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Abstract: When developing a sample preparation protocol for LC–MS untargeted metabolomics of
a new sample matrix unfamiliar to the laboratory, selection of a suitable injection concentration is
rarely described. Here we developed a simple workflow to address this issue prior to untargeted
LC–MS metabolomics using pig adipose tissue and liver tissue. Bi-phasic extraction was performed to
enable simultaneous optimisation of parameters for analysis of both lipids and polar extracts. A series
of diluted pooled samples were analysed by LC–MS and used to evaluate signal linearity. Suitable
injected concentrations were determined based on both the number of reproducible features and linear
features. With our laboratory settings, the optimum concentrations of tissue mass to reconstitution
solvent of liver and adipose tissue lipid fractions were found to be 125 mg/mL and 7.81 mg/mL
respectively, producing 2811 (ESI+) and 4326 (ESI−) linear features from liver, 698 (ESI+) and 498
(ESI−) linear features from adipose tissue. For analysis of the polar fraction of both tissues, 250 mg/mL
was suitable, producing 403 (ESI+) and 235 (ESI−) linear features from liver, 114 (ESI+) and 108
(ESI−) linear features from adipose tissue. Incorrect reconstitution volumes resulted in either
severe overloading or poor linearity in our lipid data, while too dilute polar fractions resulted in
a low number of reproducible features (<50) compared to hundreds of reproducible features from
the optimum concentration used. Our study highlights on multiple matrices and multiple extract
and chromatography types, the critical importance of determining a suitable injected concentration
prior to untargeted LC–MS metabolomics, with the described workflow applicable to any matrix
and LC–MS system.

Keywords: LC–MS untargeted metabolomics; lipidomics; tissue metabolite profiling; sample
preparation for metabolomics

1. Introduction

Untargeted metabolomics is becoming more widespread as a powerful tool for biomarker discovery
and determination of metabolic changes associated with exposure, diet, and disease at a system
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level [1–5]. This involves measuring as many metabolites as possible, both the known and unknown
molecules present in a biological sample, followed by data pre-processing to extract chemometric
information and relative intensities of features from the spectral data, and subsequent analysis
with multivariate/univariate statistical methods to identify discriminant features between groups
of interest [6]. To date, liquid chromatography–mass spectrometry (LC–MS) is the preferred
technique for untargeted metabolomics, enabling the most comprehensive metabolite coverage
due to the compatibility of most metabolites with LC along with the sensitivity and selectivity of
MS [7–9]. Although validated extraction methods suitable for various analytical platforms, tissue types
and biofluids are available [10–15], careful selection of a suitable injected concentration (or sample
loading amount) for each particular LC-MS system are sometimes overlooked or less considered when
developing a sample preparation protocol. Injected concentration can be associated with overloading,
signal saturation or features falling below detection limit and, hence, is a factor that can affect data
quality and reproducibility [16]. A robust metabolomics method requires not just that a maximum
number of metabolites is detected, but also that they fall within the linear dynamic range of the method
to allow direct comparison of metabolites between samples [6]. Not accounting for nonlinearity of
the measurements will severely affect the biological interpretation of the results.

With recent technological advances, a diverse range of LC–MS systems are available for
untargeted metabolomics, spanning from the already commonly used systems such as high- or
ultra-performance LC systems coupled to (Q-)TOF, orbitrap or triple quadrupole MS instruments [17],
to more recently emerging analytical systems such as chemical isotope labelling (CIL)-nanoLC–MS
and nanoLC-nanoelectrospray-MS [18,19]. The performance of different vendors LC–MS instruments
systems can vary largely through factors such as ion source ionisation efficiency, ion extraction
and focusing, and linear dynamic range of the MS detection system, as well as external variables such
as the loading capacity of different LC separation columns. In a recent study by Cajka et al., the optimum
loading amount of plasma extracts for lipidomics analysis was found to be instrument-dependent,
and the author highlighted that avoiding ion saturation is the key to harmonise results across different
laboratories [20]. The presence of sample-specific matrix effects could add further complexity with
regards to ionisation mechanisms and interfering molecules impacting signal responses of individual
metabolic features in a less predictable way [21]. Moreover, metabolite composition and abundance
can vary widely for different sample types, hence, optimum injected concentration is also sample
type-dependent and needs to be individually adjusted for.

In an untargeted metabolomics study, it is extremely difficult to use standard compounds to
monitor signal linearity for every single feature due to the presence of unknowns [22]. Nonetheless,
evaluation of the linear dynamic range can been performed using a serial diluted pooled quality control
(QC) sample [20]. A strategy that included a serial diluted pooled QC in an analytical run sequence
along with the analysis of experimental samples, followed by removal of features that did not follow
proper linear trends during data pre-processing step, has been previously proposed to improve data
robustness and quality [23,24]. Despite its usefulness in discriminating true biological signals from
non-biological origin features, this strategy could also discard biological features that are already
at a suboptimal concentration in the samples due to incorrect sample reconstitution. Carefully adjusting
the reconstitution volume and determining a suitable injected concentration prior to the analysis of
real experimental samples will help to ensure the optimum number of reproducible and linear features
in a single analytical run of experimental samples are measured.

The goal of this study was to develop a strategy for the determination of optimal injected
concentrations for untargeted LC–MS metabolomics analysis of multiple tissue and extract types.
The approach includes LC–MS analysis of serial diluted pooled extracts, chromatographic visualisation,
reproducibility assessment and concentration-intensity correlation calculation, and should be carried
out before analysing any experimental samples. Our study highlights that the reconstitution volume
(thus sample concentration injected into the LC-MS) must be carefully adjusted to avoid overloading
and signal saturation, and that injected concentration affects feature reproducibility and, hence,
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is a critical and independent factor to check to ensure accurate and reliable data. The usefulness of
the developed strategy is not limited to the animal samples exemplified in the present study but can be
applied to a variety of other sample types and LC–MS systems.

2. Materials and Methods

2.1. Animal Tissues for Sample Preparation Optimisation

Pig tissues were purchased from commercial butcheries (Palmerston North, New Zealand).
The samples comprised a fresh section of subcutaneous adipose tissue from the loin area and liver.

2.2. Chemicals

All organic solvents for metabolite extraction, reconstitution and LC–MS analysis (chloroform,
methanol, acetonitrile isopropanol and formic acid) were obtained from Thermo Fisher Scientific
(Auckland, New Zealand) and were of LC–MS grade except chloroform, which was of analytical grade;
Milli-Q® ultrapure water was obtained from Merck Millipore (Bedford, MA, USA). Ammonium formate
(Fluka™, HPLC grade) was obtained from Sigma-Aldrich (Auckland, New Zealand). Lipid internal
standard 1-palmitoyl(D31)-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0 d31-18:1-PE) was
purchased from Avanti® (Avanti Polar Lipids, Alabaster, AL, USA).

2.3. Metabolite Extraction

The tissue extraction protocol has been previously described [25]. Each tissue type was divided
into 20 samples weighing 50 mg each. To extract metabolites, 50 mg tissue (adipose tissue, liver)
was homogenised in 800 µL pre-chilled (−20 ◦C) CHCl3:MeOH (50:50, v/v) with a 5 mm zirconium
bead per plastic tube for 2 × 60 s at 30 Hz using a TissueLyser (Qiagen, Hilden, Germany), followed
by addition of 400 µL water, vortex-mixing (2 × 15 s) and centrifugation (Eppendorf Centrifuge
5427 R, Germany). Centrifuge parameters were set at 11,000 rpm, 4 ◦C, 10 min. Two blank samples
were prepared following exactly the same protocol except that there was no tissue present. For each
tissue type, 200 µL of the lower organic layer from each sample was transferred into a glass tube,
combined and gently mixed to generate an organic extract pool, which was subsequently aliquoted
into 200 µL samples, evaporated to dryness under a stream of nitrogen and stored at −80 ◦C until
analysis. Similarly, pooled polar extract was made by combining 200 µL aliquots of the upper aqueous
layer from each sample from the same tissue type, mixing and then dividing the pooled extract into
200 µL aliquots, and again evaporating to dryness under a stream of nitrogen and stored at −80 ◦C
until analysis.

2.4. Serial Dilution Experiment for Reconstitution Volume Determination

Dried organic extracts from 200 µL aliquot of the pooled sample for each tissue type were
re-dissolved in different volumes (ranging from 100–6400 µL) of a modified Folch solution
(CHCl3:MeOH:H2O, 66:33:1, v/v/v) containing pre-dissolved 0.01% 16:0 d31-18:1-PE internal standard
[0.01% (%w/v)]. Dried aqueous extracts from 200 µL aliquot were re-dissolved in different volumes
(ranged from 50 µL to 800 µL) of acetonitrile:H2O (50:50, v/v). The reconstitution solvent volumes
and full range of tested injected concentration for the organic and aqueous extracts from each tissue
type was summarised in Table 1. Note: Higher reconstitution volumes were utilised for adipose lipid
extracts as a preliminary study utilising the same reconstitution volumes as liver produced severe
overloading. Concentration of the extract injected was calculated as in the equation below:

Concentration (mg/mL) =

50 mg tissue
Extraction solvent volume (mL) † × 0.2 mL aliquot

Reconstitution solvent volume (µL)
1000

† Extraction solvent for polar metabolite = 0.8 mL; Extraction solvent for lipid = 0.4 mL
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Table 1. Reconstitution volume and concentrations of the analysed samples.

Lipid Reconstitution Volume (µL) Concentration (mg/mL)

Liver

100 250
200 125
400 62.5
800 31.25

1600 15.63

Adipose

1600 15.63
2000 12.5
3200 7.81
4000 6.25
6400 3.91

Polar Metabolite Reconstitution Volume (µL) Concentration (mg/mL)

Liver

50 250
100 125
200 62.5
400 31.25
800 15.63

Adipose

50 250
100 125
200 62.5
400 31.25
800 15.63

2.5. Ultra-Performance Liquid Chromatography (UPLC)-Mass Spectrometry Analysis of Lipids

LC–MS conditions were slightly modified from a previously described method by
Samuelsson et al. [26]. Lipid analyses were performed using an Accela 1250 quaternary UHPLC
system coupled to Q Exactive hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA). An Acquity CSH™ C18 column 1.7 µm, 2.1 mm × 100 mm (Waters, USA) was
used for lipid separation with a column temperature of 65 ◦C and mobile phase flow rate at 600 µL/min.
The mobile phases consisted of acetonitrile/H2O (60:40) with 10 mM ammonium formate and 0.1%
formic acid (A), and isopropanol/acetonitrile (90:10) with 10 mM ammonium formate and 0.1% formic
acid (B). Analytes were eluted from the column with the following gradient program: 15–30% B
(0.0–2.0 min), 30–48% B (2.0–2.5 min), 48–82% B (2.5–11.0 min), 82–99% B (11.0–11.5 min), 99% B was
maintained for 3.5 min followed by re-equilibration with 15% B for 5 min. Two microliter reconstituted
samples were injected. Each sample was injected six times; three technical replicates with the mass
spectrometer operating in positive and three technical replicates operating in negative ionisation mode
with a heated electrospray ionisation source set to 370 ◦C. External mass calibration of the Orbitrap
prior to sample analysis was performed by flow injection of the calibration mix solution according
to the manufacturer’s instructions. High resolution data (resolution 70,000) was acquired by full
scan from m/z 200–2000 with source voltage of 3500 V electrospray ionisation positive mode (ESI+)
or −3600 V ESI negative mode (ESI−), capillary temperature of 275 ◦C, and sheath, auxiliary and sweep
gas flow rates of 40, 10 and 5 arbitrary units, respectively.

2.6. Liquid Chromatography (LC)-Mass Spectrometry Analysis of Polar Metabolites

The LC–MS conditions used in this study were as previously described [27]. Briefly, polar
metabolites were analysed with an Accela 1250 quaternary UHPLC pump coupled to an Exactive
Orbitrap mass spectrometry (Thermo Fisher Scientific, Waltham, MA, USA). Chromatographic
separation was carried out at 25 ◦C on a SeQuant® ZIC®-pHILIC 5 µm, 2.1 mm × 100 mm column
(Merck, Germany) with the following solvent system: A = 10 mM ammonium formate in water,
B = 0.1% formic acid in acetonitrile. A gradient program was used at a flow rate of 250 µL/min:
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3–3% A (0.0–1.0 min), 3–30% A (1.0–12.0 min), 30–90% A (12.0–14.5 min), 90% A was maintained
for 3.5 min followed by re-equilibration with 3% A for 7 min. An injection volume of 2 µL was
used and each sample was injected six times; three technical replicates with the mass spectrometer
operating in positive and three technical replicates operating in negative electrospray ionisation mode.
The electrospray probe was operated unheated at room temperature (20 ◦C) to avoid degradation of
thermally labile compounds. External mass calibration of the Orbitrap prior to sample analysis was
performed by flow injection of the calibration mix solution according to the manufacturer’s instruction.
High resolution data (resolution 25,000) was acquired by full scan from m/z 55 to 1100 with source
voltage of 4000 V for ESI+ and −4000 V for ESI−, capillary temperature of 325 ◦C, and sheath, auxiliary,
and sweep gas flow rates of 40, 10, and five arbitrary units, respectively.

2.7. Data Processing

The acquired spectral data were converted with the ProteoWizard tool MSConvert (v 3.0.1818)
to mzXML format and pre-processed with the XCMS package (v3.0.2) in the R environment (v3.2.2) [28],
to extract chemometric information (metabolic features) and integrate the peak area (intensity)
of the detected metabolic features. Solvent front (retention time < 2mins) was removed from analysis.
Chromatographic visualisation was performed using Xcalibur™ Software (Thermo Fisher Scientific,
USA). Total ion chromatograms (TIC) were visually examined to investigate the overall changes
of total ion intensity as well as metabolite/lipid profiles. The extracted ion chromatograms (EIC)
of peaks selected from highly apparent/abundant elution regions along with low abundant peaks from
the baseline region were also assessed for Gaussian shape and visual trends of signal response relative
to the injected concentration. XCMS parameters for peak detection in lipid and HILIC data are provided
in Table S1. The pre-processed data was subjected to blank features filtering based on tstat and p-values
(sample vs. blank tstat < 1 or those with tstat >1 but p-value ≥ 0.05) generated by the diffreport function
from the XCMS package. Subsequent analyses were conducted on non-blank features and all results
and discussion were based on non-blank features only, defined as having a sample vs. blank tstat
> 1 and p-value < 0.05. The relative standard deviation (RSD) of each injected concentration for every
feature was calculated based on the triplicate injections. Peak areas were log10 transformed and used
to calculate the Pearson correlation coefficient (r) between intensity and concentration to provide
an estimate of linearity. The mean intensity-concentration relationship cut-off value selected to represent
good linearity was r > 0.95 for lipid features and r > 0.9 for HILIC features. Linearity calculations
were repeated five times, firstly covering the full concentration range, and then excluding the lowest,
two lowest, highest and two highest concentrations sequentially. The resulting features meeting
the linearity requirements utilising the correlation and exclusion procedure described above were then
gathered to yield the maximum number of linear features, thus determining the optimal concentration
to be used for analysis.

3. Result and Discussion

3.1. Workflow Summary and General Considerations

A step of solvent evaporation and reconstitution has become commonly used in untargeted
metabolomics, allowing for changes in injection solvent composition and the injected concentration
of the sample extracts, ensuring optimal chromatography along with maximal metabolome coverage
and/or minimal saturation is achieved [29]. It has been previously reported that optimum loading amount
for plasma lipidomics analysis was instrument-dependent [20,30]. The present study highlights that
the optimum injected concentration is also sample type-dependent and should, therefore, be adjusted
individually for each tissue matrix and analytical stream. We developed a simple workflow for
the determination of suitable injected concentrations for animal tissues metabolomics and lipidomics
analyses, to maximise the number of features that fall within the linear range of analysis.
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The developed workflow consisted of four steps: serial dilution and analysis of a pooled
sample, brief visual chromatographic examination, data processing to summarise the number of
features and their measured peak areas, followed by peak area response linearity assessment using
calculated correlation coefficients. The selection of an initial concentration range to test began with
the highest possible concentrations as it was likely to allow more low abundant metabolites to be
detected [31]; however, this sample pre-concentration was also most likely to produce overloading
and ion suppression and potentially introduce changes in the matrix [22]. To ensure injections
causing excessive system overloading were quickly eliminated from the process visual chromatogram
examination was initially carried out before entering the more time-consuming data pre-processing
step. This step provided a quick view of the systematic effect of injected sample dilution on the acquired
profile, peak shape, and linear trend. To perform this visualisation step, stacked or overlaid TIC
and selected EIC of small, medium, and large peaks on a fixed intensity scale were examined. Peaks with
height and area in the TIC and selected EICs increased as the concentration increased in response
(e.g., peak height, ion abundance, peak area) to concentrations whilst maintaining Gaussian shapes
without severe distortion (e.g., widening, shoulder peak split peak, flattened apex) were considered
as acceptable and the tested concentration ranges were passed onto the next step for further data
processing. If the visual inspection was not passed, the serial dilution experiment could be repeated
with a higher or lower concentration range if there were no practical limitations, e.g., available sample
amount. Once the visual chromatographic examination was satisfied, data processing was carried
out to examine the effects of injected concentration on the number of detected features and their
reproducibility. Correlation coefficients for the concentration-dependent response of every feature were
calculated. This step covered the full range of testing concentrations as well as excluding one or two
concentrations at either the higher or the lower end. When the highest (one or more) concentrations
were excluded and the correlation calculations produced more linear features than that from the full
concentration range, it was considered that there was a considerable number of chromatographically
overloading features or features undergoing signal saturation or suppression. Likewise, excluding
the lowest (few) concentrations produced more linear features, signifying that several features are under
the detection limit when a low concentration is injected. This evaluation step informed how high or low
the injected concentration may go without causing too much overloading/saturation or information
loss. The general rule we followed to determine the suitable injected concentration for the analysis of
our (or any) sample type was that the highest possible concentration within the concentration range
that produced the maximum number of linear features should be selected.

3.2. Chromatographic Examination

Lipid extracts from liver and polar metabolite extracts from both adipose tissue and liver were
injected at a concentration range between 15.63–250 mg/mL, whereas lipid extracts from adipose
tissue were injected at a much lower concentration range between 3.91–15.63 mg/mL. This was due
to severe chromatographic overloading of adipose lipid profile between 10–13 min analysed in ESI+,
and supressed signal intensities between 5–9 min in ESI− that we observed in a preliminary study
with a concentration range between 15.63–250 mg/mL (Figure S1). Incorrect reconstitution volumes,
i.e., too concentrated lipid fractions from adipose tissue in this case, resulted in severe overloading
and poor dilution responses, and this was improved by diluting the samples further (Figure 1).
Examination of TICs and EICs of adipose tissue lipid profiles injected at 3.91–15.63 mg/mL showed
overall good dilution responses and Gaussian peak shapes in ESI+ (Figure 2) and ESI− (Figure 3).
Although trends of saturation at the higher concentrations were still observed and lower concentrations
likely resulted in signal loss, these issues were further addressed and appraised using the subsequent
step of linearity calculation and evaluation described below. It was also noted the importance of
combining TICs and EICs for this step since relying solely on TICs examination could sometimes be
misleading especially for regions with medium-to-low ionic intensities. For example, m/z 732.5528
from Figure 2 showed no apparent peak in the TIC, so performing EIC allowed testing of the dilution
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response for a concentration range of peaks. This highlighted that for the chromatographic examination
step, it was important to examine not only regions of high intensity peaks, but also the baseline
region. The three other tissue extracts (lipid for liver tissue, HILIC (polar metabolites) for liver tissue
and adipose tissue) also passed both TICs and selected EICs evaluation step, showing overall good
concentration-dependent responses and Gaussian peak shapes of the EICs (Figures S2–S4) and, thus,
were passed through to the XCMS data processing step.
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Figure 1. Extracted ion chromatogram (EIC) of selected features from adipose tissue lipid profile on
a fixed scale of absolute intensity. EIC at (a) high injected concentrations (15.63–250 mg/mL) showed
overloading in ESI+ and suppressed signal intensities in ESI−; data was from unpublished preliminary
study and can be found in S1. This was improved by injecting at (b) lower concentration range
(3.91–15.63 mg/mL) with higher dilution factors. The EIC along the z-axis starts from the lowest injected
concentration at the front towards the highest concentration at the back.
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Figure 2. (a) Total ion chromatogram (TIC) of lipid extracts from 50 mg adipose tissue at low (3.91 
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Figure 2. (a) Total ion chromatogram (TIC) of lipid extracts from 50 mg adipose tissue at low
(3.91 mg/mL), intermediate (7.81 mg/mL) and high (15.63 mg/mL) injected concentration analysed by
ESI+ and (b) examples for selected EIC of peaks representative of low, medium and high intensity
features are indicated in the TIC with *, **, and ***, respectively, on a fixed scale of absolute intensity to
evaluate peak shape and the concentration-dependent response. The EIC along the z-axis starts from
the lowest injected concentration at the front towards the highest concentration at the back.



Metabolites 2019, 9, 124 9 of 19

Metabolites 2019, 9, x 9 of 19 

 

 
Figure 3. (a) Total ion chromatogram (TIC) of lipid extracts from 50mg adipose tissue at low (3.91 
mg/mL), intermediate (7.81 mg/mL) and high (15.63 mg/mL) injected concentration analysed by ESI− 
and (b) examples for selected EIC of peaks representative of low, medium and high intensity features 
are indicated in the TIC with *, **, and ***, respectively, on a fixed scale of absolute intensity to 
evaluate peak shape and the concentration-dependent response. The EIC along the z-axis starts from 
the lowest injected concentration at the front towards the highest concentration at the back. IS: Internal 
standard peak. 

3.3. Feature Summary and Reproducibility 

An increased number of features detected by XCMS was observed as injected concentration 
increased in both the lipid and HILIC analyses for ESI+ and ESI− of adipose tissue and liver tissue 
(Table 2). This was expected as lower injected concentrations tended to result in loss of signal of the 
lower abundant metabolites [32]. In the lipid data for both tissues, over 80% of the detected features 
in every tested concentration in both ionisation modes exhibited good reproducibility (relative 
standard deviation (RSD) < 30%), indicating that increasing the injected concentration did not impair 
reproducibility under conditions applied in this study. 
  

Figure 3. (a) Total ion chromatogram (TIC) of lipid extracts from 50mg adipose tissue at low
(3.91 mg/mL), intermediate (7.81 mg/mL) and high (15.63 mg/mL) injected concentration analysed by
ESI− and (b) examples for selected EIC of peaks representative of low, medium and high intensity
features are indicated in the TIC with *, **, and ***, respectively, on a fixed scale of absolute intensity to
evaluate peak shape and the concentration-dependent response. The EIC along the z-axis starts from
the lowest injected concentration at the front towards the highest concentration at the back. IS: Internal
standard peak.

3.3. Feature Summary and Reproducibility

An increased number of features detected by XCMS was observed as injected concentration
increased in both the lipid and HILIC analyses for ESI+ and ESI− of adipose tissue and liver tissue
(Table 2). This was expected as lower injected concentrations tended to result in loss of signal of
the lower abundant metabolites [32]. In the lipid data for both tissues, over 80% of the detected
features in every tested concentration in both ionisation modes exhibited good reproducibility
(relative standard deviation (RSD) < 30%), indicating that increasing the injected concentration did not
impair reproducibility under conditions applied in this study.
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Table 2. Number of total detected non-blank features, number of non-blank reproducible features
and percentage (%) reproducible features of total features at each concentration in lipid and polar
(HILIC) fraction of adipose tissue and liver extracts.

- Concentration
(mg/mL)

ESI (+) ESI (−)

#Non-Blank
Features (tstat > 1,

p < 0.05)

#Non-Blank Features
with RSD < 30 %

#Non-Blank
Features (tstat > 1,

p < 0.05)

#Non-Blank Features
With RSD < 30 %

Adipose
lipids

3.91 856 814 95.1 441 420 95.2
6.25 921 895 97.2 628 605 96.3
7.81 939 914 97.3 751 710 94.5
12.5 955 934 97.8 972 935 96.2

15.63 985 942 95.6 1160 1127 97.2

Liver
lipids

15.63 1339 1189 88.8 2984 2789 93.5
31.25 1784 1510 84.6 4038 3820 94.6
62.5 2634 2418 91.8 5122 4824 94.2
125 3098 3047 98.4 5952 5659 95.1
250 3210 3110 96.9 6576 6186 94.1

Adipose
HILIC

15.63 20 17 85.0 30 29 96.7
31.25 25 21 84.0 57 55 96.5
62.5 77 72 93.5 72 62 86.1
125 209 203 97.1 114 101 88.6
250 239 217 90.8 176 154 87.5

Liver
HILIC

15.63 53 47 88.7 39 11 28.2
31.25 82 74 90.2 83 38 45.8
62.5 435 413 94.9 236 221 93.6
125 480 443 92.3 304 276 90.8
250 553 496 89.7 380 349 91.8

Similarly, over 80% of the detected features in every tested concentration of both tissues analysed
by HILIC ESI+ exhibited good reproducibility (RSD < 30%), whereas HILIC ESI− analysis produced less
features as well as a generally larger RSD, especially at lower injected concentrations (≤31.25 mg/mL).
Despite a generally good RSD analysed by HILIC ESI+, the total number of features and percentage of
reproducible features were much lower at low concentrations (≤31.25 mg/mL). Our data showed that
when injected concentrations were less than 31.25 mg/mL, a large portion of polar metabolic features
from both adipose and liver tissues were not stably and reproducibly measured, and thus should be
avoided. This highlighted that the injected concentration considerably impacted both the number
of detected features and features reproducibility, especially with the HPLC HILIC analysis system,
and therefore should be taken into consideration when selecting for a suitable injection concentration
for LC–MS analysis.

3.4. Feature Linearity Testing for Selection of Suitable Injection Concentration

Linearity assessment was performed on all features present in the highest injection concentration
in each dataset, including those that might fall outside the detection limit when injected at a lower
concentration. After careful assessment of the linear relationship between concentration and peak area
response, a correlation coefficient (r) cut-off value of 0.95 for the lipid and 0.9 for the HPLC HILIC
analysis was considered optimal for the two analytical datasets. The difference in cut-off value for lipid
and HILIC analyses was due to an overall different data reproducibility by the two analytical platforms.
RSDs were better for the UPLC lipid analysis than the HPLC HILIC analysis potentially due to higher
signal-to-noise ratios and improved peak integration of the UPLC peaks [33,34], with the reproducibility
of the peak measurement likely impacting the correlation coefficient. For example, the highest r
value in the ESI− analysis of liver lipid and HILIC were 1 and 0.97, respectively, despite they were
graphically similar in the degree of linearity (Figure 4). Figure 4 showed how progressive drops in r
value corresponded to changes in the linear relationship between concentration and ion intensity on
a correlation plot, and provides (some visual) references as to how an optimal cut-off value for linearity
assessment was determined. As expected, a clear linear relationship was observed at the highest r value
to start with. At the first few units drop in the r value, e.g., from 1–0.96 in lipid and 0.97–0.93 in HILIC
analyses, the linear relationship was preserved. As r value dropped further, the linear relationship
started to slightly distort or curve. A cut-off value was set at the margin of the well-preserved linearity
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and where subtle curvature may occur. In the following context, features that passed the cut-off value
will be referred as linear features and the rest as non-linear features.
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Figure 4. Examples for correlation plots of features in liver lipid ESI− (a) and liver HILIC ESI− (b),
highlighting a linear-to-non-linear transformation from the above to the below of the cut-off r value
(0.95 for lipid and 0.9 for HILIC).

Non-linear features were mainly due to: 1. Large RSD in one or more concentrations at either
the higher or lower concentration end; 2. Near plateau at either the higher or lower concentration range;
and 3. Processing artefacts, matrix effect and substances from non-biological origin. Non-linear features
due to the last reason above would have random trends or an inverse correlation for the signal-to-injection
concentration response [35]. Whilst processing artefacts are inevitable, the number of features attributed to
this category should be similar for the same tissue extract type across the five tested concentrations because
the extraction protocol, instrument settings, and XCMS data pre-processing settings were kept identical.
Non-linear features due to the first two reasons above would still produce a concentration-dependent
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trend and removal of the distortion region was expected to resume linearity. As such, the correlation
coefficient was recalculated with the exclusion of one or two concentrations at either end of the injected
concentration range. Non-linear features that became linear after exclusion of one or two concentrations
would be assigned to one of the “exclude” categories; for example, if excluding the highest concentration
made a non-linear feature become linear it was assigned/categorised as “exclude h1”. The number
in each category was then compared to investigate how many non-linear features were due to higher
end or lower end issues (e.g., overloading, below detection limit, high RSD, etc.). Figure 5 utilised
liver lipid ESI− as an example to demonstrate this approach, and the result for all datasets were
summarised in Table 3. Among the 6576 features detected, 3022 features exhibited linear response,
and 3554 features were categorised as non-linear features when the dilution trend of full concentration
range was used. Among these 3554 non-linear features, 654 features became linear after excluding
the lowest concentration, and an additional 587 features became linear after excluding the lowest two
concentrations, indicating a large number of features were problematic if injected at low concentration
(<31.25 mg/mL). Possible reasons included samples were too dilute to be reproducibly measured or
completely below the detection limit at these concentrations. On the other side, 181 and an additional
325 features became linear after excluding the highest and second highest concentrations respectively.
The higher concentration end issue was likely to be associated with column overloading, saturation,
signal suppression and/or samples became too concentrated to be reproducibly measured. A total of
1683 features remained non-linear even after excluding the higher or lower end datapoints. This can be
attributed to several reasons, such as processing artefacts, signals from non-biological origin, incomplete
removal of noise, or simply because the testing range did not cover the linear range of the feature.
There was also a small amount of features falling in a category called “undefined” and only lipid data in
the present study appeared to show this phenomenon. These features were non-linear in the full range
but became linear both after excluding higher end and low end, primarily due to dual end issues for
which the exact reasons were difficult to identify and the responses were less predictable. As the number
of features falling in this category was tolerable in all four lipid datasets (<10% of total features), they were
treated as non-linear features, rather than being assigned to any of the “exclude” categories. Collectively,
the interpretation of this step indicated that in liver lipid ESI−, it was favourable to inject higher than
31.25 mg/mL. Similarly, in liver lipid ESI+ excluding l1 and l2 increased the number of linear features by
422 and an additional 299 respectively, whereas excluding h1 or h2 only slightly increased the number
of linear features by 20 and an additional 25, respectively, suggesting an injected concentration higher
than 31.25 mg/mL was favourable. Adipose lipid ESI− favoured an injected concentration higher than
3.91 mg/mL but ESI+ data indicated a considerable amount of overloading features if injected beyond
12.5 mg/mL, with excluded h2 increasing the number of linear features by 188. Therefore, it was desirable
to also avoid an injected concentration higher than 12.5 mg/mL. All four HILIC datasets suggested
an injected concentration no less than 31.25 mg/mL should be used for polar metabolites analysis.
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Figure 5. Features assigned to different category using liver lipid ESI− as an example. Excludedh1, h2,
l1, l2 means excluding the highest one, highest two, lowest one, or lowest two concentrations. Excluding
these concentrations improved r values of non-linear features to above the cut-off threshold respectively.

Table 3. Number of features exhibiting linear trend from correlation analysis with full range of tested
injected concentrations (r > 0.95 for lipids, r > 0.9 for HILIC) and number of additional features
exhibiting linear trend after excluding the lowest concentration (exclude l1), excluding the lowest two
concentrations (exclude l2), excluding the highest concentration (exclude h1) and excluding the highest
two concentrations (exclude h2).

Lipids

Mode Tissue #Feature r > 0.95 Exclude l1 Exclude l2 Exclude h1 Exclude h2 Remain
r < 0.95 Undefined

ESI+
Adipose 985 428 23 5 56 188 235 50

Liver 3210 2119 422 299 20 25 314 11

ESI-
Adipose 1160 304 121 42 25 47 576 45

Liver 6576 3022 654 587 181 325 1683 124
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Table 3. Cont.

HILIC

Mode Tissue #Feature r > 0.9 Exclude l1 Exclude l2 Exclude h1 Exclude h2 Remain
r < 0.9 Undefined

ESI+
Adipose 239 94 6 14 1 2 122 0

Liver 553 349 16 38 9 7 134 0

ESI-
Adipose 176 70 26 12 0 1 67 0

Liver 380 136 39 60 2 1 142 0

Table 3 characterised feature linearity using the maximum number of detected features in each
dataset, and informed about the concentrations that should be avoided. Yet it did not inform the number
of linear features at each concentration that fell into the linear range. To this end, the total number of
features at each concentration needed to be taken into account. Noted that the correlation coefficient
was calculated based on all features detected in the highest concentration, this did not rule out the fact
that some linear features might not meet the criteria of non-blank features at lower concentrations,
i.e., although linear trend was observed, the signal-to-noise ratio, or integrated peak area, in the low
concentration samples were not significantly different from blank samples. To calculate the number
of linear features at each concentration, the data was first filtered based on the number of non-blank
features at each concentration, followed by summing up/gathering the number of linear features
at that concentration. The number of features that fell into the linear range at each concentration was
summarised in Table 4. Again with liver lipid ESI− as an example, 1339 non-blank features detected in
liver lipid ESI+ at the lowest concentration (15.63 mg/mL), among which 1285 were linear based on
the full range calculation, 13 were linear in exclud h1, 16 were linear in exclude h2 and thus a total
1312 linear features out of the 1339 detected non-blank features were detected in the 15.63 mg/mL
concentration sample. Linear features from exclude l1 and exclude l2 (i.e., non-linear became linear
after excluding the lowest or lowest two concentrations) would not be counted as a linear feature for this
concentration as they fell outside of the linear range when injected at 15.63 mg/mL. With this approach,
it was concluded that an injected concentration of 7.81 mg/mL was suitable for lipid analysis of adipose
tissue, yielding 698 (ESI+) and 498 (ESI−) linear features. An injected concentration of 125 mg/mL was
suitable for lipid analysis of the liver, yielding 2811 (ESI+) and 4326 (ESI−) linear features, whereas
in HPLC HILIC analysis it was optimal to inject at 250 mg/mL for both tissue types to maximise
the number of linear features yield (Table 4).

Table 4. The number of linear features that falls within the linear range and the number of linear
features of the total detected non-blank features at each tested injected concentration in lipid and polar
(HILIC) fractions of adipose tissue and liver extracts.

Concentration Non-Blank
Features

r > 0.95
(Full)

r > 0.95
(Exclude l1)

r > 0.95
(Exclude l2)

r > 0.95
(Exclude h1)

r > 0.95
(Exclude h2)

Total Linear
Features

Adipose
lipids

ESI+

3.91 856 415 - - 56 183 654
6.25 921 426 22 - 56 187 691
7.81 939 428 22 5 56 187 698
12.5 955 428 22 5 56 - 511
15.63 985 428 23 5 - - 456

ESI−

3.91 441 264 - - 25 31 320
6.25 628 290 95 - 25 35 445
7.81 751 296 107 35 25 35 498
12.5 972 302 119 41 25 - 487
15.63 1160 304 121 42 - - 467
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Table 4. Cont.

Concentration Non-Blank
Features

r > 0.95
(Full)

r > 0.95
(Exclude l1)

r > 0.95
(Exclude l2)

r > 0.95
(Exclude h1)

r > 0.95
(Exclude h2)

Total Linear
Features

Liver
lipids

ESI+

15.63 1339 1285 - - 13 14 1312
31.25 1784 1570 145 - 15 16 1746
62.5 2634 1939 344 198 18 21 2520
125 3098 2083 414 295 19 - 2811
250 3210 2119 422 299 - - 2840

ESI−

15.63 2984 2178 - - 111 173 2462
31.25 4038 2517 441 - 138 203 3299
62.5 5122 2817 558 420 174 235 4204
125 5952 2955 635 556 180 - 4326
250 6576 3022 654 587 - - 4263

Adipose
HILIC

ESI+

15.63 20 4 - - 0 1 5
31.25 25 5 0 - 0 1 6
62.5 77 29 0 7 1 1 38
125 209 89 4 14 1 - 108
250 239 94 6 14 - - 114

ESI−

15.63 30 27 - - 0 0 27
31.25 57 42 12 - 0 0 54
62.5 72 49 17 3 0 0 69
125 114 59 23 8 0 - 90
250 176 70 26 12 - - 108

Liver
HILIC

ESI+

15.63 53 29 - - 1 3 33
31.25 82 42 2 - 3 5 52
62.5 435 311 11 26 9 6 363
125 480 331 14 30 9 - 384
250 553 349 16 38 - - 403

ESI−

15.63 39 34 - - 0 0 34
31.25 83 60 5 - 2 0 67
62.5 236 118 22 44 2 0 186
125 304 126 35 51 2 - 214
250 380 136 39 60 - - 235

Highest absolute number is highlighted by bold and underlined.

3.5. Strength and Limitation of This Study

This study addressed an often-overlooked topic on the choice of suitable injected concentration
for analysing samples in an untargeted metabolomics study. Reconstitution has been a way to alter
sample concentration to suit the analytical platform and condition. The metabolite profile of different
sample types can be very different in abundance of particular lipid species or metabolites due to
the different biological processes and functions they carry out [36]. For example, lipid concentrations
and compositions vary considerably between different tissues, such as adipose compared to muscle
tissue. Even with the same extraction protocol and analytical platform, the injected concentration
between differing tissues was an important parameter to check for as it affected both the profile
and the amount of reliably measured features. Due to the different instrument sensitivities and column
loading capacities equipped in different laboratories, in combination with the very different nature of
the sample types of interest, the so-called suitable concentration could vary considerably. Few studies
have detailed the decision on the suitable injected concentration when performing untargeted
metabolomics, potentially for the reason that this decision could be subjective. This study attempted to
demonstrate a workflow to this end. We have provided some references and guidelines as to how
injected concentration could impact number of detected features, reproducible features and non-linear
features. We have also provided examples to demonstrate potential detrimental consequences of
not carefully checking the tissue-specific sample dilution prior to the analysis of real samples, hence
highlighting the importance of this step.

Signal response to sample dilution can be used to evaluate signal linearity in untargeted
metabolomics [24]. The use of serial diluted samples along with real samples at analytical
and post-analytical stages to remove non-linearly scaled features to improve data quality has been
previously reported [23,35,37]. Serial diluted samples can also be used to determine a suitable
injection concentration for metabolomics analysis as a step of sample preparation protocol optimisation,
which has yet to be described in existing literature. Here we are the first to describe a workflow
with fine details for the determination of a suitable, sample type- and analytical stream-specific,
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injection concentration for metabolomics analysis. The described strategy was performed with a pooled
sample to ensure the procedure was executed on a sample that will have the representative metabolite
composition of the sample type and study condition. Whilst the study samples can be extracted,
dried and briefly stored under optimal conditions [38], the pooled sample is used to run a serial
dilution experiment; once the suitable injected concentration is determined, dried extracts from study
samples can then be reconstituted and analysed at the optimum concentrations, although long-term
storage of samples should be avoided as this could lead to sample degradation/poor resolubilisation
and changes in profiles [39]. There are both pros and cons of this workflow. The process of data
acquisition for the serial diluted pooled samples is identical to that for the study samples, hence,
the signal responses to different injected concentration will reflect how study samples would behave.
If a sample type is naturally abundant in certain class of metabolite, e.g., glycerolipids in adipose
tissue [40], sample dilution can help to avoid column overloading, signal saturation and potentially
ion suppression as well [41,42]. Sample pre-concentration, on the other hand, would allow more low
abundant metabolites to be detected and reliably measured. On the down side, dilution of injected
samples can cause signal loss of low abundant metabolites and hence a decrease of total detected
features whereas sample preconcentration could cause overloading of abundant metabolites/lipid
species. A higher dilution factor may also impair data reproducibility and increase RSDs as shown in
this study. Given the wide concentration range of endogenous metabolites in samples and the goal of
untargeted metabolomics is to reliably measure as many of them as possible it is, therefore, important
to find the balance between data quality and metabolome coverage. This workflow, instead of looking
at responses of individual lipid species or metabolites which would be not realistic in untargeted
metabolomics, focused on the effect of injected concentration on metabolomic profile and feature
properties on a global scale, and favoured the selection of concentration with the highest amount of
linear features relative to the other tested concentrations. Another point worth noting is that increasing
the number of reliably measured features did not necessarily mean an increased number of detected
metabolites. Redundant features derived from isotopic masses, adduct formation and source-induced
fragmentation could be presented without adding biological information to the data. Nonetheless,
capturing extra chemometric information and maintaining data integrity might facilitate metabolite
identification in the later stage of a metabolomics study. Lastly, this strategy has no means to
optimise metabolome coverage or reproducibility from the aspect of extraction and reconstitution
solvents as well as instrument settings, therefore, some knowledge on or a pre-optimised analytical
workflow with regards to the choice of extraction and reconstitution solvents as well as the type of
instrument and columns, elution programme, mobile phase, etc., should be established. There are
many studies investigating extraction solvents and conditions for most commonly used sample
types [13,14,17,38,43,44]. Nonetheless, our study highlights the critical importance of assessing
the effect of injected sample concentration as an independent parameter on the acquired metabolomic
profile, feature characterisation and linearity, and provides a feasible way to determine a suitable
concentration prior to the analysis of real samples.

4. Conclusions

The present study utilised lipid and polar metabolite extracts (bi-phasic solvent extraction to
generate extracts of polar metabolites and lipids) from two different tissues as examples to demonstrate
a workflow for the selection of injected concentration for LC–MS analysis. We report under our
laboratory and analysis conditions that an injected concentration at 125 mg/mL and 7.81 mg/mL is
suitable for lipid analyses from liver and adipose tissue, respectively. Over 90% of the detected features
were reproducible in each dataset, producing 2811 (ESI+) and 4326 (ESI−) linear features in liver
and 698 (ESI+) and 498 (ESI−) linear features in adipose tissue. An injected concentration at 250 mg/mL
was suitable for the analyses of polar extracts from both types of tissues. Over 85% of the detected
features were reproducible in each dataset, producing 403 (ESI+) and 235 (ESI−) linear features in
liver and 114 (ESI+) and 108 (ESI−) linear features in adipose tissue. We highlight that the injected
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concentration can be associated with overloading, saturation, or features under the detection limit,
and affect data quality and reproducibility, as well as the number of detected and linear features.
Therefore the injected concentration is a critical parameter to check for and should be carefully adjusted
prior to the analysis of real samples. The optimum injected concentration could vary depending
on various factors, such as extraction protocol, solvent compatibility, column type, instrument type
and sample type, and we have demonstrated a general workflow to determine this important parameter.
The developed workflow is also applicable to a variety of other sample types and LC–MS systems,
and should be considered fundamental to LC–MS-based untargeted metabolomics analysis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/7/124/s1.
Table S1: XCMS settings for peak detection in lipid data and HILIC data obtained from each ionisation mode.
Figure S1: Total ion chromatogram (TIC) of lipid extracts from 50 mg adipose tissue at 15.63 mg/mL, 62.5 mg/mL
and 250 mg/mL injected concentration and example for problematic extracted ion chromatogram (EIC) at this
concentration range analysed by (a) ESI+ eluted between 8.5–14 min and (b) ESI− eluted between 5–9 min,
on a fixed scale of absolute intensity. The EIC along the z-axis starts from the lowest injected concentration
(15.63 mg/mL) at the front towards the highest concentration (250 mg/mL) at the back. The selected features for
EIC examination were marked as * in the corresponding TIC. Figure S2: Total ion chromatogram (TIC) of lipid
extracts from liver at low (15.63 mg/mL), intermediate (62.5 mg/mL) and high (250 mg/mL) injected concentration
analysed by (a) ESI+ and (b) ESI−, and selected EIC of small (*), medium (**) and large (***) peaks representative
of low, medium and high abundance features respectively on a fixed scale of absolute intensity to evaluate
peak shape and the concentration-dependent response. The EIC along the z-axis starts from the lowest injected
concentration at the front towards the highest concentration at the back. Figure S3: Total ion chromatogram (TIC)
of polar extracts from adipose tissue at low (15.63 mg/mL), intermediate (62.5 mg/mL) and high (250 mg/mL)
injected concentration analysed by (a) ESI+ and (b) ESI-, and selected EIC of small (*), medium (**) and large
(***) peaks representative of low, medium and high abundance features respectively on a fixed scale of absolute
intensity to evaluate peak shape and the concentration-dependent response. The EIC along the z-axis starts from
the lowest injected concentration at the front towards the highest concentration at the back. Figure S4: Total ion
chromatogram (TIC) of polar extracts from liver at low (15.63 mg/mL), intermediate (62.5 mg/mL) and high
(250 mg/mL) injected concentration analysed by (a) ESI+ and (b) ESI-, and selected EIC of small (*), medium (**)
and large (***) peaks representative of low, medium and high abundance features respectively on a fixed scale of
absolute intensity to evaluate peak shape and the concentration-dependent response. The EIC along the z-axis
starts from the lowest injected concentration at the front towards the highest concentration at the back.
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