
Accepted Manuscript

Numerical evaluation of methods approximating the distribution of a large
quadratic form in normal variables

Tong Chen, Thomas Lumley

PII: S0167-9473(19)30113-6
DOI: https://doi.org/10.1016/j.csda.2019.05.002
Reference: COMSTA 6790

To appear in: Computational Statistics and Data Analysis

Received date : 10 October 2018
Revised date : 2 May 2019
Accepted date : 2 May 2019

Please cite this article as: T. Chen and T. Lumley, Numerical evaluation of methods approximating
the distribution of a large quadratic form in normal variables. Computational Statistics and Data
Analysis (2019), https://doi.org/10.1016/j.csda.2019.05.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.csda.2019.05.002


Numerical evaluation of methods approximating the distribution of

a large quadratic form in normal variables

Tong Chena,∗, Thomas Lumleya

aUniversity of Auckland

Abstract

Quadratic forms of Gaussian variables occur in a wide range of applications in statistics.
They can be expressed as a linear combination of chi-squareds. The coefficients in the linear
combination are the eigenvalues λ1, ..., λn of ΣA, where A is the matrix representing the
quadratic form and Σ is the covariance matrix of the Gaussians. The previous literature
mostly deals with approximations for small quadratic forms (n < 10) and moderate p-
values (p > 10−2). Motivated by genetic applications, moderate to large quadratic forms
(300 < n < 12, 000) and small to very small p-values (p < 10−4) are studied. Existing
methods are compared under these settings and a leading-eigenvalue approximation, which
only takes the largest k eigenvalues, is shown to have the computational advantage without
any important loss in accuracy. For time complexity, a leading-eigenvalue approximation
reduces the computational complexity from O(n3) to O(n2k) on extracting eigenvalues and
avoids speed problems with computing the sum of n terms. For accuracy, the existing
methods have some limits on calculating small p-values under large quadratic forms. Moment
methods are inaccurate for very small p-values, and Farebrother’s method is not usable if
the minimum eigenvalue is much smaller than others. Davies’s method is usable for p-values
down to machine epsilon. The saddlepoint approximation is proved to have bounded relative
error for any A and Σ in the extreme right tail, so it is usable for arbitrarily small p-values.

Keywords: small p-values, leading-eigenvalue approximation, accuracy, computational
complexity

1. Introduction

A quadratic form can be expressed as Q(X) = X>AX, where X = (X1, . . . , Xn)> is
a multivariate normal random vector with mean vector µ = (µ1, . . . , µn) and covariance
matrix Σ, and A is a n × n symmetric and non-negative definite matrix. The question of
interest is to estimate the upper tail probability of Q(X)

Pr(Q(X) > q), (1)
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where q is a scalar.
The distribution of Q(x) is a linear combination of noncentral χ2

1 variables, where the
coefficients are the non-zero eigenvalues λ1, . . . λn of matrix M = ΣA = XXT . When
µ = 0n, it is a linear combination of central χ2

1 variables.
These quadratic forms often occur when a set of asymptotically Normal test statistics

are combined using a weight matrix other than the inverse of their covariance matrix. A
famous example is the Rao-Scott test (Rao and Scott, 1981) in survey statistics. The true
variance matrix of the individual test statistics tends to be poorly estimated; the Rao-Scott
test replaces it with the variance matrix under iid sampling. In genomics, the Sequence
Kernel Association Test (SKAT) (Wu et al., 2011) evaluates the association between rare
variants and phenotype. It replaces the true variance matrix with a set of weights that
ignore correlation and upweight less-common variants, corresponding to a diagonal matrix
A.

The null distribution of these tests is a weighted sum of central χ2
1 variables, where

the coefficients are the eigenvalues of M . Many methods are proposed to evaluate the
upper tail probability of the distribution of Q(X). We classified these existing methods into
three categories: ‘exact’ methods (Davies, 1980; Farebrother, 1984; Bausch, 2013), moment
methods (see, eg., the Satterthwaite approximation and Liu et al. (2009)) and a saddlepoint
approximation (Kuonen, 1999).

The ‘exact’ methods are exact in the sense that an approximation with arbitrary accuracy
could be obtained if arbitrary precision arithmetic were available. Davies (1980) exploited
the fact that the characteristic function of a sum is the product of characteristic functions,
so the characteristic function for a weighted sum of χ2

1 variables is straightforward to obtain.
Farebrother (1984) showed that the tail probability can be written as an infinite series of
central chi-squared distributions, by writing the linear combination as a mixture (Robbins
and Pitman, 1949). Bausch (2013) showed that a linear combination of gamma densities
form an algebra under convolutions and derived the density for weighted sums of χ2

k variables.
The Satterthwaite approximation approximates the distribution of Q(X) by aχ2

d with
a and d chosen to give the correct mean and variance. Liu et al. (2009) proposed a four-
moment approximation using a noncentral chi-squared distribution of the form a + bχ2

d(ν),
where a is an offset, b is a scaling parameter and ν is the non-centrality parameter. Kuonen
(1999) derived a form of saddlepoint approximation to the sum. The accuracy of these
approximations has been previous studied (Kuonen, 1999; Duchesne and De Micheaux, 2010;
Bausch, 2013), but only for small quadratic forms (n < 10) and moderate p-values.

However, genetics studies often involve a large number of terms (n > 1000) and small
p-values (p < 10−4) raising concerns about both time complexity and accuracy. For time
complexity, extracting all set of eigenvalues scales as cube of sample size n and it would take
more time to compute a tail probability when the number of terms n is large. For accuracy,
moment methods are anti-conservative in the right tail of the distribution.

Recently, a companion paper (Lumley et al., 2018) developed a leading-eigenvalue ap-
proximation to solve above problems. This method is mainly developed for large quadratic
forms and ends up with less computational time without any important loss in accuracy.
This is done by extracting the largest k eigenvalues using a low-rank stochastic singular
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value decomposition (SSVD) (Halko et al., 2011) and utilizing the cheap Satterthwaite ap-
proximation to approximate the rest n− k terms.

This work is motivated by genetic problems which often involve large quadratic forms
with thousands or tens of thousands of terms, under which the existing methods would have a
computational deficiency and may be less accurate. The main objective is to find an optimal
way to perform convolutions for large quadratic forms. We provide empirical evidence for
the existing methods and a leading-eigenvalue approximation under moderate and large
quadratic forms. Evaluations and discussions of the existing methods under large quadratic
forms are made in Section 2. In Section 3, accuracy and computational complexity of a
leading-eigenvalue approximation are discussed. Impact of sparsity, rank and definiteness of
matrix M is discussed in Section 4. Discussions are made in Section 5.

R codes for producing numerical examples can be found in Supplementary information
and are available from https://github.com/T0ngChen/LargeQuadraticForm.

2. Existing methods under genetic settings

This section evaluates the performance of the existing methods in the right tail of the dis-
tribution. Davies’s (1980) and Farebrother’s (1984) methods are usable even for thousands
of terms and achieve close to their nominal accuracy as long as the right tail probability is
much larger than machine epsilon. As they compute Equation (1) from 1− Pr(Q(X) < q),
they break down completely if the extreme right tail probabilities are near or beyond machine
epsilon. The value of machine epsilon mentioned in this work is 2−52 ≈ 2× 10−16.

We observed that Farebrother’s (1984) method ended up with fault indicator 1 when it
was evaluated using the quadratic forms Q1–Q6 generated in this section. The fault indicator
1 represents the calculation has non-fatal underflow of a variable called a0 (Farebrother,
1984). If Q(X) is a weighted sum of central χ2

1 variables, the quantity a0 in Farebrother’s
(1984) algorithm can be simplified to

a0 = exp

(
1

2

(
n log λn −

n∑

i

log λi

))
,

where λ1, . . . , λn are sorted eigenvalues in descending order. For large quadratic forms, if λn
is much smaller than other eigenvalues, a large n can cause the variable a0 to underflow to
0. We cannot use Farebrother’s (1984) method as a reference because the leading eigenval-
ues are much larger than the minimum eigenvalue in our simulated genome sequence data.
Bausch’s (2013) method has rounding errors especially in the left tail with double precision
for moderate and large quadratic forms and is slow with multiple precision (see Supplemen-
tary information). We hereafter choose Davies’s (1980) method as a reference to conduct
numerical studies.

To evaluate the performance of these approximation methods, we simulated human
genome sequence data using the Markov Coalescent Simulator (Chen et al., 2009). This
was done by fixing the number of rows s (people) then choosing the length to make the
number of columns m (variants) approximately equal to the number of rows. We discarded
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variants with minor allele frequency greater than 5% to filter rare variants, giving a large
sparse matrix. We generated six data sets Q1–Q6 and their dimensions are shown in Table 1.
When we extracted eigenvalues, they are set to be zero if they are smaller than 10−10. As the
exact methods have internal estimates of accuracy, we compare Davies’s (1980) method with
simulation p-value to verify Davies’s (1980) method is exact and can be used for moderate
and large quadratic forms (see Supplementary information).

Name Q1 Q2 Q3 Q4 Q5 Q6

s 500 1000 2000 7000 9000 20000
m 470 987 1643 7352 8887 22466
n 305 637 1063 3985 4984 11259

Table 1: The dimensions of simulated human genome sequence data, where s is the number of people, m is
the number of variants and n is the number of non-zero eigenvalues.

Next, we compare the accuracy of the Satterthwaite approximation, Liu–Tang–Zhang’s
(2009) four-moment approximation and Kuonen’s (1999) saddlepoint approximation when
p-value is greater than machine epsilon. R (R Core Team, 2017) packages survey (Lumley,
2011) and CompQuadForm (Duchesne and De Micheaux, 2010) are used to perform analysis
in this section. The eigenvalues of Q1 to Q6 are extracted using a full eigendecomposition.
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Figure 1 Comparisons between methods for the quadratic forms Q1–Q6 when p-value is greater than
machine epsilon. Exact values are computed using Davies’s (1980) method with accuracy 10−16.

Results are presented in Figure 1 and Table 1 in Supplementary information. The x-
axis represents corresponding underlying true p-value from 10−1 down to 10−13. The y-axis
represents the logarithm of error ratio to the base 10. It is computed by generating the
underlying true p-values using Davies’s (1980) method and then calculating the logarithm
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ratio of each method to Davies’s (1980) method. Our numerical studies show that Kuonen’s
(1999) saddlepoint approximation is highly accurate. The maximum logarithm of error
ratio is less than 0.07 in all cases. Moment methods have better performance than Kuonen’s
(1999) saddlepoint approximation in the left tail but are anti-conservative in the right tail.
The Satterthwaite approximation is accurate if the p-value is greater than 10−1. Liu–Tang–
Zhang’s (2009) four-moment approximation performs better and is accurate until 10−2. After
that, the logarithm of error ratio for both two moment methods increases very fast. Figure
1 also shows that moment methods tend to have better performance for moderate quadratic
forms than large quadratic forms under our simulated human genome sequence data.

If the p-value is smaller than machine epsilon, neither the moment methods nor the exact
methods work. All that’s left is the saddlepoint approximation. To analyse the extreme right
tail performance of the saddlepoint approximation, we consider exponential tail rates. A
linear combination of chi-squared variables have an exponential tail in the sense of Berman
(1992), with tail rate 1/2λ1. We show in Appendix A that the saddlepoint approximation
has the same exponential tail rate in the extreme right tail, so that the relative error in
Pr(Q(X) > q) is bounded as q → ∞, for any A and Σ. Kuonen (1999) showed that the
relative error is of order o(n−3/2), so the approximation improves with increasing n, and the
saddlepoint approximation can be used as a reference in the extreme right tail.

3. A leading-eigenvalue approximation under genetic settings

This section explores accuracy and time complexity for a leading-eigenvalue approxima-
tion. It approximates the distribution of Q(X) by formula (4) in Lumley et al. (2018) which
is

T ∼
(

k∑

i=1

λiχ
2
1

)
+ aχ2

d, (2)

where λ1, ..., λk are the largest k eigenvalues of matrix M , a = (
∑n

k+1 λ
2
i )/(

∑n
k+1 λi) and

d = (
∑n

k+1 λi)
2/(
∑n

k+1 λ
2
i ).

The leading eigenvalues are extracted using a low-rank SSVD (Halko et al., 2011). In
Equation (2), the leading terms can be combined using either the exact methods or the
saddlepoint approximation, and the remainder term is obtained by the Satterthwaite ap-
proximation. Followed by the performance of approximation methods discussed in Section 2,
the leading terms are combined using Davies’s (1980) method if the p-value is greater than
machine epsilon and using Kuonen’s (1999) saddlepoint approximation if the p-value is near
or beyond machine epsilon. If the number of leading eigenvalues k is much smaller than
n, a leading-eigenvalue approximation also works well with Farebrother’s (1984) method,
because the variable a0 would not underflow to zero for small quadratic forms.

For accuracy, we compare the leading-eigenvalue approximation with Davies’s (1980)
method when p-value is greater than machine epsilon and with Kuonen’s (1999) saddlepoint
approximation in the extreme right tail using data generated in Section 2. R package bigQF

(Lumley, 2019) is used to do the leading-eigenvalue approximation. SSVD uses 50, 50, 100,
100, 200 and 200 eigenvalues for quadratic forms Q1–Q6 respectively.
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q D LD RLD
q D LD RLD

1.2×1004 1.647×10−04 1.654×10−04 0.005 4.0×1004 1.214×10−04 1.213×10−04 0.000
1.6×1004 1.511×10−06 1.518×10−06 0.005 5.4×1004 3.277×10−07 3.276×10−07 -0.001
1.9×1004 1.473×10−08 1.480×10−08 0.005 6.8×1004 1.022×10−09 1.021×10−09 -0.001

Q1

2.3×1004 1.513×10−10 1.520×10−10 0.004

Q2

8.2×1004 3.395×10−12 3.390×10−12 -0.001
1.1×1005 1.515×10−04 1.512×10−04 -0.002 1.2×1006 4.396×10−04 4.361×10−04 -0.008
1.5×1005 2.770×10−07 2.766×10−07 -0.002 1.7×1006 4.158×10−07 4.127×10−07 -0.007
1.9×1005 5.894×10−10 5.885×10−10 -0.001 2.2×1006 4.625×10−10 4.592×10−10 -0.007

Q3

2.3×1005 1.348×10−12 1.341×10−12 -0.005

Q4

2.7×1006 5.421×10−13 5.438×10−13 0.003
2.0×1006 2.242×10−05 2.242×10−05 0.000 9.0×1006 3.026×10−04 3.024×10−04 -0.001
2.5×1006 1.515×10−07 1.515×10−07 0.000 1.2×1007 8.826×10−07 8.820×10−07 -0.001
3.0×1006 1.091×10−09 1.091×10−09 0.000 1.5×1007 2.872×10−09 2.870×10−09 -0.001

Q5

3.5×1006 8.134×10−12 8.126×10−12 -0.001

Q6

1.8×1007 9.832×10−12 9.806×10−12 -0.003

Table 2: Probability that the quadratic forms Q1–Q6 exceed q, D: exact value using Davies’s (1980) method
with accuracy 10−16; LD: the leading-eigenvalue approximation where the leading eigenvalues are combined
using Davies’s (1980) method; RLD

: (LD −D)/D.

q S LS RLS
q S LS RLS

2.8×1004 2.364×10−13 2.374×10−13 0.004 8.0×1004 8.455×10−12 8.449×10−12 -0.001
3.8×1004 8.871×10−19 8.910×10−19 0.004 1.0×1005 2.578×10−15 2.576×10−15 -0.001
4.8×1004 3.510×10−24 3.525×10−24 0.004 1.2×1005 8.124×10−19 8.117×10−19 -0.001

Q1

5.8×1004 1.430×10−29 1.436×10−29 0.004

Q2

1.4×1005 2.614×10−22 2.612×10−22 -0.001
2.0×1005 1.406×10−10 1.404×10−10 -0.001 3.0×1006 1.090×10−14 1.082×10−14 -0.007
2.5×1005 7.213×10−14 7.203×10−14 -0.001 3.5×1006 1.356×10−17 1.347×10−17 -0.007
3.0×1005 3.838×10−17 3.832×10−17 -0.001 4.0×1006 1.714×10−20 1.701×10−20 -0.007

Q3

3.5×1005 2.088×10−20 2.085×10−20 -0.001

Q4

4.5×1006 2.189×10−23 2.174×10−23 -0.007
4.0×1006 6.899×10−14 6.907×10−14 0.001 2.0×1007 2.524×10−13 2.538×10−13 0.006
4.5×1006 5.342×10−16 5.349×10−16 0.001 2.5×1007 2.125×10−17 2.137×10−17 0.006
5.0×1006 4.177×10−18 4.183×10−18 0.001 3.0×1007 1.845×10−21 1.856×10−21 0.006

Q5

5.5×1006 3.291×10−20 3.295×10−20 0.001

Q6

3.5×1007 1.634×10−25 1.643×10−25 0.006

Table 3: Probability that the quadratic forms Q1–Q6 exceed q, S: approximation obtained by a full eigende-
composition of Kuonen’s (1999) saddlepoint approximation; LS : the leading-eigenvalue approximation where
the leading eigenvalues are combined using Kuonen’s (1999) saddlepoint approximation; RLS

: (LS − S)/S.

Results are shown in Table 2 and 3. The convolutions of leading terms are approximated
by Davies’s (1980) method in Table 2 and Kuonen’s (1999) saddlepoint approximation in
Table 3. The relative error is less than 1% for all examples in the whole probability range. So
that the leading-eigenvalue approximation is consistent with Davies’s (1980) method when
the p-value is much larger than machine epsilon and with the saddlepoint approximation
in the extreme right tail. There is no important loss in accuracy for the leading-eigenvalue
approximation. In Table 3, comparisons are made at very small p-values where the order is
smaller than 10−20. As discussed in Section 2, the relative error of Kuonen’s (1999) saddle-
point approximation is uniformly bounded as q →∞ and the approximation improves with
increasing n. Numerical examples in Section 2 also show that Kuonen’s (1999) saddlepoint
approximation is highly accurate. It is reasonable to assume it will have the same accuracy

6



as q →∞. Therefore, a saddlepoint approximation and a leading-eigenvalue approximation
combine to be usable for all p-values and all large enough numbers of variables.

For time complexity, except the moment methods, implementation of other existing
methods needs to extract all the eigenvalues. It would cost O(n3) time to do a full eigen-
decomposition for X or X2 (Golub and Van Loan, 2012). The computational complexity
for SSVD (Halko et al., 2011) is of order O(n2k) to get the largest k eigenvalues. As∑n

1 λi = trace(M) and
∑n

1 λ
2
i = trace((M)2), the remainder term of Equation (2), which

is approximated by the Satterthwaite approximation, also takes O(n2) time. So that a
leading-eigenvalue approximation would reduce the computational complexity from O(n3)
to O(n2k).

Moment methods are implemented by matching moment. The Satterthwaite approxima-
tion can be calculated in O(n2) time, but Liu–Tang–Zhang’s (2009) four-moment approxi-
mation is no faster than singular value decomposition (SVD) because computing the fourth
moment would take as much work (n3 operations) as getting all the eigenvalues.

Even after the eigenvalues are computed, there is also a speed problem in adding up
thousands or tens of thousands of terms. In order to achieve the same accuracy, Davies’s
(1980) and Farebrother’s (1984) methods would spend more computational time for large
n, because Davies’s (1980) method needs more integration terms and Farebrother’s (1984)
method needs more terms in truncated series. These two methods would also take more
time to compute a small p-value as the number of terms they need is dependent on accuracy.
The computational time of moment methods and the saddlepoint approximation does not
increase when the p-value is getting smaller.

For Davies’s (1980) method, it is slow to get high accuracy if the sum is dominated by
a small number of eigenvalues and the number of terms n in the sum is large, because the
number of integration terms is highly dependent on accuracy in this context. Table 4 shows
that, for large quadratic forms, in order to get high accuracy (10−13 in our example), the
computational time of Davies’s (1980) method increases with the largest eigenvalue.

Case A B C D E
Time(s) 0.01 0.05 0.41 3.96 34.77

Table 4: Computational time of computing a single p-value around 10−6 with accuracy at 10−13 using
Davies’s (1980) method. Case A uses eigenvalues of Q5, case B, C, D and E are obtained by multiplying
the largest eigenvalue of case A by 10, 102, 103 and 104 respectively.

A leading-eigenvalue approximation would do well in such situation because only the
largest k eigenvalues are combined using either the exact methods or the saddlepoint ap-
proximation. A leading-eigenvalue approximation has the computational advantage in both
computing the eigenvalues and adding them up.

However, unless n is greater than hundreds, there is no reason to use the leading-
eigenvalue approximation as it does not save any time. We compare computational time of
SSVD and SVD for Q1–Q4 and a small example Q0 (s = 2000;m = 67) provided in the SKAT
package (Lee et al., 2017). SSVD uses 50 eigenvalues for Q0 and 100 eigenvalues for Q1–Q4.
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As shown in Table 5, SSVD does not save time for small n. For moderate and large n, the
choice of k is not important as long as k is large enough. The criterion for the choice of k is
provided in Section 3.3 of companion paper (Lumley et al., 2018). As Table 2 and 3 show,
the relative error does not increase way out in the tails. So the criterion is also applicable
here even the p-value is much smaller than the companion paper (Lumley et al., 2018).

Qudratic form Q0 Q1 Q2 Q3 Q4

SVD(s) 0.03 0.24 2.22 13.40 811.56
SSVD(s) 0.12 0.24 0.84 2.58 36.06

Table 5: Comparisons of computational time between SSVD and SVD.

4. Impact of sparsity, rank and definiteness of matrix M

Sparsity would affect the speed of computing eigenvalues, but the leading-eigenvalue ap-
proximation still has the computational advantage over a full eigendecomposition for mod-
erate and large quadratic forms. SSVD (Halko et al., 2011) takes k matrix multiplications.
Suppose M = XXT , if matrix X is sparse with αn2 non-zero entries, a matrix-vector multi-
plication takes αn2 time, so the leading eigenvalues can be computed in O(αn2k) time. The
setting in the companion paper (Lumley et al., 2018) was for situations where X or M is
not sparse, but matrix X is the product of a sparse matrix and a projection on to residuals
for an adjustment model. If the number of adjustment variables is p, the leading eigenvalues
are available in O(k(αn2 + np2)).

If X is a general dense matrix, a matrix-vector multiplication takes n2 operations, com-
puting the k leading eigenvalues would take O(n2k) time. Therefore, for moderate or large
quadratic forms, the leading-eigenvalue approximation is always faster than a full decompo-
sition, and the advantage can be larger if the matrix X has a special structure.

The rank of matrix M does not affect computational complexity, because the leading-
eigenvalue approximation is not simply a low-rank approximation. The matrices simulated
in Section 2 are not full rank, but their ranks are still much larger than k and computa-
tion would be the same if they were full rank. Figure 2 in the companion paper (Lumley
et al., 2018) illustrated this by comparing a leading-eigenvalue approximation with a rank-k
approximation, showing that the low-rank approximation is much less accurate.

Davies’s (1980) method, moment methods and the saddlepoint approximation are usable
when matrix M has negative eigenvalues but Farebrother’s (1984) method is not usable
in such a situation. A leading-eigenvalue approximation thereafter also works for nega-
tive definite, negative semi-definite and indefinite matrices as long as convolutions of the
leading eigenvalues are calculated using either Davies’s (1980) method or the saddlepoint
approximation.

5. Discussion

Moment methods are inaccurate for very small p-values. They use a single χ2
d distribution

to approximate the distribution of Q(X) giving a right tail that decreases faster than the
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true distribution. Except for the Satterthwaite approximation, the other moment methods
are no faster than getting all the eigenvalues: computing the third moment would take as
much work as extracting all the eigenvalues.

Davies’s (1980) and Farebrother’s (1984) methods are exact when the p-value is much
larger than machine epsilon. However, for large quadratic forms, Farebrother’s (1984)
method breaks down if the minimum eigenvalue is small and Davies’s method is slow to
obtain high accuracy if the sum is dominated by a small number of terms. A leading-
eigenvalue approximation avoids above problems, so that it works well with both Davies’s
(1980) and Farebrother’s (1984) methods.

The saddlepoint approximation ends up with highly accurate approximation results for
very small p-values. We show it has the correct exponential rate in the extreme right tail,
so the relative error is bounded as q →∞, for any A and Σ. In our numerical examples, the
maximum logarithm of error ratio is less than 0.07. Therefore, a saddlepoint approximation
and a leading-eigenvalue approximation combine to be usable for all p-values and all large
enough numbers of variables.

For large quadratic forms, a leading-eigenvalue approximation provides a computational
advantage without any important loss in accuracy and convolutions of the leading eigenvalues
can be approximated by either the exact methods or the saddlepoint approximation.
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Appendix A. Exponential tail rate of the saddlepoint approximation

Theorem 1. The saddlepoint approximation has the correct exponential rate in the extreme
right tail.

Proof. One form of saddlepoint approximation defined in Equation (3) of Kuonen (1999)
can be expressed in form of error function

S = Pr(Q(x) > q) = 1− Φ
{
w +

1

w
log
( v
w

)}
=

1

2
− 1

2
erf

(
x√
2

)
, (A.1)

where x = w + (1/w) log
(
v/w

)
, w = sign ˆ(ζ)[2{ζ̂q −K(ζ̂)}] 12 , v = ζ̂{K ′′(ζ̂)} 1

2 , K(ζ) is the

cumulant generating function of Q(X) and ζ̂ is the saddlepoint. When x� 1, the asymptotic
form of error function can be expanded as (Decker, 1975)

erf(x) = 1− e−x
2

√
π

∞∑

m=0

(−1)m(2m− 1)!!

2m
x−(2m+1),
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where (2m− 1)!! is the product of all odd numbers up to 2m− 1.
Retain the first term (m = 0) in above summation and then plug it into Equation (A.1).

Using Theorem 3.1 of Berman (1992), the exponential tail rate then becomes

−d logS

dq
=

(
w +

1

w
log(

v

w
) +

1

w + 1
w

log( v
w

)

)
dx

dq
. (A.2)

To get w and v, K(ζ) and its derivatives should be deduced. Q(X) is a linear combination
of central χ2

1 variables, so thatK(ζ) = −1
2

∑n
i=1 log(1−2ζλi), where λ1 . . . λn are the non-zero

eigenvalues and ζ < 1
2

min 1/λi. As the saddlepoint is the value of ζ satisfying K ′(ζ̂) = q, it
can be simplified to

K ′(ζ̂) =
r∑

i=1

λi

1− 2ζ̂λi
= q. (A.3)

Equation (A.3) shows that as q tends to infinity, ζ̂ tends towards 1/2λ1, but it will be
always less than 1/2λ1, where λ1 is the largest eigenvalue. In above summation, the largest
term is λ1/(1−2ζ̂λ1), so that ζ̂ can be approximated by (q−λ1)/2λ1q. Then the asymptotic

expression of w and v can be written as ((q − λ1)/λ1)
1
2 and (q − λ1)/

√
2λ1. As q → ∞, w

and v tend towards infinity as well. Plugging dx/dq, w and v into Equation (A.2), the tail
rate can be expressed as

−d logS

dq
≈
(
w +

1

w
log(

v

w
) +

1

w + 1
w

log( v
w

)

)(
1

2λ1w
− 1

2λ1w3
log(

v

w
)− 1

2λ1w3
+

1√
2λ1vw

)

≈ w
1

2λ1w
=

1

2λ1
.

References

Bausch, J., 2013. On the efficient calculation of a linear combination of chi-square random variables with
an application in counting string vacua. Journal of Physics A: Mathematical and Theoretical 46 (50),
505202.

Berman, S. M., 1992. The tail of the convolution of densities and its application to a model of HIV-latency
time. The Annals of Applied Probability, 481–502.

Chen, G. K., Marjoram, P., Wall, J. D., 2009. Fast and flexible simulation of DNA sequence data. Genome
Research 19 (1), 136–142.

Davies, R. B., 1980. Algorithm AS 155: The distribution of a linear combination of χ2 random variables.
Journal of the Royal Statistical Society. Series C (Applied Statistics) 29 (3), 323–333.

Decker, D. L., 1975. Computer evaluation of the complementary error function. American Journal of Physics
43, 833–834.

Duchesne, P., De Micheaux, P. L., 2010. Computing the distribution of quadratic forms: Further compar-
isons between the Liu–Tang–Zhang approximation and exact methods. Computational Statistics & Data
Analysis 54 (4), 858–862.

Farebrother, R., 1984. Algorithm AS 204: The distribution of a positive linear combination of χ2 random
variables. Journal of the Royal Statistical Society. Series C (Applied Statistics) 33 (3), 332–339.

Golub, G. H., Van Loan, C. F., 2012. Matrix Computations. JHU Press.

10



Halko, N., Martinsson, P.-G., Tropp, J. A., 2011. Finding structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decompositions. SIAM review 53 (2), 217–288.

Kuonen, D., 1999. Miscellanea. Saddlepoint approximations for distributions of quadratic forms in normal
variables. Biometrika 86 (4), 929–935.

Lee, S., with contributions from Larisa Miropolsky, Wu, M., 2017. SKAT: SNP-Set (Sequence) Kernel
Association Test. R package version 1.3.2.1.
URL https://CRAN.R-project.org/package=SKAT

Liu, H., Tang, Y., Zhang, H. H., 2009. A new chi-square approximation to the distribution of non-negative
definite quadratic forms in non-central normal variables. Computational Statistics & Data Analysis 53 (4),
853–856.

Lumley, T., 2011. Complex Surveys: A Guide to Analysis Using R. John Wiley & Sons.
Lumley, T., 2019. bigQF: Quadratic Forms in Large Matrices. R package version 1.3-3.

URL https://github.com/tslumley/bigQF

Lumley, T. S., Brody, J. A., Peloso, G. M., Morrison, A. C., Rice, K. M., 2018. FastSKAT: Sequence kernel
association tests for very large sets of markers. Genetic Epidemiology.

R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria.
URL https://www.R-project.org/

Rao, J. N., Scott, A. J., 1981. The analysis of categorical data from complex sample surveys: chi-squared tests
for goodness of fit and independence in two-way tables. Journal of the American Statistical Association
76 (374), 221–230.

Robbins, H., Pitman, E., 1949. Application of the method of mixtures to quadratic forms in normal variates.
The Annals of Mathematical Statistics, 552–560.

Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M., Lin, X., 2011. Rare-variant association testing for
sequencing data with the sequence kernel association test. The American Journal of Human Genetics
89 (1), 82–93.

11


