04}	0.005	Q_{2}	4.0×10^{04}	1.214×10^{-04}	. 213 , ${ }^{1} 0^{-04}$	0.000
	1.6×10^{04}	1.511×10^{-06}	1.518×10^{-06}	0.005		5.4×10^{04}	3.277×10^{-07}	- 976×10^{-07}	-0.001
	1.9×10^{04}	1.473×10^{-08}	1.480×10^{-08}	0.005		6.8×10^{04}	$1.022 \times 10^{-0 r}$	1. 21×10^{-09}	-0.001
	2.3×10^{04}	1.513×10^{-10}	1.520×10^{-10}	0.004		8.2×10^{04}	3.395×10^{-1}	$.390 \times 10^{-12}$	-0.001
Q_{3}	1.1×10^{05}	1.515×10^{-04}	1.512×10^{-04}	-0.002	Q_{4}	1.2×10^{06}	4.396×10	4.041×10^{-04}	-0.008
	1.5×10^{05}	2.770×10^{-07}	2.766×10^{-07}	-0.002		1.7×10^{06}	$4.158 \times{ }^{-07}$	4. ${ }^{1} 27 \times 10^{-07}$	-0.007
	1.9×10^{05}	5.894×10^{-10}	5.885×10^{-10}	-0.001		2.2×10^{06}	$4.625<10^{-}$	${ }^{1} .592 \times 10^{-10}$	-0.007
	2.3×10^{05}	1.348×10^{-12}	1.341×10^{-12}	-0.005		2.7×10^{06}	$5.421,{ }^{\text {1 }}$ ¢ -13	5.438×10^{-13}	0.003
Q_{5}	2.0×10^{06}	2.242×10^{-05}	2.242×10^{-05}	0.000	Q_{6}	9.0×10^{06}	$3^{\text {r }}$-j× $10^{\text {- }}$	3.024×10^{-04}	-0.001
	2.5×10^{06}	1.515×10^{-07}	1.515×10^{-07}	0.000		1.2×10^{07}	$\bigcirc .826 \times 1 l^{-07}$	8.820×10^{-07}	-0.001
	3.0×10^{06}	1.091×10^{-09}	1.091×10^{-09}	0.000		1.5×10^{07}	\& $872 \times 1 \Gamma^{-09}$	2.870×10^{-09}	-0.001
	3.5×10^{06}	8.134×10^{-12}	8.126×10^{-12}	-0.001		1.8×10^{07}	$9.83<\times 10^{-12}$	9.806×10^{-12}	-0.003

Table 2: Probability that the quadratic forms $Q_{1}-Q_{6}$ exceed q, Γ : exact v sue using Davies's (1980) method with accuracy $10^{-16} ; L_{D}$: the leading-eigenvalue approximation $w_{1}{ }^{*} e$ the leading eigenvalues are combined using Davies's (1980) method; $R_{L_{D}}:\left(L_{D}-D\right) / D$.

	q	S	L_{S}	$R_{L_{S}}$	q	S	L_{S}	$R_{L_{S}}$
Q_{1}	2.8×10^{04}	2.364×10^{-13}	2.374×10^{-13}	0.004	$\bigcirc \cap \times 10^{04}$	8.455×10^{-12}	8.449×10^{-12}	-0.001
	3.8×10^{04}	8.871×10^{-19}	8.910×10^{-19}	0.004	1.0×10^{05}	2.578×10^{-15}	2.576×10^{-15}	-0.001
	4.8×10^{04}	3.510×10^{-24}	3.525×10^{-24}	0.6	1.2×10^{05}	8.124×10^{-19}	8.117×10^{-19}	-0.001
	5.8×10^{04}	1.430×10^{-29}	1.436×10^{-29}	0.004	1.4×10^{05}	2.614×10^{-22}	2.612×10^{-22}	-0.001
Q_{3}	2.0×10^{05}	1.406×10^{-10}	1.404×10^{-10}	$)_{4}$	3.0×10^{06}	1.090×10^{-14}	1.082×10^{-14}	-0.007
	2.5×10^{05}	7.213×10^{-14}	7.203×10^{-14}	-0.ひ ${ }^{1}$	3.5×10^{06}	1.356×10^{-17}	1.347×10^{-17}	-0.007
	3.0×10^{05}	3.838×10^{-17}	3.832×10^{-17}	-0.001	4.0×10^{06}	1.714×10^{-20}	1.701×10^{-20}	-0.007
	3.5×10^{05}	2.088×10^{-20}	2.085×10^{-17}	- 001	4.5×10^{06}	2.189×10^{-23}	2.174×10^{-23}	-0.007
Q_{5}	4.0×10^{06}	6.899×10^{-14}	6.907×1, -14	0. $101 Q_{6}$	2.0×10^{07}	2.524×10^{-13}	2.538×10^{-13}	0.006
	4.5×10^{06}	5.342×10^{-16}	$5.349 \times 10^{-}$	r. 001	2.5×10^{07}	2.125×10^{-17}	2.137×10^{-17}	0.006
	5.0×10^{06}	4.177×10^{-18}	$4.18^{-} \times 10^{18}$	0. 001	3.0×10^{07}	1.845×10^{-21}	1.856×10^{-21}	0.006
	5.5×10^{06}	3.291×10^{-20}	$3.2 \mathrm{~s}^{-} \times 1 \mathrm{~J}^{-20}$	0.001	3.5×10^{07}	1.634×10^{-25}	1.643×10^{-25}	0.006

Table 3: Probability that the qu: a_{1}. ${ }^{\mathrm{i}} \mathrm{i}$ forms $Q_{1}-Q_{6}$ exceed q, S : approximation obtained by a full eigendecomposition of Kuonen's (1999) saddlepu nt approximation; L_{S} : the leading-eigenvalue approximation where the leading eigenvalues are cr nbı ed using Kuonen's (1999) saddlepoint approximation; $R_{L_{S}}:\left(L_{S}-S\right) / S$.

Results are shown in Table 2 and 3. The convolutions of leading terms are approximated by Davies's (1980) m n^{+1} od n Table 2 and Kuonen's (1999) saddlepoint approximation in Table 3. The relat' "ve error is less than 1% for all examples in the whole probability range. So that the leading-i igenva ue approximation is consistent with Davies's (1980) method when the p-value is micı ' - ger than machine epsilon and with the saddlepoint approximation in the extrem right tail. There is no important loss in accuracy for the leading-eigenvalue approximation In Table 3, comparisons are made at very small p-values where the order is smaller th $\omega^{1 n^{-20}}$. As discussed in Section 2, the relative error of Kuonen's (1999) saddlepoint appron "nation is uniformly bounded as $q \rightarrow \infty$ and the approximation improves with increasing n. . umerical examples in Section 2 also show that Kuonen's (1999) saddlepoint approximation is highly accurate. It is reasonable to assume it will have the same accuracy
as $q \rightarrow \infty$. Therefore, a saddlepoint approximation and a leading-eigenva' ue approximation combine to be usable for all p -values and all large enough numbers of v , riai ${ }^{1} \mathrm{es}$.

For time complexity, except the moment methods, implementat:. of other existing methods needs to extract all the eigenvalues. It would cost $O\left(n^{3}\right)+$ me io do a full eigendecomposition for X or X^{2} (Golub and Van Loan, 2012). The co npuu tional complexity for SSVD (Halko et al., 2011) is of order $O\left(n^{2} k\right)$ to get the $1 \cdots$ est eigenvalues. As $\sum_{1}^{n} \lambda_{i}=\operatorname{trace}(M)$ and $\sum_{1}^{n} \lambda_{i}^{2}=\operatorname{trace}\left((M)^{2}\right)$, the remainder \dagger rm oı Tquation (2), which is approximated by the Satterthwaite approximation, also take $O\left(n^{2}\right)$ time. So that a leading-eigenvalue approximation would reduce the comput atione ${ }^{1}$ complexity from $O\left(n^{3}\right)$ to $O\left(n^{2} k\right)$.

Moment methods are implemented by matching momrne. Tie Satterthwaite approximation can be calculated in $O\left(n^{2}\right)$ time, but Liu-Tang-Zh $n \cdot$, s (009) four-moment approximation is no faster than singular value decomposition (${ }^{\circ} \mathrm{VD}$, ' 'ecause computing the fourth moment would take as much work (n^{3} operations) as gettı ; all the eigenvalues.

Even after the eigenvalues are computed, there is alsr a speed problem in adding up thousands or tens of thousands of terms. In order to `chieve the same accuracy, Davies's (1980) and Farebrother's (1984) methods woulu nend more computational time for large n, because Davies's (1980) method needs mono integıation terms and Farebrother's (1984) method needs more terms in truncated series. These two methods would also take more time to compute a small p-value as the nun. $\neg r$ or terms they need is dependent on accuracy. The computational time of moment methods and the saddlepoint approximation does not increase when the p-value is getting smar. ${ }^{\circ}$ r.

For Davies's (1980) method, it is slow to get high accuracy if the sum is dominated by a small number of eigenvalues and ne . 1 mber of terms n in the sum is large, because the number of integration terms is hig'. 'v dep ndent on accuracy in this context. Table 4 shows that, for large quadratic forms, n orac to get high accuracy (10^{-13} in our example), the computational time of Davies's (1؟ 30) nethod increases with the largest eigenvalue.

Ca	A	B	C	D	E
Time(s)	0.01	0.05	0.41	3.96	34.77

Table 4: Computational tin. r. computing a single p -value around 10^{-6} with accuracy at 10^{-13} using Davies's (1980) method. Jase A ces eigenvalues of Q_{5}, case B, C, D and E are obtained by multiplying the largest eigenvalue of case A b $10,10^{2}, 10^{3}$ and 10^{4} respectively.

A leading-eig nvalut approximation would do well in such situation because only the largest k eigenvalu `s ar combined using either the exact methods or the saddlepoint approximation. \& lear'ing-eigenvalue approximation has the computational advantage in both computing th eigen alues and adding them up.

However uniess n is greater than hundreds, there is no reason to use the leadingeigenvalue a \mathfrak{r} ioximation as it does not save any time. We compare computational time of SSVD and SV .) for $Q_{1}-Q_{4}$ and a small example $Q_{0}(s=2000 ; m=67)$ provided in the SKAT package (Lee et al., 2017). SSVD uses 50 eigenvalues for Q_{0} and 100 eigenvalues for $Q_{1}-Q_{4}$.

As shown in Table 5, SSVD does not save time for small n. For moderat and large n, the choice of k is not important as long as k is large enough. The criterion $f, r i \sim$ choice of k is provided in Section 3.3 of companion paper (Lumley et al., 2018). As \sim ble 2 and 3 show, the relative error does not increase way out in the tails. So the crit rio is also applicable here even the p-value is much smaller than the companion paper (I יmı. et al., 2018).

Qudratic form	Q_{0}	Q_{1}	Q_{2}	Q_{3}	\bar{Q}
SVD(s)	0.03	0.24	2.22	13.40	.56
SSVD(s)	0.12	0.24	0.84	2.5	36.00

4. Impact of sparsity, rank and definiteness of - - atriv M

Sparsity would affect the speed of computing eig nvalue; , but the leading-eigenvalue approximation still has the computational advantage ver w ull eigendecomposition for moderate and large quadratic forms. SSVD (Halko ot al "11) takes k matrix multiplications. Suppose $M=X X^{T}$, if matrix X is sparse with $\alpha \iota^{?}$ non-zero entries, a matrix-vector multiplication takes αn^{2} time, so the leading eigen in nan be computed in $O\left(\alpha n^{2} k\right)$ time. The setting in the companion paper (Lumley et al., 2018) was for situations where X or M is not sparse, but matrix X is the product of , irae matrix and a projection on to residuals for an adjustment model. If the number \sim adj stment variables is p, the leading eigenvalues are available in $O\left(k\left(\alpha n^{2}+n p^{2}\right)\right)$.

If X is a general dense matrix, a matrix-vector multiplication takes n^{2} operations, computing the k leading eigenvalues wr uld $\mathrm{t}_{c}{ }^{k} \mathrm{ke} O\left(n^{2} k\right)$ time. Therefore, for moderate or large quadratic forms, the leading-eigenvai \cdot e ar proximation is always faster than a full decomposition, and the advantage can b , larger if the matrix X has a special structure.

The rank of matrix M does ${ }^{\wedge}$, t ásect computational complexity, because the leadingeigenvalue approximation is iot simमly a low-rank approximation. The matrices simulated in Section 2 are not full rank, u their ranks are still much larger than k and computation would be the same; Ley were full rank. Figure 2 in the companion paper (Lumley et al., 2018) illustrated t. is 'رy comparing a leading-eigenvalue approximation with a rank- k approximation, showirg that the low-rank approximation is much less accurate.

Davies's (1980) n ath d , noment methods and the saddlepoint approximation are usable when matrix M hoc $n t_{0}{ }^{+1}$, ve eigenvalues but Farebrother's (1984) method is not usable in such a situati, m. A leading-eigenvalue approximation thereafter also works for negative definite, nega ive s mi-definite and indefinite matrices as long as convolutions of the leading eigenr alues are calculated using either Davies's (1980) method or the saddlepoint approximatio.

5. Discuss'9 1

Moment methods are inaccurate for very small p-values. They use a single χ_{d}^{2} distribution to approximate the distribution of $Q(X)$ giving a right tail that decreases faster than the
true distribution. Except for the Satterthwaite approximation, the other moment methods are no faster than getting all the eigenvalues: computing the third monen. would take as much work as extracting all the eigenvalues.

Davies's (1980) and Farebrother's (1984) methods are exact wh η t'.e p-value is much larger than machine epsilon. However, for large quadratic forn. Fu obrother's (1984) method breaks down if the minimum eigenvalue is small and $\Gamma \cdots$ ies method is slow to obtain high accuracy if the sum is dominated by a small nu abe $u^{\text {a }}$ terms. A leadingeigenvalue approximation avoids above problems, so that it worn. well with both Davies's (1980) and Farebrother's (1984) methods.

The saddlepoint approximation ends up with highly acc, rate epproximation results for very small p -values. We show it has the correct exponer ual rave in the extreme right tail, so the relative error is bounded as $q \rightarrow \infty$, for any A anc Σ In ur numerical examples, the maximum logarithm of error ratio is less than 0.07 . The "efon, a saddlepoint approximation and a leading-eigenvalue approximation combine to be usa le for all p-values and all large enough numbers of variables.

For large quadratic forms, a leading-eigenvalue app nximation provides a computational advantage without any important loss in accuracy \urcorner nd convolutions of the leading eigenvalues can be approximated by either the exact methnds or the saddlepoint approximation.

ACKNOWLEDGMENTS

The authors wish to acknowledge the 'su $\stackrel{+}{ }$ New Zealand eScience Infrastructure (NeSI) high performance computing facilities, consu.ting support and/or training services as part of this research. New Zealand's nat sme facilities are provided by NeSI and funded jointly by NeSI's collaborator institution and hrough the Ministry of Business, Innovation \& Employment's Research Infrastr' cturt ? ogramme. URL https://www.nesi.org.nz.

Appendix A. Exponenti \downarrow taı vate of the saddlepoint approximation

Theorem 1. The saddlepoint ap ${ }_{\mu}$ oximation has the correct exponential rate in the extreme right tail.

Proof. One form of saddlepoint approximation defined in Equation (3) of Kuonen (1999) can be expressed in . rr_{r}. of srror function

$$
\begin{equation*}
S=\operatorname{Pr}(Q(\cdot)>q)=1-\Phi\left\{w+\frac{1}{w} \log \left(\frac{v}{w}\right)\right\}=\frac{1}{2}-\frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) \tag{A.1}
\end{equation*}
$$

where $x=w+(1 / u) \log (v / w), w=\operatorname{sign}(\hat{\zeta})[2\{\hat{\zeta} q-K(\hat{\zeta})\}]^{\frac{1}{2}}, v=\hat{\zeta}\left\{K^{\prime \prime}(\hat{\zeta})\right\}^{\frac{1}{2}}, K(\zeta)$ is the cumulant genera: function of $Q(X)$ and $\hat{\zeta}$ is the saddlepoint. When $\mathrm{x} \gg 1$, the asymptotic form of erı r riuvion can be expanded as (Decker, 1975)

$$
\operatorname{erf}(x)=1-\frac{e^{-x^{2}}}{\sqrt{\pi}} \sum_{m=0}^{\infty} \frac{(-1)^{m}(2 m-1)!!}{2^{m}} x^{-(2 m+1)}
$$

where $(2 m-1)!$! is the product of all odd numbers up to $2 m-1$.
Retain the first term $(m=0)$ in above summation and then plug it i to \quad ruation (A.1). Using Theorem 3.1 of Berman (1992), the exponential tail rate then $r \ldots \sim$ mes

$$
\begin{equation*}
-\frac{\mathrm{d} \log S}{\mathrm{~d} q}=\left(w+\frac{1}{w} \log \left(\frac{v}{w}\right)+\frac{1}{w+\frac{1}{w} \log \left(\frac{v}{w}\right)}\right) \frac{\mathrm{d} x}{\mathrm{~d} q} . \tag{A.2}
\end{equation*}
$$

To get w and $v, K(\zeta)$ and its derivatives should be deduced. . (X) is a linear combination of central χ_{1}^{2} variables, so that $K(\zeta)=-\frac{1}{2} \sum_{i=1}^{n} \log \left(1-2 \zeta \lambda_{i}\right)$, wi² are $\ldots_{\ldots} \ldots \lambda_{n}$ are the non-zero eigenvalues and $\zeta<\frac{1}{2} \min 1 / \lambda_{i}$. As the saddlepoint is the ve ue of , satisfying $K^{\prime}(\hat{\zeta})=q$, it can be simplified to

$$
\begin{equation*}
K^{\prime}(\hat{\zeta})=\sum_{i=1}^{r} \frac{\lambda_{i}}{1-2 \hat{\zeta} \lambda_{i}}=q \tag{A.3}
\end{equation*}
$$

Equation (A.3) shows that as q tends to infiniu, ζ wuds towards $1 / 2 \lambda_{1}$, but it will be always less than $1 / 2 \lambda_{1}$, where λ_{1} is the largest eimnom. In above summation, the largest term is $\lambda_{1} /\left(1-2 \hat{\zeta} \lambda_{1}\right)$, so that $\hat{\zeta}$ can be approximate. by $\left(q-\lambda_{1}\right) / 2 \lambda_{1} q$. Then the asymptotic expression of w and v can be written as $\left(\left(q-\wedge_{1}, 八\right)^{\frac{1}{2}}\right.$ and $\left(q-\lambda_{1}\right) / \sqrt{2} \lambda_{1}$. As $q \rightarrow \infty, w$ and v tend towards infinity as well. Plugging $\mathrm{a}_{\text {. }} / \mathrm{d} q, w$ and v into Equation (A.2), the tail rate can be expressed as

$$
\begin{aligned}
-\frac{\mathrm{d} \log S}{\mathrm{~d} q} & \approx\left(w+\frac{1}{w} \log \left(\frac{v}{w}\right)+\frac{1}{w+\frac{1}{w} \operatorname{lng}\left(\frac{v}{w}\right)}\right)\left(\frac{1}{2 \lambda_{1} w}-\frac{1}{2 \lambda_{1} w^{3}} \log \left(\frac{v}{w}\right)-\frac{1}{2 \lambda_{1} w^{3}}+\frac{1}{\sqrt{2} \lambda_{1} v w}\right) \\
& \approx w \frac{1}{2 \lambda_{1} w}=\frac{1}{2 \lambda_{1}} .
\end{aligned}
$$

References

Bausch, J., 2013. On the efficie' $i c^{\prime}$ 'sulation of a linear combination of chi-square random variables with an application in counting string vacua. Journal of Physics A: Mathematical and Theoretical 46 (50), 505202.

Berman, S. M., 1992. The tar: of the convolution of densities and its application to a model of HIV-latency time. The Annals of Ar plied \digamma. bability, 481-502.
Chen, G. K., Marjoram P., ' Vall. J. D., 2009. Fast and flexible simulation of DNA sequence data. Genome Research 19 (1), 136-14:
Davies, R. B., 1980. algorithn AS 155: The distribution of a linear combination of χ^{2} random variables. Journal of the Rc al Stat tical Society. Series C (Applied Statistics) 29 (3), 323-333.
Decker, D. L., 1975. C mov er evaluation of the complementary error function. American Journal of Physics 43, 833-834.
Duchesne, P., L \geqslant Miche ux, P. L., 2010. Computing the distribution of quadratic forms: Further comparisons between i~T ${ }^{\text {¿-Tang-Zhang approximation and exact methods. Computational Statistics \& Data }}$ Analysis + : $258-862$.
Farebrother, i 1984. Algorithm AS 204: The distribution of a positive linear combination of χ^{2} random variables. Jou. nal of the Royal Statistical Society. Series C (Applied Statistics) 33 (3), 332-339.
Golub, G. H., Van Loan, C. F., 2012. Matrix Computations. JHU Press.

Halko, N., Martinsson, P.-G., Tropp, J. A., 2011. Finding structure with randomnes : Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review 53 (2) 21, 988.
Kuonen, D., 1999. Miscellanea. Saddlepoint approximations for distributions of quadratic turms in normal variables. Biometrika 86 (4), 929-935.
Lee, S., with contributions from Larisa Miropolsky, Wu, M., 2017. SKAT: S_ T_ et (Sequence) Kernel Association Test. R package version 1.3.2.1.
URL https://CRAN.R-project.org/package=SKAT
Liu, H., Tang, Y., Zhang, H. H., 2009. A new chi-square approximation to he in wibution of non-negative definite quadratic forms in non-central normal variables. Computational in st stics \& Data Analysis 53 (4), 853-856.
Lumley, T., 2011. Complex Surveys: A Guide to Analysis Using R. Jc in Wilt \& Sons.
Lumley, T., 2019. bigQF: Quadratic Forms in Large Matrices. R packa ${ }^{\circ}$ - vers' in 1.3-3. URL https://github.com/tslumley/bigQF
Lumley, T. S., Brody, J. A., Peloso, G. M., Morrison, A. C., Rice, K. .., . 918. FastSKAT: Sequence kernel association tests for very large sets of markers. Genetic Epid॰mıoogy.
R Core Team, 2017. R: A Language and Environment for Statisticaı ${ }^{\text {ºmputing. R Foundation for Statistical }}$ Computing, Vienna, Austria.
URL https://www.R-project.org/
Rao, J. N., Scott, A. J., 1981. The analysis of categorical data fru ` complex sample surveys: chi-squared tests for goodness of fit and independence in two-way tabl - vuunal of the American Statistical Association 76 (374), 221-230.
Robbins, H., Pitman, E., 1949. Application of the mev vi ‘ mixtures to quadratic forms in normal variates. The Annals of Mathematical Statistics, 552-560.
Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, \quad Li. X., 2011. Rare-variant association testing for sequencing data with the sequence kernel associa 'ioı test. The American Journal of Human Genetics 89 (1), 82-93.

[^0]: *Corresponding author
 Email address: tche929@aucklanduni.ac.nz (Tong Chen)

