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Abstract
Isogenies of abelian varieties have been used in cryptography to create post-quantum cryptosystems.

In particular, supersingular elliptic curve isogenies have been used to construct key exchange, encryption
and signature protocols and hash functions. This thesis concerns itself with results relating to this
cryptosystem and presents four main findings: two attacks, a reduction and a generalisation.

The two attacks on the cryptosystem are an adaptive attack and a fault attack. The adaptive attack
targets instances of the cryptosystem using static keys and is able to recover the secret with close to
optimal number of queries for most use cases. The fault attack targets the cryptosystem embedded in
hardware and is able to recover the entire secret with one successful perturbation.

The reduction shows that breaking the cryptosystem is at most as difficult as computing endomor-
phism rings of supersingular elliptic curves. It relies on the equivalence of the category of supersingular
elliptic curves under isogenies and the category of invertible modules under homomorphisms.

We also generalise the cryptosystem from isogenies between supersingular elliptic curves to isogenies
between supersingular principally polarised abelian surfaces. In particular, we propose a genus two
version of the key exchange protocol called Genus Two SIDH (G2SIDH). We perform some analysis
of the security of G2SIDH by studying the isogeny graph of principally polarised abelian surfaces. A
by-product of this study is that a naive generalisation of the hash function to genus two is no longer
collision resistant.
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Introduction

The first encounter students will have with abelian varieties will most likely be the Pythagorean triples,
which are integral solutions to the equation

a2 + b2 = c2 .

The task of finding Pythagorean triples can be reduced to finding rational solutions of the Pythagorean
equation. One is then usually introduced to the group law which allows for the generation of infinitely
many rational solutions. Hence, this is an explicit study of abelian varieties. This gives us our first
glimpse into the rich theory that is abelian varieties. The study of these varieties still remains an active
area of research with the resolution of Fermat’s Last Theorem as the latest landmark achievement in the
discipline. We will review the necessary background on abelian varieties in Chapter 1. The aim of this
chapter is to provide a concise and (hopefully) self-contained treatment of this vast topic.

And now for something completely different, we have cryptography which is the study of secure
communications in the potential presence of adversaries. The first known use of ciphers dates back to
around 100BC, when Julius Caesar has been recorded to have used the Caesar cipher to secure messages
to his generals. Despite its early start, cryptography is a relatively young science. Cryptography has
only taken its modern form with the advent of computers in the 1950’s; in the process, it has also
developed a distinctly number-theoretic flavour. The strongest influence number theoretic methods have
had on cryptography is in public-key cryptography. The first1 public-key cryptosystem, and possibly the
earliest use of number theory in cryptography, is the Diffie–Hellman key exchange protocol [DH76]. The
key exchange protocol relies on the difficulty of the Discrete Logarithm Problem (DLP) in the group
of multiplicative elements of a finite field. The discrete logarithm problem in a group G is defined as:
Given g, h ∈ G such that h = gx, find x.

There are many algorithms to solve a generic2 instance of the DLP. The main algorithms are the
following:

• The Baby-step Giant-step (BSGS) [Sha71] is a “space-time tradeoff” algorithm that searches for
collisions that would yield a solution to the DLP by pre-computing a list and comparing sequentially
generated elements against this list. The time complexity is approximately O(

√
N), where N is

the order of the group.

• Pollard rho and Pollard Kangaroo algorithms [Pol75] are collision finding algorithms that have
similar runtime complexity to the BSGS algorithm. The Pollard rho algorithm can be further
improved with the use of negation maps which speeds up the original algorithm by a factor of

√
2

[BKL10]. Note that this technique explicitly exploits the geometric structure of elliptic curves.
The two algorithms have negligible space requirements at a cost of a linear increase in complexity
as compared to BSGS.

• The Pohlig–Hellman algorithm [PH78] is able to efficiently solve specific instances of the DLP
when there exists a nested sequence of (small) subgroups. The aim is to solve the DLP in small
prime order subgroups and lift the solution to a larger subgroup, repeating the process to the
Sylow subgroup. The algorithm then combines the results using the Chinese Remainder Theorem
to compute the discrete logarithm.

1Although a classified discovery has already been made in the secretive bowels of GCHQ by Williamson.
2Generic meaning that we only have access to the group operation and have no access to other properties/structure the

group might have.
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On top of these generic algorithms to solve the DLP, one could solve the DLP when more information or
structure is given. In the case of the DLP over a finite field, one could employ Index Calculus methods.
Index Calculus methods exploit the notion of “smoothness” and the ability to decompose arbitrary
elements in the field into smooth elements. In the case of the group of multiplicative elements in a finite
field, one can use non-generic methods such as Index Calculus methods to solve the DLP. The algorithm
takes random powers of g, lifts them into the integers and factorises these powers. If the factors of the
powers are smooth (we say that it lies in the factorbase), then the relation is kept. When factorised
into elements in the factorbase, one can express the random power as a sum of the discrete logarithms
of elements of the factorbase. After iterating this procedure sufficiently many times, one is able to use
linear algebra methods to recover the discrete logarithms of all/most of the elements of the factorbase.
Now, taking the product of h with some gs, such that the factors of the product are all contained in the
factorbase, one can recover x by solving a linear equation. This necessitated the use of larger keys to
compel the adversary to devote the same amount of resources to break the cryptosystem.

The moment that abelian varieties came to the fore in cryptography was when researchers started
realising that the groups of abelian varieties are particularly well-suited to modern computer arithmetic.
This is due to elements of abelian varieties having a convenient representation in finite fields, and having
a group law that is defined by polynomials. Furthermore, the range of parameters afforded by the
Hasse interval made them more flexible in the order of the groups. The first use of abelian varieties in
cryptography based a cryptosystem on the difficulty of the Elliptic Curve DLP (ECDLP).

Abelian Varieties and Cryptography
In 1985, Neal Koblitz [Kob87] and Victor Miller [Mil85] independently suggested the use of elliptic curves
in cryptography, spawning Elliptic Curve Cryptography (ECC).

Besides the generic discrete logarithm algorithms to solve the DLP in any generic group, ECC has an
extra geometric structure that has been exploited to solve very particular ECDLP instances. Indeed, most
attacks on the ECDLP rely on transferring the DLP into another group where the DLP can (hopefully)
be solved more easily.

• There exists a bilinear pairing on elliptic curves which maps into some finite field. The MOV
attack [MVO91, FR94] exploits this pairing to transfer the DLP from elliptic curves to finite fields.
Provided that the field is sufficiently small, one will be able to solve the DLP in the finite field and
transport the solution back into elliptic curves to solve the initial ECDLP.

• Suppose L/K is a finite extension of fields, then Weil descent is a map which sends a variety over
L to a variety over K. The Weil descent attack [GHS02] transports the ECDLP to the DLP in a
higher dimensional variety. The attack relies on the DLP being easier in the higher dimensional
variety with a smaller base field. If so, the DLP can be solved in the higher dimensional variety
before bringing the solution back to solve the ECDLP.

• The anomalous curve attack [Sma99, SA98] exploits the existence of a map from the elliptic curve
group into the vector space of holomorphic differentials of the curve. Since this vector space is
isomorphic to the base field of the curve, the ECDLP can be transferred into the base field to
be solved. This is usually extremely practical as one can employ stronger algorithms to solve the
DLP in finite fields. In fact, an attacker uses the Euclidean algorithm, which is extremely efficient.
This map will only exist if the characteristic of the base field divides the order of the elliptic curve
group.

Despite the existence of these attacks, well-chosen elliptic curves can provide much smaller key sizes
than key sizes for finite field cryptography. Elliptic curves are abelian varieties of dimension one. To
generalise ECC, one can look at abelian varieties of higher dimension, and in 1989, Koblitz [Kob89]
suggested the use of hyperelliptic curves in public-key cryptography. The points on the hyperelliptic
curve lack a group structure; the DLP is in the group of points on the Jacobian of the curve. The main
draw of hyperelliptic curve cryptography (HECC) is the hope of efficiency through computing group
operations in a smaller finite field. However, it has been shown that if the dimension of the abelian
variety is too large, then index calculus attacks can be more efficient than generic group algorithms
[AD93, Gau00].
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Hitherto, the algorithms described are known as classical algorithms; that is, they are a series of
steps that are performed on a classical computer. In 1994, Peter Shor proposed a quantum algorithm to
solve the DLP in a generic group. Being a quantum algorithm, it requires a quantum computer to be
executed. Thus, the slow and irresistible march towards the first quantum computer capable of breaking
modern cryptosystems heralds the end of cryptosystems based on the difficulty of the DLP.

Post-quantum Cryptography
This bleak landscape spurred the research into cryptosystems that are based on hard problems that
cannot be efficiently solved by either classical and quantum computers. The candidates for such a
cryptosystem can be grouped into 5 main categories.

• Lattice-based cryptosystems base their security on well-studied problems of lattices, namely the
shortest-vector and closest-vector problems. The first lattice-based schemes began with papers
by Atjai [Ajt96] in 1996, and Hoffstein, Pipher and Silverman [HPS98] in 1998. Encryption and
signature protocols in lattice-based cryptosystems are generally fast, but have relatively large keys,
ciphertexts, and signatures. Also, there is a long-standing problem of estimating lattice attacks
that makes choosing security parameters extremely difficult.

• Code-based protocols employ error-correcting codes for encryption and key exchange and more
recently, signatures. The security is based on the difficulty of decoding general linear codes as
proposed by McEliece in 1978 [McE78]. The advantages of using code-based cryptography are its
speed and the reliance on a problem that is known to be NP-hard. However, large key sizes have
continued to deter potential users.

• Hash-based schemes use hash trees to produce signatures. The first hash based digital signature
was published by Ralph Merkle in 1979 in his PhD thesis [Mer79]. Confidence in the security of
these schemes come from the continued resistance to cryptanalysis of the cryptosystem since its
inception. However, the lack of encryption and key exchange protocols is the main drawback for
the hash-based paradigm.

• Multivariate cryptographic systems rely on the difficulty of solving systems of multivariate equa-
tions. The debut of multivariate schemes came in 1988 with a paper by Matsumoto and Imai
[MI88]. These are problems that have been well-studied and can be proved to be NP-hard or NP-
complete. Multivariate cryptosystems are able to build the shortest signature schemes amongst its
post-quantum competitors. But it does not have efficient encryption or key exchange protocols.

• Supersingular Elliptic Curve Isogeny cryptosystems are based on the assumption that isogenies
between elliptic curves are difficult to compute. A key exchange and encryption protocol has been
proposed in 2011 [JD11], and signature schemes have seen improvements in their efficiency. The key
exchange protocol has the shortest keys amongst its competitors, but the computational complexity
of the scheme is relatively high. Confidence in this cryptosystem is still weak due to the novelty of
the cryptographic assumptions.

The purpose of this thesis is to examine the security and protocols of isogeny-based cryptography. We
hope to bolster confidence in supersingular elliptic curve isogeny cryptosystems through this study. In this
thesis, we are most interested in the cryptanalysis of isogeny-based cryptosystems and the mathematics
lurking in the background.

Isogenies of Abelian Varieties
The protagonist of isogeny-based cryptography are isogenies. An isogeny between abelian varieties is a
homomorphism which is surjective and has finite kernel. It can be shown that an isogeny preserves both
the algebraic and also certain geometric structures of the variety. Isogenies are classified by their degree,
which is defined by the degree of the function field extension induced categorically. In the case where
that extension is separable, we have that the degree coincides with the size of the kernel. We call an
isogeny with degree ` an `-isogeny.
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There is a correspondence between `-isogenies and subgroups of the `-torsion which will play a crucial
role in this thesis. Every subgroup of the torsion can be the kernel of an isogeny, and every isogeny is
uniquely defined by its kernel up to composition with an isomorphism. In other words, isogenies from
isomorphic varieties with the same kernels under the isomorphism will map into a pair of isomorphic
varieties. The upshot of this is that it makes sense to talk about isomorphism classes of isogenies.

In the case of elliptic curves, this correspondence can be computed efficiently: given a subgroup of the
`-torsion, Vélu’s formula allows one to compute the isogeny whose kernel is equal to the given subgroup.
Conversely, given an isogeny, one can compute its kernel to obtain the subgroup of the `-torsion.

A special class of isogenies that map a variety to itself are known as endomorphisms (although
the converse is not always true). The set of all endomorphisms on a variety, together with the zero
endomorphism, forms a ring with multiplication given by composition, and addition given by point-wise
addition. Note that the zero endomorphism is a map that sends every point from a variety to the identity
element. The zero endomorphism is not an isogeny, but we call it the zero endomorphism for convenience.
The endomorphism ring is a Z-module and we have the inclusion of Z into the endomorphism ring. The
exact isomorphism type of the endomorphism ring for an arbitrary abelian variety is not known. However,
the endomorphism rings of elliptic curves are well understood.

A non-trivial theorem states that endomorphism rings of elliptic curves are isomorphic to the integers,
or an order of an imaginary quadratic field, or a maximal order of a quaternion algebra. A fortiori,
endomorphism rings of elliptic curves over a finite field fall into the latter two categories. We call elliptic
curves over a finite field with endomorphism rings isomorphic to a maximal order of a quaternion algebra,
supersingular elliptic curves. If the endomorphism ring of an elliptic curve is an order of an imaginary
quadratic field, we say that it is ordinary.

Now, fix two distinct primes p and `, and set a field k with characteristic p. Then one can define the
`-isogeny graph over k to be a directed graph whose vertices are isomorphism classes of elliptic curves
over k, and an edge between two vertices exists if and only if there is an `-isogeny between them over k.
The first interesting question one might ask is if the graph is connected. In general, the answer is no.

A deep result of Tate states that abelian varieties are isogenous over k if and only if they have the same
cardinality over k. It is important to note that this result considers isogenies of all degrees and not only
`-isogenies. However, we can still infer from the theorem that edges can only exist between isomorphism
classes of elliptic curves with the same cardinality. The result is a large number of components in the `-
isogeny graph. To gain a handle on the structure of the components, one must look at the endomorphism
algebra of the components.

Ordinary curves form multiple `-volcanoes grouped according to their endomorphism algebras. The
structure of these `-volcanoes will be examined in Chapter 4, where we will also see how class group
actions allow us to navigate within the components.

Supersingular elliptic curves on the other hand form a single connected component. In fact, the
component is an (` + 1)-regular graph. The problem of finding an isogeny between two supersingular
elliptic curves can then be translated into finding a path between two vertices in the `-isogeny graph.
As mentioned, endomorphism rings of supersingular elliptic curves are maximal orders of a quaternion
algebra. It can be shown that the quaternion algebra is the definite quaternion algebra ramified at
p and infinity. Yet another important result is the equivalence of categories between the category of
supersingular elliptic curves and their isogenies, and the category of invertible left modules of a maximal
orders and their module homomorphisms. The arithmetic of the maximal orders of quaternion algebras
allows us to translate the isogeny problem to finding invertible modules of these maximal orders.

We will examine the structure of the isogeny graph of (certain classes of) abelian surfaces in Chapter 5.
This has implications on the security of cryptosystems constructed from isogenies of abelian varieties.

Isogenies of Abelian Varieties in Cryptography
Founded on the belief that finding isogenies is difficult, in 1997 Jean-Marc Couveignes presented at ENS
the notion of “Hard Homogeneous Spaces”. Essentially, he described a set acted transitively on by a
group fulfilling certain conditions, one of which is that given two elements in the set, it is difficult to
find an element in the group taking one element of the set to the other. Furthermore, he proposed
the set of isomorphism classes of elliptic curves (with group action given by the class group action) as
a hard homogeneous space. The paper was submitted to Crypto ’97, but was not accepted, but the
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manuscript was made public in 2006 [Cou06], and later published in 2007 [Cou07]. In 2004, Anton
Stolbunov independently proposed a similar proposal in his Masters Thesis [Sto04] and also included a
signature scheme. This culminated in a paper with Rostovtsev in 2006 [RS06] where they described a key
exchange protocol that they suggested might be post-quantum secure. We will refer to this collectively
as the Couveignes–Rostovtsev–Stolbunov (CRS) cryptosystem. The hope that the CRS cryptosystem
might be post-quantum secure was slightly misplaced as Childs, Jao and Soukharev [CJS14] found in
2010 a subexponential quantum algorithm that is able to force users towards larger key sizes. This
algorithm relies on the commutative group action of the class group, and reduces the isogeny problem
to a hidden shift problem. One can then apply the Kuperberg algorithm to compute the keys.

In 2006, the use of supersingular isogenies was proposed by Kristin Lauter in “The Second Cryp-
tographic Hash Workshop” organised by NIST. This subsequently appeared in the paper by Charles,
Goren and Lauter [CLG09]. In this paper, they described a hash function that navigates the supersin-
gular 2-isogeny graph. The input of the hash was used to deterministically generate a path from a fixed
initial vertex, while the output of the hash was the endpoint of the path. Hence the security of the hash
depended on the issue of finding isogenies between supersingular elliptic curves.

In 2011, David Jao and Luca De Feo [JD11] proposed a key exchange scheme which is similar to the
CRS cryptosystem. The key difference is the use of supersingular elliptic curves over Fp2 which foils the
quantum attack of Childs, Jao and Soukharev since the class group action does not exist on supersingular
elliptic curves over Fp2 . This innovation led to a different problem: that of “non-commutativity” of the
operations performed by the two parties involved in key exchange. In general, isogenies will not be
commutative since one can only compose isogenies if the domains and codomains are compatible. When
we speak of commutative operations in the CRS framework, we speak of the representation of isogenies
by the action of commuting group elements. Since this action is absent for supersingular elliptic curves
over Fp2 , extra torsion data is required to allow for two parties to compose their secret isogenies in a
well-defined manner. The order of the compositions will not matter (hence giving us “commutativity”)
since quotients by subgroup do commute. By ensuring that both parties send additional information in
the protocol, they were able to surmount this complication. This key exchange protocol is dubbed the
Supersingular Isogeny Diffie–Hellman key exchange (SIDH).

In 2017, a proposal was submitted to the NIST standardisation process. The Supersingular Isogeny
Key Encapsulation (SIKE) suite is based on the ideas of SIDH, and has a public key encryption algorithm
and a key encapsulation mechanism. As of 2019, the SIKE proposal has reached the second round of the
standardisation process.

In 2018, Castryck et al. delineated a supersingular isogeny cryptosystem that is able to retain the
commutative action of CRS while still retaining some post-quantum security. The commutativity of
this action has led the authors to name the protocol CSIDH (commutative SIDH), and pronounced as
“seaside”. This followed efforts from De Feo, Kieffer and Smith [DKS18] to improve the speed of the
CRS cryptosystem. The key ingredient of CSIDH is the use of supersingular elliptic curves over Fp. This
imposes restrictions on the endomorphism ring which allows class group actions to once again act on the
isomorphism classes of elliptic curves. However, the subexponential CJS algorithm does apply to this
scheme.

We will present SIDH and the CGL hash function in Chapter 2. The treatment of CSIDH will be
concise and will follow from the discussion of endomorphism rings in Chapter 4.

Since the publication of SIDH and CSIDH, numerous implementations and signature schemes have
been proposed, as have some cryptanalysis on the cryptosystems. However, the task of examining the
entirety of this field would be an undertaking too great for the author and indeed the reader! Hence, we
will focus on the contributions that this thesis has made to the field.

Contributions
The first contribution of this thesis is to present the first attack on SIDH. The attack is an adaptive
attack which means that users are no longer able to use static keys in the key exchange protocol. Static
keys are used in cases where non-interactive key exchange is desired, additionally, one can obtain one-way
authentication for free. This is now no longer a secure option. As mentioned, the non-commutativity of
the SIDH operations necessitated the publication of auxiliary information which is absent in most Diffie–
Hellman schemes. The authors noticed this oddity but did not anticipate that an adaptive attack would
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be able to break the cryptosystem. Our adaptive attack, published as [GPST16], is able to break SIDH
with the optimal number of queries. Indeed, by querying an oracle that returns one bit of information,
the attack is able to recover the isogeny with less than log2(n) queries, where n is approximately the
number of bits of the secret. Additionally, the attack is able to evade lightweight countermeasures and
can only be thwarted by countermeasures that would double the complexity of SIDH. This attack will
make up the first section of Chapter 3.

The next contribution is a fault attack on SIDH [Ti17]. The fault attack targets the auxiliary
information of the protocol. The crux of the analysis of the auxiliary information in [JD11] is that
the auxiliary information can in no way leak information about the secret isogenies. However, the fault
attack targets this very idea by changing the auxiliary information in such a way that it leaks information
about the secret isogeny. In fact, a single fault will be sufficient to divulge the entire secret. The fault
attack will be presented in the second section of Chapter 3.

Recall the equivalence of categories between the category of supersingular elliptic curves and isogenies,
and the category of invertible left modules of a maximal order and their module homomorphism. In
[KLPT14], the authors were able to show that the supersingular isogeny problem has a corresponding
problem in the category of invertible modules. Furthermore, the authors were able to solve the problem
in that particular category. In [GPST16] and §4.3.2, we expand on this link and show that lattice
reduction methods are able to allow us to solve the supersingular isogeny problem of SIDH in the
category of invertible modules. Armed with this result, we show that breaking SIDH is at most as hard
as computing the endomorphism rings of an arbitrary supersingular elliptic curve.

Lastly, the final contribution of this thesis is the generalisation of elliptic curve isogeny-based cryptog-
raphy. Elliptic curves are abelian varieties of dimension one, hence [FT19] and §2.3 aim to generalise this
to higher dimensions. Generalisation of the cryptosystem to higher dimensions have first been proposed
by Takashima in [TY09] and [Tak18]. In particular, they suggested that the CGL hash function can be
generalised to abelian surfaces, where it might be more efficient. More concretely, they proposed looking
at genus two hyperelliptic curves, and looking at the isogeny graph of principally polarised supersingular
abelian surfaces (PPSSASs). But Takashima was wary that the isogeny graph of abelian surfaces may
harbour pitfalls that would compromise on the security of the protocol. In §5.4.1 and [FT19], we show
that this concern is valid as cycles in the isogeny graph mean that the hash function loses its collision
resistance when generalised to abelian surfaces. Subsequently, Castryck, Decru and Smith [CDS19] have
been able to tweak the genus two hash function sufficiently to avoid these collision generating cycles.

The second result of [FT19] is the generalisation of SIDH to genus two. The Genus Two SIDH
(G2SIDH) is presented in §2.3. In that section, we will realise the algorithms necessary for computing
isogenies for abelian surfaces and the associated protocols in G2SIDH. We will also present some security
analysis in §5.4.2 using the theory developed in Chapter 5.

Notation and Conventions
A field is usually denoted by k and a finite field with q elements is denoted by Fq. The algebraic closure
of a field k is denoted by k. In this thesis, we will frequently use p and ` to represent different primes,
use E for elliptic curves, H for hyperelliptic curves, A for abelian surfaces, and X for a general abelian
variety. The use of φ will be restricted to the discussion of isogenies. Given two abelian varieties X and
Y , we write X ∼ Y to denote that the two are isogenous and write X ∼= Y if they are isomorphic. We
use O to represent the identity of the abelian variety. We use O to mean the complexity of an algorithm,
or an order of a field or algebra.

When enumerating statements in this work we will use (a), (b), ..., for independent statements;
(1), (2), ..., for connected statements and conditions; and (i), (ii), ..., for equivalent statements.
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Chapter 1

Abelian Varieties

Abelian varieties feature centrally in this thesis. In particular, we will focus on abelian varieties of low
dimension: elliptic curves and abelian surfaces. In this chapter, we will survey some of the necessary
background from algebraic geometry and state a number of results that will be used later in the thesis.
We will assume familiarity with varieties.

We will divide this chapter into four sections. The first section will cover abelian varieties in total
generality, in particular, the focal point will be on isogenies between abelian varieties and their properties.
The second section will peel away some of the generality and specialise to elliptic curves and abelian
surfaces. Here, the construction of these varieties will come to the fore and we will also discuss algorithms
for dealing with these objects. We will also introduce divisors which will make explicit the group structure
of these abelian varieties. The penultimate section will cover properties of the curves and surfaces, and
will feature algorithms for computing the isogenies in the case of elliptic curves. In the final section, we
will look to generalise the notion of supersingularity in elliptic curves to higher dimensions.

1.1 Abelian Varieties and their Isogenies
We assume general definitions and background from [Mum08]. Let k be a perfect and algebraically closed
field. An abelian variety X is a complete algebraic variety over a field k with a group law m : X×X → X
such that m and the inverse map are both morphisms of varieties. We will use O to denote the identity
of the abelian variety

Let X and Y be abelian varieties, then a homomorphism φ : X → Y is called an isogeny if it is
surjective and has a finite kernel. We say that two abelian varieties X and Y over Fq are isogenous over
Fq if there is an isogeny φ : X → Y . The surjectivity of the isogeny induces a finite algebraic extension
φ∗(k(Y )) ⊆ k(X). We ascribe the field extension the usual definition of separability. We then define the
(in)separable degree of φ to be [k(X) : φ∗(k(Y ))], the (in)separable degree of the field extensions.

The following proposition shows that the kernels of separable isogenies carry a lot of information
about the isogeny.

Proposition 1.1 ([Mum08, pg.63, (∗)]). Let φ : X → Y be an isogeny. We have that

# kerφ = separable degree(φ) .

In fact, we have a correspondence between finite subgroups and isogenies as presented in the next
theorem. This reduces the study of morphisms between abelian varieties to the study of subgroups.

Theorem 1.2 ([Mum08, pg. 72, Thm. 4]). Let X be an abelian variety. Then there is a 1–1 correspon-
dence between the two sets of objects:

(a) finite subgroups K ⊂ X,

(b) separable isogenies φ : X → Y , where two isogenies φ1 : X → Y1, φ2 : X → Y2, are considered
equal if there is an isomorphism ψ : Y1 → Y2 such that φ2 = ψ ◦ φ1, which is set up by K = kerφ,
and Y = X/K.
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More is known about the kernel structure of an isogeny. Suppose that φ : X → Y is an isogeny,
then kerφ is a finite group subscheme of X of order deg φ. Then by the structure theorem of finitely
generated modules over PIDs, we have that

kerφ ∼= Z/a1Z× · · · × Z/anZ ,

where n ∈ Z and ai | ai+1. If φ is separable, we say that φ is an (a1, . . . , an)-isogeny.
If n is co-prime to the characteristic of k, the multiplication-by-n map is a separable isogeny and will

be denoted by [n]. Furthermore, the kernel of this map consists of points of the abelian variety of order
n. The set of n-torsion points of an abelian variety A is denoted by A[n] = {P ∈ A(k) | [n]P = O}.

We will show in §1.2 that Pic0 is a functor from the category of schemes to the category of abelian
groups. Now, let X be an abelian variety and we want to examine Pic0(X). A non-trivial discussion
in [Mil86a, §9–10] shows that Pic0(X) is an abelian variety and that it exists and is unique up to
isomorphism. We call such an abelian variety the dual of X and we denote it as X∨. Since, Pic0 is a
(contravariant) functor, we can also map across isogenies φ : X → Y to get φ∨ : Y ∨ → X∨. We will say
a little more about dual abelian varieties in the case of elliptic curves in §1.3.

Now, let X,Y be abelian varieties and let φ : X → Y be an isogeny between them. We have that
kerφ is a subscheme of X, and following the construction of the dual, we have that kerφ∨ is a subscheme
of Y ∨. The next theorem shows that the functor Pic0 applied to kerφ would give us kerφ∨. In other
words, the theorem shows that an isogeny and its dual have kernels which are dual to each other. In
fact, we have that they are isomorphic as finite abelian groups.

Theorem 1.3. If φ : X → Y is an isogeny, then so is φ∨ : Y ∨ → X∨. Furthermore, if φ is separable,
then kerφ and kerφ∨ are isomorphic as finite abelian groups.

Proof. Remark (3) of [Mum08, pg. 81] proves that φ∨ is an isogeny. To prove the next statement, we
use Corollary 2 of [Mum08, pg. 74] that says that kerφ and kerφ∨ are dual finite abelian groups. Hence
using the result that dual finite abelian groups are isomorphic [Apo76, §6], we are done.

The last statement of the next result that is of special interest to us: it provides us with a way to
factor a large isogeny into smaller ones. One can imagine G to be the kernel of an isogeny and so the
action here is really “translation-by-G”3. Hence the last statement can be read as saying: every isogeny
whose kernel contains the kernel of another isogeny factors through the latter one.

Theorem 1.4 ([Mum08, pg. 111, Thm. 1(A)]). Let G be a finite group scheme acting on a scheme X
such that the orbit of any point is contained in an affine open subset of X. Then there is a pair (Y, π),
where Y is a scheme and π : X → Y a morphism satisfying:

(1) as a topological space, (Y, π) is the quotient of X for the action of the underlying finite group;

(2) the morphism π : X → Y is G-invariant, and if π∗(O)G denotes the subsheaf of π∗(O) of G-
invariant functions, the natural homomorphism OY → π∗(OX)G is an isomorphism.

The pair (Y, π) is uniquely determined up to isomorphism by these conditions. The morphism π is finite
and surjective. Y will be denoted X/G, and it has the functorial property: ∀ G-invariant morphisms
f : X → Z, ∃ a unique morphism g : Y → Z such that f = g ◦ π.

At this juncture, we will strip away some of the generalities and provide concrete examples to the
theory we have seen thus far.

1.2 Hyperelliptic Curves and their Jacobians
The main references for this section are [Gal12, CFA+12, Har77].

Let k be a perfect field. We define a curve C over k to be an integral, separated scheme of finite type
over k of dimension one. We call a curve non-singular if all the local rings are regular. Then for a curve
C with genus g, there is a finite morphism f : C → P1 of degree ≤ g+ 1 by the Riemann–Roch theorem.
We say that a curve is hyperelliptic if it has positive genus and there exists a map f : C → P1 of degree
2. Elliptic curves with a rational point are hyperelliptic as well.

3This observation is the underlying strategy for most isogeny algorithms. Refer to §1.3.1 and §2.3.1.
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Elliptic curves are the prototypical example of abelian varieties and in this section, we will set the
results from the previous section in the most concrete terms: that of elliptic curves and abelian surfaces.
The fact that elliptic curves are abelian varieties might confuse an inexperienced novice into thinking
that abelian surfaces are hyperelliptic curves of genus two. However, hyperelliptic curves of genus > 1
are NOT abelian varieties. In this section, we will develop the theory of Jacobians and see how abelian
surfaces can be constructed from hyperelliptic curves of genus two.

Elliptic curves have a geometric structure of a genus one curve and the group law is also easy to
illustrate geometrically. However, the algebraic intuition of the group law of elliptic curves is not as
fathomable. The group law can be made explicit once the identification between the set of points and
the divisor class group is made clear. This identification can then be used to extend the group law to
hyperelliptic curves of higher genus. Hence we should begin with a discussion on divisors.

1.2.1 Divisors
There are two treatments of divisors due to Cartier and Weil respectively. We will introduce Weil divisors
here and omit Cartier divisors. This is because we are primarily interested in the divisors of non-singular
curves and of hyperelliptic curves in particular. Non-singular curves are smooth varieties and this allows
us to work exclusively with Weil divisors since the notion of Cartier and Weil divisors coincide in this
setting [Har77, II.6.11].

Definition. Let C be a non-singular curve over k. A prime Weil divisor on C is a closed point in C. A
Weil divisor is a finite formal sum of prime Weil divisors; more precisely, a Weil divisor is the following
finite formal sum

D =
∑
P∈C

nP · P, nP ∈ Z .

The degree of D is the sum of all the nP , i.e. deg(D) =
∑
P∈C nP .

We say that a Weil divisor D is k-rational if it is stable under the action of Gal(k/k). Furthermore,
we can define divisors of functions.

Definition. Let C be a non-singular curve, and let f ∈ k(C)∗ be a rational function on C. Then the
divisor of f is

(f) =
∑
P∈C

ordP (f) · P ,

where ordP (f) is the order of vanishing or order of poles of f at P (cf. [Har77, pg. 131]).

We define a relation on divisors by denoting D ∼ D′ if and only if D −D′ = (f) for some f . This
relation forms an equivalence relation. Divisors of functions form the trivial class, and we say that a
divisor is principal if it is the divisor of some function.

Definition. The divisor class group of C is the group of divisor classes modulo linear equivalence and
is denoted by Pic(C). We let Pic0(C) denote the elements of Pic(C) with degree zero.

We use the notation Pic0(C)(k) to denote the set of elements in Pic0(C) fixed by Gal(k/k).

We will now show how the group structure on the Picard group can be used to construct an abelian
variety from hyperelliptic curves.

1.2.2 Jacobians
The aim of this section is to show that the Jacobian of a curve C is an abelian variety that is naturally
isomorphic to Pic0(C). This natural isomorphism endows the Jacobian with a group structure. We now
need to give the Jacobian its geometric structure as a variety before we can call it an abelian variety.
First, let C be a curve and let k be a field such that C(k) 6= ∅. Now, for any point P ∈ C(k) define the
map

f : C(k)→ Pic0(C)(k)
Q 7→ Q− P .

This map is induced by the injective morphism C ↪→ J , for some algebraic variety J , which has the
following universal property [Mil86b, §1]:
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If A is an abelian variety and g : C → A is a morphism that maps P to the identity of A, then
there exists a unique homomorphism φ : J → A of abelian varieties such that g = φ ◦ f , yielding
the following diagram:

C J

A

f

g φ

The universal property uniquely characterises J , which is our Jacobian. Hence the Jacobian thus
constructed is the sheafification of the Picard functor, hence bestowing it its geometric structure. The
following two theorems summarise this discussion and provide us with additional properties of the Jaco-
bian.

Theorem 1.5 ([Mil86b, Thm. 1.1]). There is an abelian variety J over k and a morphism of functors
ι : Pic0

C → J such that ι : Pic0
C(T ) → J(T ) is an isomorphism of groups whenever C(T ) is non-empty,

where T is a connected scheme over k.

Theorem 1.6 ([HS00, Thm. A.8.1.1]). Let C be a smooth projective hyperelliptic curve over k of genus
g ≥ 1 such that C(k) 6= ∅. There exists an abelian variety Jac(C), called the Jacobian of C, and an
injection f : C ↪→ Jac(C), called the Jacobian embedding of C, with the following properties:

(a) Extend f linearly to divisors on C. Then f induces a group isomorphism between Pic0(C) and
Jac(C).

(b) For each r ≥ 0, define a subvariety Wr ⊆ Jac(C) by

Wr = f(C) + · · ·+ f(C)︸ ︷︷ ︸
r copies

.

(By convention, W0 = {0}.) Then

dim(Wr) = min(r, g) and Wg = Jac(C) .

In particular, dim(Jac(C)) = g.

(c) Let Θ = Wg−1. Then Θ is an irreducible ample divisor on Jac(C).

Most of the time, we will not be interested in the geometric structure of the abelian varieties, hence
it will suffice to think of Jacobian varieties as just the Picard group of a hyperelliptic curve.

There are efficient methods of representing group elements and performing the group operation. The
elements of the Jacobian can be represented using Mumford representations [Gal12, §10.3.1]. Using the
Riemann–Roch theorem or Theorem 1.6(b), one can show that any element of the Picard group of a
curve of genus g can be uniquely determined by g curve points. The Mumford representation encodes
this information in a series of polynomials. The Cantor algorithms [Gal12, §10.3.2] are then able to
manipulate these representations to derive the Mumford representation of the sum of two elements.

We are now able to describe abelian varieties of dimension 1 and 2. Abelian varieties of dimension
1 are simply elliptic curves, and the group structure is inherited from the isomorphism to the Jacobian
as given by the results above. There is a delicate subtlety when turning to abelian surfaces. As Weil
noted, the correct higher dimensional analogue of an elliptic curve is not a general abelian variety, but a
principally polarised abelian variety. However, we will postpone discussion of polarisations to the next
section. For now, we will treat polarisations as an unknown condition attached to abelian varieties and
will round off this section by restricting our discussion to principally polarised abelian surfaces (PPASs).

The following result, which we will prove in Chapter 5, categorises all the PPASs.

Theorem 1.7. If A/Fp is a PPAS, then A ∼= JH for some smooth (hyperelliptic) genus two curve H,
or A ∼= E1 × E2 where Ei are elliptic curves.
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From the result, we can focus our attention on hyperelliptic curves of genus two and elliptic curves
if we would like to study PPASs. Hyperelliptic curves of genus two over a field k whose characteristic is
not 2, are non-singular curves with affine models of the form

H : y2 = h6x
6 + · · ·+ h1x+ h0

where hi ∈ k. This form is unique up to fractional linear transformations of x and an associated
transformation of y as given by

x 7→ ax+ b

cx+ d
, y 7→ ey

(cx+ d)3 ,

where a, b, c, d ∈ k such that ad− bc 6= 0 and e ∈ k∗. We say that two hyperelliptic curves of genus two,
H1 and H2, are isomorphic if there is such a transformation between them. The isomorphism space can
be parametrised by G2-invariants [CNP05].

Let H be a hyperelliptic curve of genus two over a field k with the form as above with Jacobian
variety JH . Using the Riemann–Roch theorem, one can represent a point on the Jacobian as

P +Q−O

where P,Q ∈ H and O is described below:

(a) If f6 = 0, then we let O = 2 · ∞, where ∞ is the unique point at infinity of H.

(b) If f6 6= 0, then we let O =∞− +∞+, where ∞± are the two different branches of the singularity
at infinity.

We will often drop the −O notation and write [P +Q] for a point on the Jacobian.

1.3 Polarisations and Isogenies
Given an abelian variety X, recall that the dual variety X∨ exists and is unique up to isomorphism. An
ample divisor L of X defines an isogeny φL : X → X∨ known as a polarisation of X. If the polarisation
is an isomorphism, then we say that it is principal.

Elliptic curves are isomorphic to their dual, and hence are canonically principally polarised. It
should be noted that the dual of an isogeny between elliptic curves is closely related to the concept of
dual abelian varieties. Hence the self-duality of an elliptic curve and its trivial principal polarisation lurk
in the background of many of the results of elliptic curves that we use regularly.

Abelian surfaces on the other hand are not necessarily polarised, much less principally polarised.
Polarisations are ample line bundles and allow for the embedding of abstract varieties into projective
spaces, hence giving equations to these abstract varieties. Jacobians of hyperelliptic curve will be the main
source of examples of abelian surfaces in this thesis. The theorem to follow states that every Jacobian
admits a principal polarisation, we will study abelian varieties equipped with principal polarisations.

Theorem 1.8 ([Mil86b, Thm. 6.6]). The map fL(Θ) : J → J∨ is an isomorphism, where Θ is the
irreducible ample divisor as defined in Theorem 1.6. Hence every Jacobian of a hyperelliptic curve of
genus two is a PPAS.

Since we are interested in PPASs, the isogenies between them would have to preserve the additional
structure of principal polarisation. There is a non-degenerate skew-symmetric bilinear pairing on a
principally polarised abelian variety A over k given by

em : A[m](k)×A∨[m](k)→ k
∗
,

where m is co-prime to p. This is the Weil pairing.
Since we are working with PPASs, we can identify A and A∨ to obtain a pairing on A. Note that

without a principal polarisation, this identification will not yield a non-degenerate pairing since the
polarisation which sends A to its dual would have non-trivial kernel.

The following proposition shows the relation between pairings, polarisation and isogenies.
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Proposition 1.9 ([Mil86a, Prop. 16.8]). Let φ : A → B be an isogeny of degree co-prime to char(k),
and let λ : A → A∨ be a polarisation of A. Let eλ be defined as in [Mil86a, §16]. Then λ = φ∗(λ′) for
some polarisation λ′ on B if and only if kerφ ⊂ kerλ and eλ is trivial on kerφ× kerφ.

Remark. Let A be a PPAS. A priori, it would seem that this proposition is not compatible with the
principal polarisation of A, since if α is the principal polarisation of A, then we have that kerα is trivial,
and so the condition kerφ ⊆ kerα will always be false unless φ is trivial.

The subtlety in reading this result is to consider another polarisation λ = [deg(φ)] ◦ α, which is no
longer a principal polarisation but we have that kerφ ⊆ kerλ. Then using [Mil86a, Rem. 16.9], we have
that deg(λ′) = deg(φ)−2 deg(λ) = deg(α) = 1, and hence, we conclude that λ′ is a principal polarisation.

This shows that a principal polarisation can induce a principal polarisation.

Hence we can see that through pairings, we are able to preserve the polarisation of abelian varieties.
This is especially important to us as we need to preserve the principal polarisation. This leads naturally
to the next definition.

Definition. Let A be a principally polarised abelian variety over Fq, and let ` be a positive integer
co-prime to q. We say a subgroup S of A[`] is maximal `-isotropic if

(1) the `-Weil pairing on A[`] restricts trivially to S, and

(2) S is not properly contained in any other subgroup of A[`] satisfying (1).

We call the first condition the isotropic condition.

Definition. Let A be a PPAS over Fq, and let ` be a prime co-prime to q. Then an (`, `)-isogeny is an
isogeny on A such that its kernel is maximal `-isotropic.

Remark. We will mainly focus our discussion for the rest of this thesis on (`, `)-isogenies. Proposi-
tion 1.9 and the remark that followed clearly show that (`, `)-isogenies and compositions of them are the
only non-trivial isogenies that will preserve principal polarisations. Hence in the study of PPASs, and of
the isogenies between them, (`, `)-isogenies are the natural isogenies to focus our attention on.

1.3.1 Vélu’s formula
There exists an algorithm to compute `-isogenies between elliptic curves with complexity O(`). This
algorithm was introduced by Vélu in 1971 [Vél71]. In the applications to follow, we will see that the
isogenies we are interested in computing will have large but smooth degrees. Hence the general strategy
for computing these isogenies is to factor (c.f. Theorem 1.4) them into smaller isogenies and compute
with these smaller isogenies.

The algorithm takes as inputs a curve E1 over a field k, which has the form

y2 = x3 + ax+ b ,

and a list of points of a finite subgroup of E1 which we will call G. It outputs the Weierstrass model for
the codomain curve E2 of a separable isogeny, φ, with kernel G, and φ as rational maps on E1.

The strategy of the algorithm is to represent φ as follows: for all P /∈ G

φ(P ) =

xP +
∑

Q∈G\{O}

(xP+Q − xQ) , yP +
∑

Q∈G\{O}

(yP+Q − yQ)


and for any P ∈ G, φ(P ) = O. This representation makes explicit the invariance of φ under translation
by elements of G and it is also clear that G = kerφ.

To generate the rational functions for φ, let G+ = (G\{O})/〈−1〉 be the equivalence classes of the
points in G without the identity where each point is identified with its inverse. Then for each P ∈ G+,
we define the values

gxP = 3x2
P + a , gyP = −2yP , vP = 2gxP , uP = (gyP )2

.
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We also define
v =

∑
P∈G+

vP , w =
∑
P∈G+

uP + xP vP .

Then φ : E1 → E2 is given by

φ(x, y) =
(
x+

∑
P∈G+

(
vP

x− xP
− uP

(x− xP )2

)
, y +

∑
P∈G+

(
2yuP

(x− xP )3 + vP
y − yP − gxP g

y
P

(x− xP )2

))
.

The equation for E2 is given by

y2 = x3 + (a− 5v)x+ (b− 7w) .

1.4 Supersingularity
In this section, we will briefly touch on the concept of supersingularity. Supersingularity in elliptic curves
has many equivalent definitions. In particular, we say that an elliptic curve is supersingular if one of the
following conditions hold:

Theorem 1.10 ([Sil09, Thm. V.3.1]). Let k be a field of characteristic p, and let E/k be an elliptic
curve. Then the following are equivalent:

(i) E[pr] = 0 for one (all) r ≥ 1.

(ii) End(E), the endomorphism ring over the closure of k (c.f. Chapter 4), is an order in a quaternion
algebra.

To generalise the notion of supersingularity, one would hope that it would suffice for all the conditions
in Theorem 1.10 to hold for a supersingular abelian variety. Unfortunately, that is not the case. In fact,
for an arbitrary abelian variety, these conditions are no longer equivalent. However, when restricting to
PPASs, we do have the following equivalent conditions that we can use for supersingularity:

Theorem 1.11. Let k be an algebraically closed field of characteristic p, and let A be a PPAS, then the
following are equivalent:

(i) A has p-rank 0, i.e. A[pr] = 0 for one (all) r ≥ 1.

(ii) Endk(A) ⊗ Q ∼= M2×2(Bp,∞), where Bp,∞ is the definite quaternion algebra ramified at p and
infinity.

(iii) The characteristic polynomial of the Frobenius endomorphism is a power of a linear polynomial.

(iv) The Frobenius acts as a rational scalar (the centre Q[π] = Q).

(v) [Endk(A)⊗Q : Q] = 16.

(vi) A is k-isogenous to the square of a supersingular elliptic curve, all of whose endomorphisms are
defined over k.

(vii) the slopes of the p-divisible group of A are 1/2.

Proof. Tate’s theorem [Tat66, Thm. 2(d)] gives us the equivalence between (ii), (iii), (iv), (v), and (vi).
The equivalence (i) ⇐⇒ (v) comes from [AP15]. The last equivalence (vi) ⇐⇒ (vii) is the result of
[AP15, Thm. 1.1].

Hence, from the theorem, we can use the following definition for supersingularity of PPASs.

Definition. Let k be a field of characteristic p, and let A/k be a PPAS. We say that A is supersingular
if A is isogenous over k to a product of supersingular elliptic curves. We say that A is superspecial if A
is isomorphic over k to a product of supersingular elliptic curves as PPASs.

We will also say that a hyperelliptic curve H is supersingular (resp. superspecial) if its Jacobian is
supersingular (resp. superspecial).
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Remark. Note that the definition differs slightly from statement (vi) of Theorem 1.11. The definition
states that A is isogenous to a product of supersingular elliptic curves, whereas the theorem states that A
is isogenous to a power of a supersingular elliptic curve. A priori, one should not expect an equivalence
between the two statements. However, a result in [Shi79, Thm. 3.5] (attributed to Deligne) states that A
is isogenous to a product of supersingular elliptic curves if and only if it is isogenous over k to a power
of a supersingular elliptic curve.

A PPAS A is simple over k if it is not isogenous over k to a product of lower dimensional abelian
varieties and we say that it is absolutely simple if it is simple over k. Hence a supersingular PPAS
(PPSSAS) is never absolutely simple.
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Chapter 2

Isogeny-based Cryptosystems

We recall the Diffie–Hellman key exchange protocol. Let G be a cyclic group with generator g and let
Alice and Bob be the two parties performing the key exchange. Alice picks a secret scalar a and publishes
ga as her public key. The main observation here is that the map φA : g 7→ ga is an endomorphism on
G. Hence, the secret scalar can be seen as a secret endomorphism known only to Alice. Upon obtaining
Bob’s public key, she will apply her secret endomorphism on Bob’s public key gb. This allows her to
compute φA : gb 7→ gba and hence obtain the shared secret.

Isogeny-based cryptosystems generalise this by using secret isogenies in place of secret endomor-
phisms. The objects between the maps are abelian varieties. Since the goal is to avoid the discrete
logarithm problem, one should avoid using elements of the abelian varieties as objects between the maps.

This chapter introduces the schemes and protocols of isogeny-based cryptosystems. Perhaps the
most important protocol is the supersingular key exchange protocol described in §2.1. First introduced
by Jao and De Feo in [JD11], it is the first post-quantum key exchange protocol based on isogenies of
supersingular elliptic curves. Previous attempts at using class group actions on ordinary elliptic curves
by Couveignes in an unpublished manuscript in 1997 [Cou06] and Stolbunov’s thesis [Sto04] in 2004 and
Rostovtsev and Stolbunov [RS06] in 2006, could be attacked using a subexponential quantum algorithm
[CJS14].

The first cryptographic protocol to be based on isogenies between supersingular elliptic curves is the
CGL hash function proposed in 2006 [CLG09]. The hash function is described in §2.2.

In §2.3 we will see an extension of the key exchange protocol to abelian surfaces.
We have not included an exhaustive list of all schemes that employ isogeny-based assumptions, but

we will included references to some of the more interesting schemes in the literature:

Signatures: [JS14], [STW14], [GPS17], [DG19]

Verifiable Delay Functions: [DMPS19]

We will survey and describe briefly some protocols that use group actions once we have studied the
endomorphism ring of elliptic curves in Chapter 4. These include CSIDH [CLM+18], and the Couveignes–
Rostovtsev–Stolbunov (CRS) scheme mentioned above.

In general, these cryptosystems base their security upon the difficulty of the following problem:

Problem (Elliptic Curve Isogeny Problem). Let E and E′ be elliptic curves such that there exists an
isogeny φ : E → E′. Given E and E′, find any ψ : E → E′.

2.1 Jao and De Feo Key Exchange
There are three steps in the key exchange protocol: the set-up, the key exchange and the key derivation.

In the set-up, a prime of the form p = 2n ·3m · f −1 is generated where f is small and 2n ≈ 3m (more
generally p = `nA · `mB · f ± 1 where `A, `B are small primes). A supersingular elliptic curve E over Fp2 is
constructed, and bases PA, QA and PB , QB are chosen for E[2n] and E[3m]. Here a “basis” means that
the group 〈PA, QA〉 generated by PA and QA has order 22n, and similarly, |〈PB , QB〉| = 32m. The points
PA, QA, PB , QB are defined over Fp2 and are guaranteed to exist by the choice of the prime.

9



In the key exchange, Alice picks random integers 0 ≤ a1, a2 < 2n (not both divisible by 2) and Bob
picks random integers 0 ≤ b1, b2 < 3m (not both divisible by 3)4. Alice and Bob compute

GA = 〈[a1]PA + [a2]QA〉 , GB = 〈[b1]PB + [b2]QB〉

respectively. Using Vélu’s formula, they will then be able to compute the isogenies φA and φB with
respective kernels GA and GB . They then compute EA = φA(E) = E/GA, φA(PB), φA(QB) and
EB = φB(E) = E/GB , φB(PA), φB(QA) respectively. Their respective messages in the protocol will be

(EA, φA(PB), φA(QB)) , (EB , φB(PA), φB(QA)) .

Upon receipt of Bob’s message, to derive the shared key, Alice computes

〈[a1]φB(PA) + [a2]φB(QA)〉 = 〈φB([a1]PA + [a2]QA)〉 = φB(GA) .

Alice then computes the isogeny from EB , with kernel equal to this subgroup. Bob will perform a similar
computation and the resulting isogenies will have kernels generated by GA and GB (since the subgroups
have a trivial intersection). Both parties will obtain a curve isomorphic to

EAB = E/〈GA, GB〉 = EA/〈φA(GB)〉 = EB/〈φB(GA)〉 .

Note that Vélu’s formula only determines codomain curves up to isomorphism, hence it is not necessary
that both parties have the same curve EAB . Therefore in the key derivation, the parties take the
j-invariant j(EAB) to be their shared key.

The protocol can be summarised in the following diagram, where we use the notation from above.

E

E/GA

E/GB

E/〈GA, GB〉

φA

φB

As mentioned, the Jao–De Feo key exchange scheme is similar to a key exchange scheme for ordinary
elliptic curves proposed by Rostovtsev and Stolbunov [RS06]. The ordinary case is based on a commu-
tative mathematical structure, however this structure enables a subexponential-time quantum algorithm
[CJS14] to compromise the system. The supersingular curves variant is lacks a commutative group ac-
tion and so it seems to be a promising candidate to be a post-quantum-secure cryptosystem whose best
attack is (at the moment) a fully exponential algorithm. The auxiliary points included in the protocol
messages allow Jao and De Feo to get around the difficulties obtaining meaningful compositions of the
secret isogenies of Alice and Bob.

We stress that the isogeny problem involved here differs from a general one in several ways. On
the one hand, the special primes used and the auxiliary points given to an attacker may make the
supersingular isogeny problem easier than the general isogeny problem. On the other hand there is a
very strong constraint imposed on the degree of the isogeny, and this might a priori make the problem
harder; we discuss this issue in more detail in §4.3.2.

2.2 Hash Function
The CGL hash function is a provably collision resistant hash function constructed from the set of su-
persingular elliptic curves over Fp2 with `-isogenies (where ` is a prime different from p). It was shown
that computing collisions is at least as hard as computing isogenies between supersingular elliptic curves
[CLG09].

We will now formally define this hash function. Let p and ` be two distinct prime numbers. Consider
the `-isogeny graph Gp2,` that we examine in §4.2.2. The supersingular elliptic curves form a component
in Gp2,` which is a connected (`+ 1)-regular subgraph.

4Note that this is not the true key space for Alice and Bob as we shall see later in Lemma 3.1.
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The main idea for the hash function is to use the input of the hash as directions for traversing the
subgraph without backtracking. A walk is a sequence of vertices, where each adjacent vertex in the
sequence is connected by an edge. A walk on the isogeny graph would correspond to a sequence of `-
isogenies, which can be composed into a single large `n-isogeny, where n is the number of steps taken. A
non-backtracking walk is walk with the condition that, on a given step, one is not allowed to return to the
vertex visited on the previous step. The point of preventing backtracking is to prevent trivial collisions
by inserting or appending loops to walks since walking along the same edge in different directions would
result in a multiplication-by-` to occur in the single large isogeny.

For the implementation of the hash function, the authors proposed a 256-bit prime p and chose ` = 2.
Now, pick a random vertex on the graph to be the starting vertex of the walk. The number of steps in the
walk is equal to the number of bits of the input. The output of the hash will then be the final vertex of
the walk. Since there are 3 isogenies emanating from each vertex, the no-backtracking condition implies
that (besides the first step) there are only 2 choices for each step. The choice between the two isogenies
at the n-th step is determined by the n-th input bit. This can be done deterministically as we will now
describe.

Starting at an elliptic curve E1 : y2 = f(x), the three 2-isogenies from E1 will have kernels generated
by the three Weierstrass points Pi = (xi, 0), where xi are the three roots of the cubic f(x). Fix a
lexicographical order on the roots and use it to order the roots and make a choice according to the input.
Without loss of generality, suppose P1 was chosen to generate the first kernel φ : E1 → E2, then we have
that φ(P2) = φ(P3). It can be shown that φ(P2) would generate the kernel of the dual isogeny to φ, and
is a non-trivial 2-torsion point on E2. Hence, one can find the abscissa of φ(P2) and use it to find the
abscissas of the two other non-trivial 2-torsion points. Using the ordering, one can make a choice on the
other two points based on the next bit.

Note that for a hash to be deterministic, one must use the same implementation of Vélu’s formula,
since different implementations would yield different Weierstrass models. Suppose that two parties
wish to use different implementations of Vélu’s formula, then they would be required to compose an
isomorphism after computing the isogeny to obtain curves with the same Weierstrass model.

2.3 Extensions to Genus Two
Elliptic curves are principally polarised abelian varieties of dimension one, hence we can turn to prin-
cipally polarised abelian varieties of higher dimension when looking to generalise isogeny-based cryp-
tosystems. Elliptic curves have three 2-isogenies but PPASs have fifteen (2, 2)-isogenies. Hence, this
motivates the use of PPASs for these cryptosystems.

In this section, we will construct the key exchange protocol for genus two which we call Genus Two
SIDH (G2SIDH). The scheme presented here follows the original scheme closely. Before presenting the
scheme, we will review two algorithms used to select a base PPSSAS and a key from the keyspace. We
will also look briefly at the isogeny algorithms employed in the scheme.

We note that the MAGMA implementation of the scheme is extremely slow. An example of which is
presented in Appendix A.

Selecting a Base Hyperelliptic Curve

Similar to the SIDH case, we pick primes of the form p = 2n · 3m · f − 1.
We consider a base hyperelliptic curve given by

H : y2 = x6 + 1 .

It can be shown that the Jacobian of H is supersingular since it is the double cover of the supersingular
elliptic curve y2 = x3 + 1, which is supersingular over Fp, since p ≡ 2 (mod 3) [Sil09, Eg. V.4.5]. Since a
double cover induces a (2,2)-isogeny, this yields that the Jacobian of H is supersingular5. We then take
a random sequence of Richelot isogenies (cf. §2.3.1) to obtain a random PPSSAS.

5We will see later in §5.4.2 that it is in fact superspecial.
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Selection of Secrets

Our aim is to use scalars to encode the secret kernel to be used by the two parties of the key exchange
as this allows for a compact representation of the secret.

Firstly, let H/Fq be a hyperelliptic curve of genus two and let JH be its Jacobian. The secret kernels
will be maximal `n-isotropic subgroups of JH [`n] of order `2n. As we will see in §5.1, the kernels have
structure C`n × C`n−k × C`k , where 0 ≤ k < n/2. Hence they should be generated by three points: Q1,
Q2 and Q3. Furthermore, to fulfil the condition of isotropy, we also require that the generators satisfy

e`n(Q1, Q2) = e`n(Q1, Q3) = e`n(Q2, Q3) = 1 .

Our approach is summarised by the following steps:

Pre-computation

Step 1: Find generators for JH [`n]. Name them P1, P2, P3, P4.

Step 2: Find the values αi,j such that e`n(Pi, Pj) = e`n(P1, P2)αi,j .

Secret selection

Step 3: Pick some (r1, r2, r3, r4) ∈ {0, . . . , `n−1}4 such that they are not simultaneously divisible
by `.

Step 4: Pick a random6 0 ≤ k < n/2 and compute s1, s2, s3, s4 and t1, t2, t3, t4 by solving the two
linear congruences r1s2 − r2s1 + α1,3(r1s3 − r3s1)

+α1,4(r1s4 − r4s1) + α2,3(r2s3 − r3s2)
+α2,4(r2s4 − r4s2) + α3,4(r3s4 − r4s3)

 ≡ 0 mod `k

 r1t2 − r2t1 + α1,3(r1t3 − r3t1)
+α1,4(r1t4 − r4t1) + α2,3(r2t3 − r3t2)
+α2,4(r2t4 − r4t2) + α3,4(r3t4 − r4t3)

 ≡ 0 mod `n−k

and so the Weil pairing is trivial if and only if the condition in Step 4 holds. One can check
that the same would hold for the other pairing.

Step 5: Output (s1, . . . , s4, r1, . . . , r4, t1, . . . , t4) as the secret scalars which will give the generators of
the kernel:

Q1 =
∑

[si]Pi , Q2 =
∑

[ri]Pi , Q3 =
∑

[ti]Pi .

Remark. Note the following:

(a) Step 2 performs discrete logarithm computations modulo a 2 and 3-smooth moduli and so is ex-
tremely efficient by using the Pohlig–Hellman algorithm [Gal12, §13.2].

(b) In Step 4, we note that the sampling of k cannot be a uniform choice if one likes to sample the
entire keyspace uniformly. This is due to the distribution of the number of subgroups of different
structures. One can use the equations in Theorem 5.4 and Proposition 5.5 to find a uniform
distribution of the keyspace. A quick glimpse of the equations tells us that one should select k = 0
with much higher probability than k = bn/2c if one aims to sample the keyspace uniformly.

(c) In Step 4, we pick a random solution in the solution space for ri and ti. It can be shown that this
ensures that the isotropic condition is upheld.

6This will not be a uniformly random choice if one wants to sample the entire keyspace. See (c) in remark to follow.
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Indeed, we have that

e`n(Q1, Q2) =
∏

1≤i,j≤4
e`n([si]Pi, [rj ]Pj)

= e`n(P1, P1)s1r1e`n(P1, P2)s1r2e`n(P1, P3)s1r3e`n(P1, P4)s1r4

e`n(P2, P1)s2r1e`n(P2, P2)s2r2e`n(P2, P3)s2r3e`n(P2, P4)s2r4

e`n(P3, P1)s3r1e`n(P3, P2)s3r2e`n(P3, P3)s3r3e`n(P3, P4)s3r4

e`n(P4, P1)s4r1e`n(P4, P2)s4r2e`n(P4, P3)s4r3e`n(P4, P4)s4r4

= e`n(P1, P2)α1,2s1r2e`n(P1, P2)α1,3s1r3e`n(P1, P2)α1,4s1r4

e`n(P1, P2)α2,1s2r1e`n(P1, P2)α2,3s2r3e`n(P1, P2)α2,4s2r4

e`n(P1, P2)α3,1s3r1e`n(P1, P2)α3,2s3r2e`n(P1, P2)α3,4s3r4

e`n(P1, P2)α4,1s4r1e`n(P1, P2)α4,2s4r2e`n(P1, P2)α4,3s4r3

= e`n(P1, P2)


α1,2s1r2 + α1,3s1r3 + α1,4s1r4
−α1,2s2r1 + α2,3s2r3 + α2,4s2r4
−α1,3s3r1 − α2,3s3r2 + α3,4s3r4
−α1,4s4r1 − α2,4s4r2 − α3,4s4r3


.

Hence, for the Weil pairing to be trivial, we require that the exponent in the last expression to
be congruent to zero modulo `n. Then noting that si ≡ 0 mod `n−k, we have the condition in
Step 4. One can repeat the same argument for Q1 and Q3 to obtain the second expression. Note
that we have that e`n(Q2, Q3) is already trivial due to the orders of Q2 and Q3 being `n−k and `k
respectively.

2.3.1 Isogeny Algorithms
Computing an `-isogeny between elliptic curves can be done with a complexity of O(`) field operations.
The general method to compute the codomains of this isogeny or to map points under the isogeny is to
use Vélu’s formula. Here, we will present algorithms for computing the codomains of (2, 2) and (3, 3)-
isogenies and show how we can map subgroups under these isogenies. The speed-ups come from the use
of simpler representations in the computation: the use of hyperelliptic curves in the (2,2) case and the
use of Kummer surfaces in the (3,3) case.

Richelot Isogenies

We will use Richelot isogenies [Ric36, Ric37] to perform (2, 2)-isogenies as is standard in the literature.
Richelot isogenies are relatively well-understood and have been implemented in various computational
algebra programs. In particular, the algorithm to find the equation of the codomain curve is studied in
[Smi05]. The algorithm to compute the images of points under a degree 2 isogeny is classical, and a good
exposition can be found in [Smi05, Ch. 8], and also in [CF96, §9] and [BD11, §4].

Let H be a hyperelliptic curve over a field k and let K ⊂ JH [2] be a maximal 2-isotropic subgroup,
then we can define the isogeny φ : JH → A, where A is a PPAS, and kerφ = K. The key step of
Richelot isogenies is the parametrisation of subgroups of JH [2] by quadratic splittings of the hyperelliptic
polynomial. The codomain of the Richelot isogeny can be found by using the Richelot operators on the
quadratic splittings. If A is the Jacobian of a hyperelliptic curve, say H ′, then for all H and H ′, we will
see later that there exists a subvariety Γ of H ×H ′ such that Γ is a Richelot correspondence on H ×H ′
(cf. [Smi05, §8.4]). The isogeny can then be computed by pulling back divisor classes (Jacobian points)
on H to Γ before sending it back down to H ′.

More concretely, we let H have the form

H : y2 = h6x
6 + h5x

5 + · · ·+ h0 .

If we denote the Weierstrass points of H as (ai, 0), where i = 1, . . . , 6, then the points of order 2 in JH
are [

(ai, 0)− (aj , 0)
]
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for 1 ≤ i < j ≤ 6, hence there are 15 of them. We denote
[
(ai, 0) − (aj , 0)

]
by (i, j) for convenience.

Then the following addition laws hold [Kuh88]:

(i, j) + (i, j) = 0 , (i, j) + (k, l) = (m,n) , (i, j) + (i, k) = (j, k) ,

for distinct i, j, k, l,m, n ∈ {1, 2, 3, 4, 5, 6}. Furthermore, the Weil pairings on these points are given by
[Kuh88]

e2((i, j), (i, j)) = 1 , e2((i, j), (k, l)) = 1 , e2((i, j), (i, k)) = −1 ,
for distinct i, j, k, l ∈ {1, 2, 3, 4, 5, 6}. Hence the maximal 2-isotropic subgroups of JH [2] are given by

{0, (i, j), (k, l), (m,n)} ,

i.e. disjoint pairs of the Weierstrass points. Now, notice that an element in the maximal 2-isotropic
subgroup is represented by two Weierstrass points, and so can be written as a quadratic polynomial with
the abscissa of the two Weierstrass points as its roots. Hence, we can represent H as

H : y2 = F1(x)F2(x)F3(x)

and we say that {F1, F2, F3} is a quadratic splitting of H. If the quadratic splittings are linearly
dependent as polynomials, then we say that it is singular. In particular, the singularity can be measured
by the determinant of the quadratic splitting which is given by

δ = det

f0,1 f1,1 f2,1
f0,2 f1,2 f2,2
f0,3 f1,3 f2,3

 ,

where fi,j is the coefficient of xi in Fj . It can be shown that singular quadratic splittings lead to Richelot
isogenies that map into a product of elliptic curves [Smi05, §8.3].

Suppose that {F1, F2, F3} is a non-singular quadratic splitting of H, then applying the Richelot
operator [Smi05, Def. 8.4.1] on {F1, F2, F3} would yield {G1, G2, G3}, which are given by

G1 = δ−1 det
(

d
dxF2(x) d

dxF3(x)
F2(x) F3(x)

)
,

G2 = δ−1 det
(

d
dxF3(x) d

dxF1(x)
F3(x) F1(x)

)
,

G3 = δ−1 det
(

d
dxF1(x) d

dxF2(x)
F1(x) F2(x)

)
.

This yields a twist of H ′ that we denote as H ′d which is defined by

H ′d : dỹ2 = G1(x̃)G2(x̃)G3(x̃)

for some d ∈ k∗.
Now, we are ready to describe the mapping of points under the Richelot isogeny. The covering curve,

as described at the start of the section, is given by the equations

Γd :


F1(x)G1(x̃) + F2(x)G2(x̃) = 0
F1(x)G1(x̃)(x− x̃) =

√
dỹy

F2(x)G2(x̃)(x− x̃) = −
√
dỹy

 .

To map points on JH to JH′ , we first express an element D ∈ JH as the divisor class given by D = [P−Q]
(or maybe [P +Q]), where P,Q ∈ H. We denote P = (x(P ), y(P )) and Q = (x(Q), y(Q)), and we need
to find the points P ′, P ′′ and Q′, Q′′ under the following morphism:

Jac(H) ↪→ Jac(Γ) � Jac(H ′) .

Take P as an example, we use the first equation of Γ to get the abscissas of P ′ and P ′′, denoted by x(P ′)
and x(P ′′) respectively, by solving the quadratic equation in x̃

F1(x(P ))G1(x̃) + F2(x(P ))G2(x̃) = 0 .
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We then recover the ordinate by solving for ỹ in the following equations

F1(x(P ))G1(x(P ′))(x(P )− x(P ′)) =
√
dy(P )ỹ and F1(x(P ))G1(x(P ′′))(x(P )− x(P ′′)) =

√
dy(P )ỹ .

This gives us P ′ = (x(P ′), y(P ′)) and P ′′ = (x(P ′′), y(P ′′)).
Repeating the computation for Q yields us Q′ and Q′′. We then recover the image of D under the

Richelot map by computing
D′ = [P ′ + P ′′] + [Q′ +Q′′] .

(3,3)-Isogenies over the Kummer Surface

As for (3,3)-isogenies, we note that for the purposes of genus two isogeny cryptography, we do not need
to map points under the isogeny but only need to map Kummer points under the isogeny since the
Jacobian points that correspond to the Kummer points generate identical subgroups.

Given an abelian surface A, the Kummer surface is defined by A/〈±1〉. This is a quartic surface in
P3. Computations of (3,3)-isogenies on the Kummer surface was the object of study of [BFT14]. We
can use the formulae7 presented in [BFT14] to compute the images of Kummer points under the isogeny.
This has also been noted by Costello in [Cos18].

The methods of [BFT14] parametrises the hyperelliptic curve into the form

y2 = F (x) = G1(x)2 + λ1H1(x)3 = G2(x)2 + λ2H2(x)3 ,

where Hi, Gi, F ∈ k[x] with Hi quadratic and co-prime, Gi cubic, and λi ∈ k∗. They showed in Lemmata
3,4 and 5 that this model of the hyperelliptic curve will always have a Jacobian that admits a (3,3)-
isogeny. They further showed in Theorem 6 that Hi and Gi are parametrised by 3 variables named r, s, t,
hence hyperelliptic curves whose Jacobians admit a (3,3)-isogeny are parametrised as Crst. Once in the
parametrised form, they provided formulae to compute (3,3)-isogenies.

To use their formulae for our purposes, we need to be able to express an arbitrary hyperelliptic curve
with a Jacobian that admits a (3,3)-isogeny in the Crst parametrisation. This procedure is detailed in
[BFT14, §4] and we will only give brief summaries of the steps of procedure. Readers interested in the
intuition and the veracity of the steps are to refer to [BFT14, §4].

Firstly, given a hyperelliptic curve C, and generators for the kernel of a (3,3)-isogeny, D1, D2, we
obtain the parametrisation

y2 = F (x) = G1(x)2 + λ1H1(x)3 = G2(x)2 + λ2H2(x)3 ,

where λi, Gi, Hi correspond to Di. We do this by computing the cubic Gi using Di; noting that 2Di =
−Di. So we express D1 = [(x1, y1) + (x2, y2) − O], and require that (x1, y1) satisfy y = G1(x) with
multiplicity two. This gives us 4 restrictions which suffices to compute G1. We can then compute λ1
and H1 from F .

Now let k[α] = k[t]/(t3 − λ2/λ1), and we have that

H1 − αH2 = LM

for some L,M ∈ k[α, x], and that for some c ∈ k∗,

G2 −G1 = 1
c Nm(M) ,

G2 +G1 = cλ1 Nm(M) , and G1 = 1
2 (cλ1 Nm(L)− 1

c Nm(M)) ,
G2 = 1

2 (cλ1 Nm(L) + 1
c Nm(M) .

Furthermore, one can force L and M to take the following forms

L = x− uα, and M = (c0 + c1α+ c2α
2)x− (m0 +m1α+m2α

2)

after a series of linear transformations.
Note that

(cy)2 = (cG1)2 + (c2λ1)H3
1 = (cG2)2 + (c2λ2)H3

2 ,

hence we need that c = 1.
7The files containing the formulae can be found in http://www.cecm.sfu.ca/~nbruin/c3xc3/.
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We remark that the series of transformations in [BFT14, §4] is incomplete. A last transformation is
necessary as c has shifted away from 1 due to prior transformations. At that stage, we have the following:

(s, t, c0, c1, c2,m0,m1,m2, u) = (s′, t′, 1,−1, 0,−r′, 0, 1, 1) .

We need one last transformation
y 7→ (4/λ1)2y

and set
s = λ1/4 , r = Coefficient of x in H1 , t = Coefficient of 1 in H1

to get the (r, s, t)-parametrisation of [BFT14, Thm. 6].
The key to forming the cubic formula which maps Kummer points to Kummer points under the

(3, 3)-isogeny lies in the bi-quadratic forms on the Kummer surface [CF96, pg. 23]. Given the generators,
T1, T2, of the maximal 3-isotropic subgroup of JH [3], the authors found two cubic forms which are each
invariant under translation by T1 and T2 respectively. The cubic forms generate spaces of dimension 8
and intersect in dimension 4. Since Kummer surfaces can be explicitly described as quartic surfaces in
P3, the intersection of the cubic forms fully describes the Kummer surfaces.

2.3.2 Genus Two SIDH
We will present the key exchange protocol in genus two. The astute reader will see that all the steps
carry over from the scheme presented in §2.1.

Set-up

Pick a prime p of the form p = 2n · 3m · f − 1 where 2n ≈ 3m. Now, we pick a hyperelliptic curve
H using the methods at the start of this section. We then generate the bases {P1, P2, P3, P4} and
{Q1, Q2, Q3, Q4} which generate JH [2n] and JH [3m] respectively. The points Pi, Qi are defined over Fp2

and are guaranteed to exist by the choice of the prime.

First Round

Alice chooses her secret scalars (ai)i=1,...,12 using the steps outlined in at the start of this section and
computes the isogeny φA : JH → JA with kernel given by〈 4∑

i=1
[ai]Pi ,

8∑
i=5

[ai]Pi−4 ,

12∑
i=9

[ai]Pi−8

〉
.

She also needs to compute the points φA(Qi) for i = 1, 2, 3, 4. She sends the tuple

(JA, φA(Q1), φA(Q2), φA(Q3), φA(Q4))

to Bob.
At the same time, Bob chooses his secret scalars (bi)i=1,...,12 and computes the isogeny φB : JH → JB

which has the kernel 〈 4∑
i=1

[bi]Qi ,
8∑
i=5

[bi]Qi−4 ,

12∑
i=9

[bi]Qi−8

〉
.

He computes the points φB(Pi) for i = 1, 2, 3, 4, and sends the tuple

(JB , φB(P1), φB(P2), φB(P3), φB(P4))

to Alice.
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Second Round

Alice will receive Bob’s tuple and proceeds with computing the subgroup〈 4∑
i=1

[ai]φB(Pi) ,
8∑
i=5

[ai]φB(Pi−4) ,
12∑
i=9

[ai]φB(Pi−8)
〉
.

This is the kernel of a (2n, 2n−k, 2k)-isogeny φ′A : JB → JBA. Bob will perform a similar computation
and arrive at the PPSSAS JAB . But since

JAB = JA/φA(KB) ∼= JH/〈KA,KB〉 ∼= JB/φB(KA) = JBA ,

they can then use the G2-invariants of the hyperelliptic curves associated to JAB and JBA as their
shared secret. In the unlikely event that JAB is a product of elliptic curves (probability is O(1/p)
[CDS19, Thm. 1]), they would have to restart the protocol with a different selection of scalars.

Remark. The method in [BFT14] allows us to find ±φB(Pi) since we are working over the Kummer
surface. However, we need the map

(P1, P2, P3, P4) 7→ (φB(P1), φB(P2), φB(P3), φB(P4))

or
(P1, P2, P3, P4) 7→ (−φB(P1),−φB(P2),−φB(P3),−φB(P4))

to ensure that the subgroup generated by Alice in the second round is isotropic.
To fix this problem, one can check if

e2n(φB(Pi), φB(Pj)) = e2n(Pi, Pj)3m

for all 1 ≤ i < j ≤ 4 and negate the φB(Pi)’s accordingly. The goal is to ensure that all the φB(Pi)
have the same sign, as Alice’s secret scalars will return the correct kernel if the signs of φB(Pi) are the
same. Having different parities would in effect change Alice’s secret scalars which would result in the
wrong kernel and the wrong isogeny.

The computation of Bob’s isogeny will require the factorisation of his large isogeny into smaller
isogenies. In doing so, Bob will be required to map his kernels through the smaller isogenies, hence he
will encounter a similar problem with the parities of the points. To combat this issue, he would have to
add a point of order 4 to the kernel points to track the parity of the points after the map. Since he has to
map Alice’s points in the first round, the overheads for this procedure is minimal. However, this would
slow down the second round.
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Chapter 3

Attack on Points

Recall that the SIDH key exchange protocol in §2.1 required both parties to send auxiliary points to
complete the protocol to compose isogenies in a meaningful way. The Diffie–Hellman key exchange based
on abelian groups did not require additional information to be sent; hence the security assumptions do
not carry over neatly into SIDH.

In fact, we will see that the auxiliary information sent in the protocol is the target of two attacks:
an adaptive attack and a fault attack.

Adaptive attacks are a standard type of attack on cryptosystems that use a static private key. These
first arose in the setting of protocols based on the discrete logarithm problem, where a user can be
treated as an oracle that takes as input a group element g and returns ga for some long-term secret value
a. A first kind of attack is the “small subgroup” attack of Lim and Lee [LL97]. Here a group element
g of small order ` is sent, so that on receipt of the value ga, one can do a search and learn a (mod `).
Similar ideas have been used based on “invalid curve” attacks, which involve providing a point that lies
in a different group altogether (see Ciet and Joye [CJ05]). In the context of the isogeny cryptosystem, if
Alice has a fixed key (a1, a2) then a dishonest Bob can send her (E,P,Q) and then Alice will compute
an isogeny φ : E → E0 with kernel 〈[a1]P + [a2]Q〉. The idea is to try to learn something about Alice’s
secret key (a1, a2) using knowledge of E0. The possibility of such attacks is mentioned in [KLM+15] and
[CLN16], but neither paper presented full details of them. In §3.1, we describe a general active attack
against the static-key variant of the protocol. Our attack allows to recover the whole static key with the
minimum number of queries (when ` = 2) and negligible computation. Our attack is not prevented by
any of the validation techniques introduced in [CLN16], nor by our stronger validation technique using
pairings (cf. remark in §3.1.4), nor by key compression techniques [AJK+16, CJL+17, ZJP+18]. Our
attack is prevented by the method in [KLM+15], but this adds significant cost to the running time of
the system.

Fault attacks exploit the leakage of sensitive information when the implementation operates under
unexpected circumstances. Biehl, Meyer and Müller [BMM00] extended fault attacks on RSA cryptosys-
tems to systems using elliptic curves. Ciet and Joye [CJ05] then refined the methods and made the
attack more practical. The key insight in both papers was the absence of the a6 elliptic curve parameter
in the scalar multiplication computation. The fault changed the base point P to some P ′. This meant
that the output point [λ]P ′, where λ is the secret, might be in a group where solving the elliptic curve
discrete logarithm problem was feasible, hence allowing for the recovery of some information about λ.
In §3.2, we will examine the effects of changing a point P to some random P ′ and attempt to recover
the secret, which in this case is an isogeny φ. The attack would be able to recover the entire secret φ
from a single output φ(P ′) with high probability. This compares well against the fault attack presented
in [CJ05] where a single successful perturbation only reveals partial information of the secret. We will
see the fault attack in the context of several signature schemes and key exchange protocols. The attack
would work against the countermeasure proposed by Kirkwood et al. [KLM+15] which is based on the
Fujisaki–Okamoto transform. The main observation that underlies the attack is that users should never
reveal the image of random points under the secret isogeny.

There is another attack on the auxiliary information of the key exchange protocol by Petit [Pet17].
The attack uses the auxiliary information to compute the endomorphism rings of the supersingular
elliptic curves. This results in a break of the cryptosystem as we will see in §4.3.2. It should be noted
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that this attack works with an “unbalanced” version of the Jao–De Feo cryptosystem where one torsion
group is significantly larger than the other one. We will not be covering this attack.

3.1 Adaptive Attack
In this section, we will assume that Alice is using a static key (a1, a2), and that a dishonest user is
playing the role of Bob and trying to learn her key. Our discussion is entirely about Alice’s key and
points in E[2n], but it should be clear that the same methods would work for points in E[`m] for any
small prime ` (see the remark in §3.1.3 for further discussion).

There are two attack models that can be defined in terms of access to an oracle O:

(a) O(E,R, S) = E/〈[a1]R+ [a2]S〉.
If the scheme under attack is the key exchange scheme, this corresponds to Alice taking Bob’s
protocol message, completing her side of the protocol, and outputting the shared key. In the
encryption protocol, this would correspond to an encryption c = m ⊕ j(EAB) without the hash
function and Alice decrypting Bob’s ciphertext and returning the plaintext m.

(b) O(E,R, S,E′) which returns 1 if j(E′) = j(E/〈[a1]R+ [a2]S〉) and 0 otherwise.
In the key exchange setting, this corresponds to Alice taking Bob’s protocol message, completing
her side of the protocol, and then performing some operations using the shared key that return
an error message if the shared key is not the same as the j-invariant provided (e.g., the protocol
involves verifying a MAC corresponding to a key derived from the session key).
In the encryption scenario [JD11, §3.2], this would correspond to Bob having access to a decryption
oracle for Alice. By choosing a random ciphertext c Bob could ask for a decryption of (EB , R, S, c)
and get m such that c = m⊕Hk(j(EAB). Bob can then check whether or not c⊕m = Hk(j(E′)).
Hence a decryption oracle for the encryption scheme gives an oracle O of this type.

Our attacks can be mounted in both models. To emphasise their power we explain them in the context
of the second, weaker, model.

Before we present the attack, we make an observation through a lemma.

Lemma 3.1. Let P,Q ∈ E[2n] be linearly independent generators of E[2n]. Then for all (a1, a2) ∈ Z2

(not simultaneously even), we have that 〈[a1]P + [a2]Q〉 = 〈P + [α]Q〉 or 〈[a1]P + [a2]Q〉 = 〈[α]P + Q〉
for some α ∈ Z.

Proof. If a1 is odd, then it is invertible modulo the order of the group, so let θ ≡ a−1
1 (mod 2n), then θ

must be odd, hence

〈[a1]PA + [a2]QA〉 = 〈[θa1]PA + [θa2]QA〉 = 〈PA + [α]QA〉 ,

where the first equality stems from the fact that θ is co-prime to the order of the generator, and the last
equality is obtained by setting α = θa2.

If a1 is even, then a2 must be odd, and repeating the procedure gives (α, 1).

This result tells us that there is no loss of generality for Alice to restrict her secret key to be (1, α)
or (α, 1). However, even if Alice does not employ such a simplification, the result also tells us that there
is no loss of generality for an attacker to assume the secret key is of one of these two forms. We will call
this the normalised form.

3.1.1 First Step of the Attack
From Lemma 3.1, we may assume that the private key is normalised. In the following exposition, we will
assume that the normalisation is (1, α). The case where we have (α′, 1) where α′ is even is performed
in exactly the same way with some tweaks. Note that if α′ is odd then it can be converted to the (1, α)
case, so we may assume α′ is even in the second case.

To differentiate between (1, α) and (α′, 1) an attacker honestly generates Bob’s ephemeral values
(EB , R = φB(PA), S = φB(QA)) and follows the protocol to compute the resulting key EAB . Then the
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attacker sends (EB , R, S+ [2n−1]R) to Alice and tests the resulting j-invariant. Expressing this in terms
of the oracle access: the attacker queries an oracle of the second type on (EB , R, S + [2n−1]R,EAB).
If the oracle returns 1 then the curve EB/〈[a1]R + [a2](S + [2n−1]R)〉 is isomorphic to EAB and so
〈[a1]R + [a2](S + [2n−1]R)〉 = 〈[a1]R + [a2]S〉. Hence, by the following lemma, a2 is even and we are in
the first case. If the oracle returns 0 then a2 is odd.

Lemma 3.2. Let R,S ∈ E[2n] be linearly independent points of order 2n and let a1, a2 ∈ Z. Then

〈[a1]R+ [a2](S + [2n−1]R)〉 = 〈[a1]R+ [a2]S〉

if and only if a2 is even.

Proof. If a2 is even then [a2][2n−1]R = 0 and so the result follows. Conversely, if the two groups are
equal then there is some λ ∈ Z∗2n such that

λ([a1]R+ [a2](S + [2n−1]R)) = [a1]R+ [a2]S .

Since the points are independent we have λa2 = a2 and so λ = 1. Hence, since S has order 2n, we have
a22n−1 ≡ 0 (mod 2n) and a2 is even.

Note that the Weil pairing

e2n(R,S + [2n−1]R) = e2n(R,S) = e2n(PA, QA)3m

and so the attack is not detectable using pairings (c.f. Remark in §3.1.4).
Similarly one can call the oracle on (EB , R+ [2n−1]S, S,EAB). The oracle returns 1 if and only if a1

is even. Hence, we can determine which of the two cases we are in and determine if α is even or odd.
Having recovered a single bit of α, we will now explain how to use similar ideas to recover the rest of the
bits of α.

3.1.2 Continuing the Attack
We now assume that Alice’s static key is of the form (1, α) and we write

α = α0 + 21α1 + 22α2 + · · ·+ 2n−1αn−1 .

The attacker will learn one bit of α for each query of the oracle. Algorithm 1 gives pseudo-code for the
attack.

We now give some explanation and present the derivation of the algorithm. Suppose an attacker has
recovered the first i bits of α, so that

α = Ki + 2iαi + 2i+1α′ ,

where Ki is known but αi ∈ {0, 1} and α′ ∈ Z are not known.
The attacker generates EB , R = φB(PA), S = φB(QA) and EAB as in the protocol. To recover αi,

the attacker will choose suitable integers a, b, c, d and query the oracle on

(EB , [a]R+ [b]S, [c]R+ [d]S,EAB) .

The integers a, b, c, and d will be chosen to satisfy the following conditions:

(1) If αi = 0, then 〈[a+ αc]R+ [b+ αd]S〉 = 〈R+ [α]S〉.

(2) If αi = 1, then 〈[a+ αc]R+ [b+ αd]S〉 6= 〈R+ [α]S〉.

(3) [a]R+ [b]S and [c]R+ [d]S both have order 2n.

(4) The Weil pairing e2n([a]R+ [b]S, [c]R+ [d]S) must be equal to

e2n(φB(PA), φB(QA)) = e2n(PA, QA)degφB = e2n(PA, QA)3m .

21



The first two conditions help us distinguish the bit αi and the latter two prevent the attack from being
detected via order checking and Weil pairing validation checks respectively.

Consider the following integers:

ai = 1 , bi = −2n−i−1Ki ,

ci = 0 , di = 1 + 2n−i−1 .

One can verify that they satisfy the third condition. To satisfy the fourth condition we need to use
a scaling by θ that we will discuss later.

To show that the first two conditions are satisfied, note that 〈[a]R+ [b]S + [α]([c]R+ [d]S)〉 is equal
to

〈R− [2n−i−1Ki]S + [α][1 + 2n−i−1]S〉
= 〈R+ [α]S + [−2n−i−1Ki + 2n−i−1(Ki + 2iαi + 2i+1α′)]S〉
= 〈R+ [α]S + [αi2n−1]S〉

=
{
〈R+ [α]S〉 if αi = 0 ,
〈R+ [α]S + [2n−1]S〉 if αi = 1 .

By the following lemma, these two subgroups are different. Hence the response of the oracle tells us αi.

Lemma 3.3. Let R and S be linearly independent elements of the group E[2n] with full order, then the
subgroups

〈R+ [α]S + [2n−1]S〉 and 〈R+ [α]S〉

are different.

Proof. The proof is very similar to the proof of Lemma 3.2. The subgroups have order 2n, since R has
order 2n, and R and S are linearly independent. Then if the subgroups are the same, we must have some
λ such that

[λ]R+ [λα]S = R+ [α]S + [2n−1]S .

By the linear independence of R and S, we can compare coefficients and conclude that λ = 1, and that
[2n−1]S = O, which implies that S has order a factor of 2n−1, which is a contradiction.

Algorithm 1: Adaptive attack using oracle O(E,R, S,E′).
Data: n, E, PA, QA, PB , QB , EA, φA(PB), φA(QB)
Result: α

1 Set K0 ← 0;
2 for i← 0 to n− 3 do
3 Set αi ← 0;
4 Choose random (b1, b2);
5 Set GB ← 〈[b1]PB + [b2]QB〉;
6 Set EB ← E/GB and let φB : E → EB be the isogeny with kernel GB ;
7 Set (R,S)← (φB(PA), φB(QA));
8 Set EAB ← EA/〈[b1]φA(PB) + [b2]φA(QB)〉;
9 Set θ ←

√
(1 + 2n−i−1)−1 (mod 2n);

10 Query the oracle on
(
EB , [θ](R− [2n−i−1Ki]S), [θ][1 + 2n−i−1]S,EAB

)
;

11 if Response is false then αi = 1;
12 Set Ki+1 ← Ki + 2iαi;
13 end
14 Brute force αn−2, αn−1 using E and EA and Kn−2 = α (mod 2n−2) to find α (this requires no

oracle calls);
15 Return α;
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Finally, we address the fourth condition. We need that

e2n([a]R+ [b]S, [c]R+ [d]S) = e2n(R,S)ad−bc = e2n(PA, QA)3m .

The idea is that we can mask the points chosen from the attack above to satisfy the fourth condition.
Recall that the points we wish to send to Alice are

(R′, S′) = (R− [2n−i−1Ki]S, [1 + 2n−i−1]S) .

Computing the Weil pairing of the two points, we have

e2n(R′, S′)
= e2n(R− [Ki2n−i−1]S, [1 + 2n−i−1]S)
= e2n(R, [1 + 2n−i−1]S) · e2n(−[Ki2n−i−1]S, [1 + 2n−i−1]S)

= e2n(R,S)1+2n−i−1
,

which is not the correct value. So we choose θ such that

e2n(θR′, θS′) = e2n(R,S)θ
2(1+2n−i−1) = e2n(PA, QA)3m = e2n(R,S) .

Note that 〈[θ]R′ + [α][θ]S′〉 = 〈[θ](R′ + [α]S′)〉 = 〈R′ + [α]S′〉 as long as θ is co-prime to the order 2n.
Hence we need θ to be the square root of 1 + 2n−i−1 modulo 2n. The following well-known lemma by
Gauss shows that such a square root exists as long as n− i− 1 ≥ 3. Note that θ will be odd, as required.

Lemma 3.4. If a is an odd number and m = 8, 16, or some higher power of 2, then a is a quadratic
residue modulo m if and only if a ≡ 1 (mod 8).

The condition n − i − 1 ≥ 3 means we may not be able to launch the attack in an undetected way
for the last two bits. This is why we use a brute force method to determine these bits. To brute force
the remaining bits, one uses the recovered bits to compute an isogeny from E to obtain an intermediate
curve E′ which is 4-isogenous to EA, and finds the path from E′ to EA.

The attack in the case (α′, 1) follows by swapping the roles of R and S.

3.1.3 Complexity of the Attack
The attack requires fewer than n ≈ 1

2 log2(p) interactions with Alice. This seems close to optimal for the
second attack model, where the attacker only gets one bit of information at each query. One can reduce
the number of queries by doing more computation (increasing the range of the brute-force search).

We now consider the attack in the context of [KLM+15] and [CLN16], i.e. in the presence of valida-
tions using Weil pairings and checking of orders, and the Fujisaki–Okamoto type approach. Due to our
third and fourth conditions, the attack passes the validation steps in [CLN16], and even the stronger
check of taking the degree of the isogeny into account as mentioned in the remark in §3.1.4.

The approach in [KLM+15] would be able to detect the attack. This is because the auxiliary points
sent to Alice in the attack are not the correct values generated in an honest protocol run.

Remark. We now say a few words about attacking odd prime power isogenies. Let ` be an odd prime
such that `n | (p + 1) and E[`n] ⊂ E(Fp2). Let PA, QA be generators of E[`n]. Alice would compute
an `n-isogeny with kernel 〈[a1]PA + [a2]QA〉 and a dishonest user Bob is trying to learn her key a1, a2,
where a1 and a2 are not simultaneously divisible by `. As above, we take Alice’s secret key to be (1, α).

The obvious generalisation for this attack is to set R = φB(PA) and S = φB(QA) and to send Alice
points

(R− [x`n−i−1]S, [1 + `n−i−1]S) .

In her computation for the subgroup, Alice would compute

〈R+ [α]S + [`n−i−1][α− x]S〉 .

Since we want to compare this subgroup against 〈R+ [α]S〉, we need

(`n−i−1)(α− x) ≡ 0 (mod `n)
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to ensure the subgroups computed are the same. Hence for each coefficient of a power of ` in the `-
expansion of α, we will need at most `− 1 queries to recover it.

For ` = 3 this is close to optimal (at most two queries compared to log2(3) queries), but for primes
` ≥ 5 this seems not optimal since one would hope that given an oracle that returns one bit of information
one could learn the value with at most dlog2(`)e queries.

3.1.4 Validations and Countermeasures
The concept of “validation” is intended to prevent active attacks. In the case of protocols based on the
DLP, the typical countermeasures check that g does lie in the correct group, and that the order of g
is the correct value. In the context of supersingular isogeny cryptosystems the validation of (E,P,Q)
should test that E really is a supersingular elliptic curve, that P and Q lie on the curve and have the
correct order, and that P and Q are independent. Methods to do this are given in [CLN16].

In particular, §9 of [CLN16] presented some explicit validation steps. Their two requirements are:
the points in the public key have full order and they are linearly independent. They use the Weil pairing
of the two points to check independence.

Remark. We now observe that the Weil pairing can be used to check a lot more than just independence.
A standard fact is that if φ : E → E′ is an isogeny and if P,Q ∈ E[N ] then

eN (φ(P ), φ(Q)) = eN (P,Q)deg(φ)

where the first Weil pairing is computed on E′ and the second on E (for details see [Sil09, Prop. III.8.2]
or [BSS05, Thm. IX.9]). This allows to validate not only that the points are independent but also that
they are consistent with being the image of the correct points under an isogeny of the correct degree.
Hence, a natural validation step for Alice to run in the Jao–De Feo scheme is to check

e2n(φB(PA), φB(QA)) = e2n(PA, QA)3m .

This will give her some assurance that the points φB(PA), φB(QA) provided by Bob are consistent with
being the images of the correct points under an isogeny of the correct degree. However, as we have shown,
this validation step is not sufficient to prevent all adaptive attacks. It will be necessary to use a much
stronger protection, which we describe next.

Public key compression techniques introduced in [AJK+16, CJL+17, ZJP+18] reduces the size of
public keys at some cost in run time. We note that this use of these compression techniques does not
change the oracle that we use in the adaptive attack and so the adaptive attack can still work in the
presence of these compression techniques.

Kirkwood et al. introduced a method to secure the key exchange protocol of isogeny cryptosystems.
This is based on the Fujisaki–Okamoto transform [FO13] which is also explained by Peikert [Pei14, §5.2]
and Galbraith et al. [GPST16, §2.3]. The method allows for one party to validate the other, but for the
ease of exposition, let us suppose that Alice is using a static secret and Bob needs to prove to her that
he is performing the protocol correctly.

Bob would prove to Alice that he performed the protocol correctly by executing the key exchange,
encrypting the random seed used to generate his private key and sending this ciphertext to Alice for her
to verify that the random seed leads to the correct keys.

Applied to the Jao–De Feo protocol, we will briefly explain how Bob can prove to Alice that he has
executed the protocol correctly. This is especially applicable if Alice is using a static key and Bob is
potentially a malicious party.

(1) Alice computes and sends the public key (EA, φA(PB), φA(QB)).

(2) Bob receives Alice’s public key (EA, φA(PB), φA(QB)).

(3) Bob obtains his random seed rB from a random source and derives his private key using a key
derivation function, KDF1,

(b1, b2) = KDF1(rB) .

He uses the secret key to compute GB = 〈[b1]PB + [b2]QB〉, and uses the Vélu formula to compute
φB and EB = E/GB .
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(4) Bob derives the shared secret SSB = j(EAB) using his private key and Alice’s public key. He then
computes a session key (SK) and a validation key (VK) using a key derivation function, KDF2,

SK | VK = KDF2(j(EAB)) .

(5) Bob sends his public key (EB , φB(PA), φB(QA)) and cB = EncVK(rB ⊕ SK) to Alice.

(6) Using her private key and Bob’s public key, Alice computes the shared secret SSA = j(E′AB) and
derives the session and validation keys SK ′ and VK ′. She uses these to compute

r′B = DecVK′(cB)⊕ SK ′ .

She then computes Bob’s secret keys from r′B and recomputes all of Bob’s operations and compares
(E′B , φ′B(PA), φ′B(QA)) with (EB , φB(PA), φB(QA)).
If they are equal, then Alice verifies that Bob has computed the protocol correctly and proceeds
to use SK ′ = SK for future communication with Bob. Else, the protocol terminates in a non-
accepting state.

This validation method can be used for both the key exchange and the encryption protocols. It also
compels one party to reveal the secret used and so requires a change in secret keys after each verification.
This protocol is summarised in Fig. 3.1.

Alice Bob

Compute PKA
EA, φA(PB), φA(QB)

Compute PKB

Compute SSB
EB , φB(PA), φB(QA)
cB = EncVK(rB ⊕ SK)

Compute SSA

Compute r′B

Compute PK ′B

Figure 3.1: The Kirkwood et al. validation method for supersingular key exchange.

3.2 Fault Attack
Assume that the protocol under attack reveals the x-coordinate of the image of a point under the secret
isogeny. The fault attack aims to force the implementation to output the image of a random point under
the secret isogeny. This would allow the adversary to recover the secret. This section will illustrate how
this is accomplished and review the different scenarios where the fault attack may be employed. The
attack model that we are assuming supposes that an attacker is able to randomise certain values (random
bit flips), in particular, the abscissa of a point to be mapped by the secret isogeny. This fault model is
the same as the one proposed by Ciet and Joye [CJ05], where a fault will cause the x-coordinate of the
point to be a random element of the field.

Our first observation is that computations do not involve the y-coordinate of the points. Given a
curve E and a point P , a perturbation in the x-coordinate of P would result in another point P ′ on
the same curve over a quadratic extension. Indeed, given any x, we recover the y-coordinate of P ′ by
solving a quadratic equation which always has a solution in Fp2 . In particular, any x ∈ Fp2 either
corresponds to a point on E or a point on its quadratic twist E′. In [CLN16], for example, computations
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do not distinguish between the curve E and its quadratic twist E′, hence the isogeny will be evaluated
correctly on any x ∈ Fp2 . In a more general setting where the twists of the curves are treated separately,
the faulted point will be on E with probability 1/2 and on the twist with probability 1/2. Hence the
adversary may assume, after a series of faults, that a perturbed point will lie on E.

The perturbed point would be a random point on the curve. In §3.2.1, we will show how one recovers
the secret isogeny given the image of the random point. This is not dissimilar to [JS14, Rem. 3.1], where
Jao and Soukharev noted that a party should never disclose any information that allows an adversary
to evaluate φA on E[`eAA ]. The method to recover φA given the image of a random point in E[`eAA ] is
mentioned in [DJP14, §5.1] and explained in detail in §3.2.1. In fact, we will show that a party should
never reveal the image of random points under the secret isogeny.

3.2.1 Recovery of isogeny from image of random point
Let E/Fp2 be a supersingular elliptic curve where p = `eAA · `

eB
B · f ± 1. Then with (PA, QA), (PB , QB),

and (PC , QC) being the generators of E[`eAA ], E[`eBB ], and E[f ] respectively, a random point X ∈ E(Fp2)
takes the form

X = [u]PA + [v]QA + [w]PB + [x]QB + [y]PC + [z]QC
for some u, v, w, x, y, z ∈ Z.

Now suppose that we are given the image of X under the secret isogeny φA, we will show how one
can use the knowledge of φA(X) to recover φA. Since φA is a group homomorphism and we know that
X can be expressed as a linear combination of PA, QA, PB , QB , PC , and QC , so we have

φA(X) = φA([u]PA + [v]QA + [w]PB + [x]QB + [y]PC + [z]QC)
= [u]φA(PA) + [v]φA(QA) + [w]φA(PB)

+ [x]φA(QB) + [y]φA(PC) + [z]φA(QC) .

Now our aim is to isolate a linear combination of φA(PA) and φA(QA). To that end, we perform the
operation

[`eBB · f ]φA(X) = [`eBB · f ]([u]φA(PA) + [v]φA(QA))
= [u′]φA(PA) + [v′]φA(QA) ,

and we find ourselves in the scenario described in [JS14, Remark 3.1] and [DJP14, §5.1].
Once we have [u′]φA(PA) + [v′]φA(QA), the subgroup generated by this point will help with the

construction of the dual isogeny of φA hence recovering φA.

Lemma 3.5. Let E1 be a supersingular elliptic curve over Fp2 , where p = `eAA · `
eB
B · f ± 1. Suppose

φ : E1 → E2 is an isogeny of degree `eAA with a cyclic kernel and let {P,Q} be generators of E1[`eAA ]. Then
for any X ∈ E1[`eAA ], define ψ : E2 → E′ such that kerψ = 〈φ(X)〉, then there exists some θ : E′ → E1
of degree `εA, ε ≤ eA, such that

φ̂ = θ ◦ ψ .

Proof. Using Lemma 3.1, we may suppose that kerφ = 〈P + [α]Q〉. Hence

φ(P ) = φ(P )− φ(P + [α]Q)
= −[α]φ(Q) .

Then expressing X = [u]P + [v]Q for some u, v, we have

〈φ(X)〉 = 〈[u]φ(P ) + [v]φ(Q)〉 = 〈[v − αu]φ(Q)〉 = 〈[`kA]φ(Q)〉 ,
where k is the `A-adic valuation of (v − αu).

Let ψ : E2 → E′ be an isogeny with kernel given by 〈φ(X)〉 = 〈[`kA]φ(Q)〉. For any Y ∈ E1[`eAA ], we
can write Y = [r]P + [s]Q for some r, s.

If k = 0, then

ψ ◦ φ(Y ) = ψ(φ([r]P + [s]Q))
= ψ([s− rα]φ(Q))
= O .
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So it is clear that E1[`eAA ] ⊆ ker(ψ ◦φ). The reverse inclusion is obvious since ker(ψ ◦φ) does not contain
any non-trivial element of order co-prime to `A. So ψ ◦ φ = [`eAA ], which implies, by the uniqueness of
the dual isogeny, that ψ = φ̂, and θ : E1 → E1 is the identity isogeny.

If k > 0,

ψ ◦ φ(Y ) = ψ(φ([r]P + [s]Q))
= ψ([s− rα]φ(Q)) .

Note that ψ ◦ φ(Y ) has order at most `kA, since

[`kA]ψ ◦ φ(Y ) = [s− rα]ψ([`kA]φ(Q)) = O .

Now denote by γ ∈ Z≥0, the `A-adic valuation of s− rα, then

ord(ψ ◦ φ(Y )) = ord(ψ([s− rα]φ(Q)))

= `k−γA .

[Note that ε = k − γ.]
So there exists Y such that γ = 0. Define θ : E′ → E1 such that ker θ = 〈ψ ◦ φ(Y )〉, then using the

above argument we can see that θ ◦ ψ = φ̂. Furthermore, it is clear that deg θ ≤ `eAA .

The lemma tells us that given the image of a point in E1[`eAA ] under an `eAA -isogeny, φ, we are able
to find an isogeny ψ which is close to the dual isogeny of φ. To obtain the dual isogeny, one has to first
recover θ. If ε is sufficiently small, one will be able to recover θ by brute force (just as we have done in
§3.1). In fact, we will examine the size of ε in §3.2.2 and show that ε is small in most cases.

Hence we have the following algorithm to recover isogenies given the image of random points.

Algorithm 2: Recovering the dual isogeny after fault injection.
Data: φ(X)
Result: φ̂

1 Set λ← `eBB · f ;
2 Set T ← [λ]φ(X);
3 Set ψ : E2 → E′ as the isogeny with kernel T ;
4 if ord(T ) = `eAA then
5 Return ψ;
6 else
7 Brute force for θ;
8 Return θ ◦ ψ;

3.2.2 Analysis of attack
As seen in the proof of Lemma 3.5, to obtain the dual of the isogeny, we need k in the proof to be 0, or
failing that, have ε small. But since ε is dependent on k, we will study k instead.

We start by fixing some α ∈ Z/`eAA Z and suppose that u and v are selected randomly in Z/`eAA Z, then
we have

Pr (`nA divides (u− αv)) = 1
`nA

.

Indeed, it is clear that we can treat ρ = u − αv as a single random variable, so this reduces to finding
Pr(`nA divides ρ), where ρ is randomly selected from Z/`eAA Z. Since one in every `nA elements is divisible
by `nA, we have the claim.

So k = 0 with probability 1 − 1
`A

. More generally, k = κ with probability `A−1
`κ+1
A

. So we see that the
isogeny ψ obtained from the procedure in §3.2 will be close to being the dual isogeny and brute forcing
for θ is feasible. The number of neighbours one would have to check to recover θ is 3 · 2k−1.

Lastly, we will address the issue of the faulted point φ(X) not having an order divisible by `eAA . This
would have the effect of decreasing the degree of ψ and so increase the degree of θ. But notice that we
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can repeat the same analysis as the above to conclude that the degree of θ would be small with high
probability.

Hence we have shown that Algorithm 2 has a high probability of recovering the secret isogeny.

Attack Models and their Feasibility

Interactive identification protocol and signature schemes

Signature schemes such as those proposed in [YAJ+17, JS14] employ a long term secret to generate a
public key for signatures. The underlying feature of these schemes is the need to map ephemeral points
under the secret isogeny. In the forthcoming exposition, we will not focus on the actual protocol, but
will examine the step in the protocol which performs the map we are targeting.

The fault attack can capitalise on these protocols by injecting a fault just before the computation of
the image of the ephemeral points to obtain the image of a random point under the secret isogeny. A
fault would affect the validity of the signatures, however the invalidity of the signature would not prompt
the signer to change their long-term secret. Hence the adversary would be able to break the signature
scheme. We have to add that the compression of points [AJK+16] is an effective countermeasure that
foils the attack and would also reduce the size of the responses. We will sketch the algorithm for point
compression and examine their effects when examining countermeasures.

Using the notation found in [DJP14, §3.1], we see that to learn the prover’s long-term secret S in
the interactive identification protocol, the adversary needs to perturb the computation of the point φ(R).
During the prover’s computation, the adversary will introduce a perturbation immediately before the
computation of φ(R). In particular the adversary can attempt to inject a fault into the fetching operation
and cause a fault in R. This will cause the faulted point R′ to be, with high probability, a point of full
order. Successfully doing so would allow for the recovery of the secret isogeny φ. To obtain the output of
the faulted point, the adversary needs the challenge bit to be 0 as described in [DJP14, §3.1]. This would
happen 50% of the time and since identification schemes typically require a large number of passes, this
must happen with high probability. The adversary could check the order of the points in the responses
(if the challenge bit is 0) and the faulted point would have order larger than `eAA . Using this information,
the adversary would be able to use Algorithm 2 to recover S.

Due to its similarity to the identification protocol, to learn the signer’s long-term secret S in the
digital signature scheme, the steps the adversary takes are identical to the process above. The aim now
is to inject a fault during the computation of φ(Ri) for some i’s. A successful fault coinciding with the
challenge bit being 0 would produce a point of order larger than `eAA , so the adversary has to find that
point in the signature by testing the orders of the points in the signature.

In the undeniable signature protocol the adversary will be able to learn the long term secret φA by
inducing a fault in φM (PC) before the computation of φM,AM (φM (PC)) (using notation found in [JS14,
§4.2]). Using φM,AM (X), the adversary would learn φM,AM and equivalently, φM (GA). Since φM is
computable from the message, the adversary would be able to recover GA.

The signature scheme in [GPS17] does not output auxiliary points, hence this attack will not work
on it.

Static key exchange protocol

Consider the static key exchange protocol described in §2.1. Suppose an adversary is trying to learn
Alice’s static secret isogeny and has the ability to cause a fault in Alice’s computation. After introducing
a fault in the computation of φA(PB), Alice would then proceed to publish the public key tuple

(EA, φA(X), φA(QB)) .

The adversary will then be able to recover φA using Algorithm 2.
Notice that this would not be prevented by the validation method presented in §3.1.4. Since the

validation method will only be able to detect misdemeanours carried out by Bob, it will not be able to
prevent the fault attack. In particular, throughout the validation process the public key of Alice is only
computed once and is never checked by the method. Hence the fault attack would not be detected by
this validation and an adversary would be able to recover the secret isogeny as previously described.
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Suppose that one party is using a static key in the key exchange protocol. An adversary would be
able to recover the secret isogeny if the static public key is recomputed for each exchange. However, this
is unlikely to happen since φA(PB) and φA(QB) will be hardcoded for efficiency.

Now suppose that the adversary is attacking the key exchange protocol with ephemeral keys. If the
secrets are not authenticated, the adversary would be able to compute φA(PB), and send that in place of
φA(X). This way, both parties would be able to derive the same shared secret. Since recovering φA from
φA(X) can be done efficiently, and computing φA(PB) is also efficient, performing the substitution before
a time-out in the connection is very feasible. However, it should be noted that without authentication,
it might be better to use a man-in-the-middle attack.

Remark. The attack may also be implemented on the ephemeral key exchange protocol, but in both
settings the attack would cause a failure to establish a shared secret key.

Countermeasures

A simple countermeasure to this attack is to implement order checking before the publication of the
auxiliary points. Another countermeasure that can be placed on the identification protocol and hence
the signature scheme is the compression of the points R,φ(R) if the challenge bit is 0.

The compression protocol relies on an algorithm to compute canonical representations of elliptic
curves in the isomorphism classes, and an algorithm to find canonical bases for an arbitrary torsion
subgroup. Instead of sending R,φ(R), hence revealing φ(R) which the fault attack requires, the prover
sends the scalars when representing φ(R) as a linear combination of the canonical basis. A faulted point
would not be representable in this basis, and so an error should ensue. Hence the adversary would not
be able to use the faulted auxiliary point to complete the attack.

Note that the compression of ψ(S) will not be useful since the attack does not attack that point.
Completing the fault attack on ψ(S) would yield the isogeny ψ, which is not the long-term secret, hence
does not achieve the goal of the attack.
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Chapter 4

Endomorphism Rings of Elliptic
Curves

Let X be an abelian variety, then a homomorphism φ : X → X is called an endomorphism. We denote
the set of all endomorphisms of X, together with the zero map (the map that sends all points to the
identity), by End(X). We can endow the set End(X) with a ring structure by letting the zero and
identity maps function as 0 and 1. Addition in this ring is given by point-wise addition and so the ring
addition axioms are inherited from the addition axioms on the abelian variety. Multiplication in End(X)
is given by composition of endomorphisms. We write Endk(X) to denote the endomorphism ring of
endomorphisms of X that are defined over k, and write End(X) to denote the endomorphism ring with
endomorphisms defined over the algebraic closure of the field X is defined over.

In this chapter, we will review the theory of the structure of the endomorphism rings of elliptic
curves. A priori, it seems strange for us to turn our attention to the study of endomorphisms; especially
when this is a class of isogenies that do not seem to “go anywhere”. The link between the two can be
seen when we show that the isogeny graph structure is determined by endomorphism rings. One can
also take the view that when decomposing an endomorphism, one will obtain a sequence of isogenies
which are not endomorphisms in general. Yet another connection between endomorphism rings and
isogenies lies in the correspondence due to Deuring [Deu41] which establishes an equivalence of categories
between the category of maximal orders of quaternion algebras with connecting ideals and the category
of supersingular elliptic curves with isogenies. This equivalence of categories allows us to translate the
problem from one category to another and will serve as the topic of §4.1. We will finally link it back to
cryptography by showing a reduction of the SIDH problem in §2.1 to the computation of endomorphism
rings.

4.1 Structure of the Endomorphism Rings of Elliptic Curves
Let E/k be an elliptic curve over k. The multiplication-by-n maps (together with the zero morphism)
form a subring of End(E) isomorphic to Z, and they lie in the centre of End(E). This begets the
inclusion Z ↪→ End(E). Over a finite field, the Frobenius map is an endomorphism which is not a scalar
multiplication, hence Z ( End(E) in this instance.

Definition. We say that E/k has complex multiplication by O if End(E) ∼= O 6= Z.

Hence, elliptic curves over a finite field will always have complex multiplication. We note that
endomorphism rings are not isogeny invariant.

Example. Consider the supersingular elliptic curve E1 : y2 = x3+x over F132 , then it can be shown that
End(E1) = Z〈πE1 , φ〉, where πE1 is the Frobenius endomorphism on E1, and φ(x, y) = (−x, ρy), where
ρ2 = −1 in the field. There is an isomorphism of algebras between End(E0) ⊗ Q and the quaternion
algebra Bp,∞ ramified at p and ∞. We give Bp,∞ the canonical representation Bp,∞ = Q〈i, j〉, where
i2 = −1, and j2 = −p, and k = ij. Then we have that End(E1) = Z

〈
1, i, 1+k

2 , i+j
2

〉
, and the isomorphism

of quaternion algebras is given by sending (1, i, j,k) 7→ (1, φ, πE1 , πE1 ◦ φ). One can then check that
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E2 : y2 = x3 + 11x + 5 is 2-isogenous to E1, and also that End(E2) does not contain an element that
would map into i.

However, there is an isogeny invariant related to the endomorphism ring:

Definition. The endomorphism algebra of E is End0(E) = End(E)⊗Z Q.

Theorem 4.1. If E1 and E2 are isogenous elliptic curves, then End0(E1) ∼= End0(E2).

Proof. Let φ : E1 → E2 be an isogeny between E1 and E2, and let α1 ∈ End(E1) be some endomorphism.
Then we have that α2 = φ ◦ α1 ◦ φ̂ ∈ End(E2). We can obtain the degree of α2 as

deg(α2) = deg(φ ◦ α1 ◦ φ̂) = deg(φ)2 deg(α1)

and compute its trace as

tr(α2) = α2 + α̂2

= φ ◦ α1 ◦ φ̂+ ̂φ ◦ α1 ◦ φ̂

= φ ◦ α1 ◦ φ̂+ φ ◦ α̂1 ◦ φ̂

= φ ◦ (α1 + α̂1) ◦ φ̂
= deg(φ) tr(α1) .

Hence [deg(φ)] ◦ α1 has the same minimal polynomial as α2 over Q. This implies that Q(α1) ∼= Q(α2),
and since this holds for any α1 ∈ End(E1), we have that End0(E1) is isomorphic to a Q-subalgebra of
End0(E2).

We can reverse the roles of α1 and α2 to obtain the other inclusion and conclude that the two
endomorphism algebras are the same.

Furthermore, we can classify the endomorphism algebras of elliptic curves.

Theorem 4.2 ([Sil09, Cor. III.9.4]). If E/k is an elliptic curve, then End0(E) is isomorphic to one of
the following:

(a) Q;

(b) an imaginary quadratic field;

(c) a definite quaternion algebra.

Now that we have seen the structure of the endomorphism algebra, we will turn our attention to that
of the endomorphism ring.

Theorem 4.3 ([Sil09, Cor. III.7.5]). The endomorphism ring End(E) is a free Z-module of rank 1, 2 or
4. In particular, it is equal to the dimension of End0(E) as a Q-vectorspace.

Furthermore, End(E) is a subring of End0(E). Since an order is a lattice that is also a subring, we
say that End(E) is an order of End0(E). As a corollary to Theorem 4.2, we have that for any elliptic
curve E over a finite field, End(E) is an order of an imaginary quadratic field or an order of a definite
quaternion algebra.

Recall that elliptic curves over finite fields fall into one of two categories: ordinary and supersingular.
We say that an elliptic curve E is supersingular if tr(πE) ≡ 0 (mod p) and ordinary otherwise.

The following result then gives us the endomorphism algebra of ordinary elliptic curves.

Proposition 4.4. If E/Fq is an ordinary elliptic curve, then End0(E) = Q(πE) is an imaginary
quadratic field.

Proof. Suppose for contradiction that πE ∈ Z ⊆ End(E). Since deg(πE) = q2, and the only integers in
End(E) with degree q2 are ±q, we have that tr(πE) = ±2q ≡ 0 mod p where p is the characteristic of
Fq. This implies that E is supersingular, which is a contradiction.
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So πE /∈ Z, which implies that πE /∈ Q ⊆ End0(E), because πE is an algebraic integer. Hence either
End0(E) = Q(πE) is an imaginary quadratic field, or End0(E) is a quaternion algebra via Theorem 4.2.
In the latter case, it must contain some β ∈ End0(E) which does not commute with πE . We will show
that this does not occur.

Firstly, we will show that for all m ≥ 1 we have πmE = [a] ◦ πE + [b], for some a 6≡ 0 (mod p) and
b ≡ 0 (mod p).
We proceed by induction; noting that the base case holds with a = 1 and b = 0. For the inductive step
we have:

πm+1
E = πE ◦ πmE

= πE ◦ ([a] ◦ πE + [b])
= [b] ◦ πE + [a] ◦ (tr(πE) ◦ πE − [q])
= ([a] ◦ tr(πE) + [b]) ◦ πE − [aq]
= [c] ◦ πE + [d] ,

where c = a tr(πE) + b 6≡ 0 (mod p), since a tr(πE) 6≡ 0 (mod p) and b ≡ 0 (mod p), and we have
d = −aq ≡ 0 (mod p), as desired.

Since πmE = [a] ◦ πE + [b] with a 6= 0 and πE /∈ Z this shows that πmE /∈ Q for any m ≥ 1. Now given
any α ∈ End0(E), one can write α as rα = φ for some r ∈ Q and φ ∈ End(E). The endomorphism φ is
defined over Fqm for some m. By writing φ as φ(x, y) = (s1(x), s2(x)y), we get

(φ ◦ πmE )(x, y) = (s1(xq
m

), s2(xq
m

)yq
m

) = (s1(x)q
m

, s2(x)q
m

yq
m

) = (πmE ◦ φ)(x, y) ,

thus φ and therefore α commutes with πmE and we are done.

Remark. Notice that α ∈ Q(πmE ) ⊆ Q(πE), hence the proof presents us with the exact quadratic field
which is isomorphic to the endomorphism algebra.

Corollary 4.5. If E/Fq is an ordinary elliptic curve, then End0(E) ∼= Q(
√
t− 4q), where t = tr(πE).

Since we have that the endomorphism ring is an order, it will be contained in the unique maximal
order of the quadratic field, which is the ring of integers. Also, since the Frobenius endomorphism
πE is contained in the endomorphism ring, and we have shown that it is not an integer, we have that
Z[πE ] ⊆ End(E) ⊆ OQ(

√
D). We will see later that the position of the endomorphism ring of the elliptic

curve in this range will describe its place in the isogeny graph.
For now, we will turn our attention to describing the endomorphism ring of supersingular elliptic

curves.

Theorem 4.6 ([Sil09, Thm. V.3.1(a)]). Let E/Fpn be a supersingular elliptic curve, then End0(E) is a
quaternion algebra. In particular, End(E) is a maximal order in End0(E).

Remark. Note that maximal orders of definite quaternion algebras are not unique. Hence the theorem
does not imply that the endomorphism algebra determines the endomorphism ring.

We will now explain Deuring’s correspondence between the category of supersingular elliptic curves
and their isogenies and the category of invertible modules and their homomorphisms. To that end, we
will introduce kernel ideals which were introduced by Waterhouse in [Wat69]; they show the explicit link
between isogenies and endomorphism rings. We will use them to build towards the proof as shown in
§42.2 of Voight’s unpublished book [Voi18]. Since the proofs of most of the results can be found readily
in the book, proofs will not be provided here. We will selectively expand on some of the proofs in [Voi18]
and will rely heavily on the proofs within. The focus will be on the intuition of the results leading to
the correspondence.

Let E be a supersingular elliptic curve over Fp, and let O = End(E), and B = O ⊗ Q. Let I ⊆ O
be a non-zero integral left O-ideal, then using [Voi18, Prop. 16.1.2], O being maximal implies that I is
invertible. Define the kernel ideal

E[I] =
⋂
α∈I

E[α]
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where the intersection is taken scheme-theoretically, and E[α] = kerα as a group scheme over Fp. It
is sufficient to take the intersection on just the Z-generators of I. Next, φI is defined to be an isogeny
E → E/E[I] with kernel E[I]. We remark that E[I] is finite, hence the definition makes sense.

Note that the recourse to group schemes is important for us to mention both separable and inseparable
isogenies in the same breath. This allows us to reconcile with the fact that the Frobenius map has degree
p but has trivial kernel. And this really comes to the fore when considering the example of J = (πE)
which yields E[J ] = {O} if we forget the group scheme structure.

The next result provides the first ingredient for proving the equivalence of categories.

Lemma 4.7. Let φI : E → EI be an isogeny with kernel E[I] as above. Then the map

φ∗I : Hom(EI , E)→ I

ψ 7→ ψ ◦ φI

is an isomorphism of left O-modules.

Remark. Another way to view this result is to see it as⋂
ψ∈Hom(EI ,E)

ker(ψ ◦ φI) = kerφI or
⋂

ψ∈Hom(EI ,E)

kerψ = {O} .

And to prove this, we show that

E[I] =
⋂
α∈I

kerα =
⋂

ψ∈Hom(E,EI)

ker(ψ ◦ φI) ,

where the first equality is by definition and the second comes from the surjectivity of the map φ∗I . Without
surjectivity, we will only have a containment instead of the equality.

We identify the endomorphism ring within the endomorphism algebra with the next result:

Lemma 4.8. The ring homomorphism

ι : End(EI) ↪→ B

β 7→ φ−1
I ◦ β ◦ φI = 1

deg(φI)
φ∨I ◦ β ◦ φI

is injective and ι(End(EI)) = {b ∈ B | bI ⊆ I} = OR(I).

Remark. We will see later that OR(I) is the right order of a given ideal and can be thought of as the
endomorphism ring of the codomain curve. See §4.2.2.

Proof. The map is certainly an injection since the only way that 1
deg(φI)φ

∨
I ◦β◦φI = 0 is when β = 0 since

all the other maps are non-zero maps. Then to show ι(End(EI)) = OR(I), one can show the action on
I by right multiplication and so ι(End(EI)) ⊆ OR(I). We can achieve equality by using the maximality
of End(EI) and the fact that ι is a ring homomorphism.

Recall that isogenies are the “same” if the kernels are the same; the next result illustrates this
corresponding fact which states that the ideal classes determine the isomorphism classes of the codomain
curve.

Lemma 4.9. If J = Iβ ⊆ O with β ∈ B∗, then EI ∼= EJ .

The work of Waterhouse establishes a link between isogenies and endomorphisms which we present
now. Given a finite subgroup scheme H ≤ E(k), we define

I(H) = {α ∈ O | α(P ) = O,∀P ∈ H} .

Recall the kernel ideal defined scheme-theoretically before. Now, we restrict to the case of when I
contains a separable endomorphism α, this allows us to define kernel ideals in a more elementary way:

E[I] = {P ∈ E(k) | α(P ) = O,∀α ∈ I} .

34



We would like to think of I(·) as a functor from the category of subgroups to the category of ideals and
that E[·] is the functor going the other way. The morphisms are given by inclusions in both categories.
This results in E[·] and I(·) being contravariant functors. The astute reader will notice the parallels
between the current exposition and the classic correspondence between algebraic sets and prime ideals
in classical algebraic geometry. The two correspondences are used to prove the respective equivalence of
categories. The following results that will build towards the equivalence of categories will enhance this
similarity.

Lemma 4.10. If H1 ⊆ H2 and I(H1) = I(H2), then H1 = H2.

Proof. We factor the isogeny through H1 as in the following diagram

E E/H1 E/H2
φ1

φI

Now, we split the proof into 2 cases: when φ1 is separable, and when it is purely inseparable.
In the first case, we want to show that H2 ⊆ H1. But assume for contradiction that that isn’t the

case. Then there exists α ∈ O such that α(H1) = {O} but α(H2) 6= {O}, so I(H2) 6= I(H1), hence a
contradiction.

In the second case, one can show that H1 and H2 must be the kernel of the same pr-power Frobenius
map and hence must be the same.

Proposition 4.11. The following statements hold:

(a) deg(φI) = nrd(I),

(b) I(E[I]) = I.

Remark. We will make several remarks on the proof found in [Voi18, Prop. 42.2.16] and will thus use
the notation found there. In the first displayed equation of Voight’s proof, the equality can be presented
in the following way which might be more illuminating:

[deg β] = β ◦ β̂ ∼= ββ̄ = nrd(β) = nrd(I) .

Indeed, all equalities are definitions of deg and nrd and the isomorphism is given by the fact that ·̂ and
·̄ are involutions in their respective rings.

Next, the proof reduces the general case to the principal ideal case which has already been proven.
In particular, one can use the multiplicative property of deg and the fact that II ′ is principal to get the
divisibility on both sides. The key is the use of [Voi18, Ex. 17.5]. This proves (a), and (b) follows shortly
after.

Corollary 4.12. For every isogeny φ : E → E′, there exists a left O-ideal I and an isomorphism
ρ : EI → E′ such that φ = ρ ◦ φI . In particular, for every maximal order O′ ⊆ B, there exists E′ such
that O′ ∼= End(E′).

Lemma 4.13. For every non-zero integral left O-ideal I, I ′ ⊆ O, the natural map

Hom(EI , E) Hom(EI′ , EI)→ Hom(EI′ , E)

is bijective, giving a further bijection

Hom(EI′ , EI)→ (I : I ′)R = I−1I ′

ψ 7→ φ−1
I ◦ ψ ◦ φI′ .

Proof.

Iφ−1
I Hom(EI′ , EI)φI′ = Hom(EI , E)φIφ−1

I Hom(EI′ , EI)φI′
= Hom(EI , E) Hom(EI′ , EI)φI′
= Hom(EI′ , E)φI′
= I ′ .
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We now have all the ingredients for the equivalence of categories to be proved. Let E0 be a supersin-
gular curve over Fp. This will serve the role as a base object. We also fix the base ring O0 = End(E0)
and the base algebra B0 = O0 ⊗Q.

Remark. One really needs a base object before looking at the equivalence of categories. While the bijection
between isomorphism classes of supersingular curves and isomorphism classes of maximal orders can be
done without the base objects, the morphisms between maximal orders cannot exist without the base
object using the results we have developed thus far. Interested readers can refer to §42.4 of [Voi18] for a
base-object free discussion.

Theorem 4.14 ([Voi18, Thm. 42.3.2]). Let E be a supersingular elliptic curve, then the association
E 7→ Hom(E,E0) is functorial and defines an equivalence between the category of

supersingular elliptic curves over k, under isogenies
and

invertible left O0-modules, under left O0-module homomorphisms.

Remark. The categorical view of this is that the functor Hom(−, E0) is contravariant. Hence we can
define the equivalence using the association E 7→ Hom(E0, E) to get a covariant functor with right O0-
modules.

4.2 Structure of Isogeny Graphs of Elliptic Curves
Now that we have gained an understanding of the endomorphism rings of elliptic curves, we can put that
theory to use by studying the structures of isogeny graphs. As mentioned, the isogeny graph is highly
dependent on the endomorphism ring structure of elliptic curves. This will be examined fully in this
section.

Definition. Let p and ` be distinct primes, then the `-isogeny graph Gpn,` is the directed graph with
vertices elements Fpn and edges (j1, j2) with weights equal to the multiplicity of j2 as a root in Fpn of
Φ`(j1, Y ) ∈ Z[Y ], where Φ`(X,Y ) is the `-modular equation [Cox13, §11.C].

The consequence of Tate’s theorem [Tat66] is that Gpn,` is disconnected. Furthermore, the graph can
be split into two main components: the ordinary component and the supersingular component. We will
see later that the supersingular elliptic curves form a connected (` + 1)-regular component. This is a
stronger claim than what Tate’s theorem claims, as the isogenies now have degrees which are an `-power.
We will prove this in §4.2.2.

We will deal first with the ordinary components. The ordinary component can be further subdivided
into subcomponents that form `-volcanoes.

Definition ([Sut13, Def. 1]). An `-volcano V is a connected undirected graph whose vertices are parti-
tioned into one or more levels V0, . . . , Vd such that the following hold:

(1) The subgraph on V0 (the crater) is a regular graph of degree at most 2.

(2) For i > 0, each vertex in Vi has exactly one neighbour in level Vi−1, and this accounts for every
edge not on the crater.

(3) For i < d, each vertex in Vi has degree `+ 1.

(4) Each vertex in Vd has degree 1.

4.2.1 Ordinary
In this section, we will briefly review the structure of isogeny graphs for ordinary elliptic curves over a
finite field. The bulk of the description of the isogeny graphs for ordinary elliptic curves was explicated
by David Kohel in his PhD thesis [Koh96].

Let E/k be an elliptic curve with complex multiplication by O, an order with discriminant D in
an imaginary quadratic field K. Also, let ` be a prime distinct from char(k), and we want to consider
`-isogenies away from E. Let E′ be an elliptic curve such that φ : E → E′, where φ is an `-isogeny. Let
End(E′) = O′, then we have that End0(E) = End0(E′), but it is not necessarily the case that O = O′.
The relation between O and O′ is given in the following proposition:
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Proposition 4.15 ([Koh96, Prop. 21]). Let φ : E → E′ be as above, and let End(E) ∼= O and End(E′) ∼=
O′, then one of the following holds:

(a) O = O′,

(b) O′ ⊆ O and [O : O′] = `,

(c) O ⊆ O′ and [O′ : O] = `.

We will see how this proposition dictates the structure of the graph. The following definition, while
seemingly unmotivated at the moment, will become intuitively clear when seen in the context of the
graph.

Definition. Using the notation from the above result:
If O = O′, we say that φ is horizontal.
If O′ ⊆ O and [O : O′] = `, we say that it is descending.
If O ⊆ O′ and [O′ : O] = `, we say that it is ascending.
In the latter two cases, we refer to them as being vertical.

This leads to the main theorem of this section, which describes the ordinary components of the
isogeny graph.

Theorem 4.16 ([Koh96, Prop. 23]). Let V be an ordinary component of Gq,` that does not contain the
j-invariants 0 or 1728. Then V is an `-volcano for which the following hold:

(1) The vertices in level Vi all have the same endomorphism ring Oi.

(2) The subgraph V0 has degree 1 +
(
D0
`

)
, where D0 = disc(O0).

(3) If
(
D0
`

)
≥ 0, then |V0| is the order of [l] in Cl(O0), where l is an ideal above `. Otherwise |V0 = 1|.

(4) The depth of V is d = v`((t2−4q)/D0)
2 , where t = tr(πE) for j(E) ∈ V .

(5) ` - [OK : O0] and [Oi : Oi+1] = ` for 0 ≤ i ≤ d.

We will use the theorem to explain some of the features of the `-volcanoes of ordinary components.
Figures 4.1b and 4.1d show the 2 and 3-isogeny graph for an ordinary component over the field F37. The
vertices are given by the j-invariants of the elliptic curves.

The first notable feature of the graph is the 4-cycle in both of the graphs. This would correspond to
the crater of the volcano as given by (2) of the theorem. The 2-isogeny graph has a depth of 1, while
the 3-isogeny graph has a depth of 0. One can check that the elliptic curves at the depth of 1 of the
2-isogeny graph have endomorphism rings which have conductor 2 and these vertices have degree 1. The
isogenies traversing the two levels are vertical.

4.2.2 Supersingular
As mentioned, the supersingular component of the `-isogeny graph forms a single connected component.
However, it is a priori not clear why this would be the case. Using Tate’s theorem, one is able to deduce
that any two supersingular elliptic curve would be isogenous, but it does not imply that they should be
connected in the `-isogeny graph. To see this, we will need to invoke the equivalence of categories of
Theorem 4.14. One then has to use results in Gross [Gro87] and Pizer [Piz90] which we will now retrace.

Let B be the definite quaternion algebra ramified at p and ∞. Fix some maximal order O in B, then
recall that a left O-ideal is a lattice that is stable under left action by O. Associated to this left O-ideal
is a right order of I given by {b ∈ B | Ib ⊆ I}, this is yet again another maximal order. We can define
I−1 = {b ∈ B | IbI ⊆ I} as the right ideal of O whose left order is the right order of I.

The left ideals are equivalent if they are associates, i.e. I and J are in the same equivalence class if
I = bJ for some b ∈ B∗. The number of equivalence classes is given by the class number of B. We can
enumerate the equivalence classes of the left ideals by {I1, . . . , In} such that I1 = O is the trivial ideal.

There is an immediate link to supersingular elliptic curves that we will now delineate. In choosing
B, we have in effect chosen a prime p, over which B is ramified. In terms of supersingular elliptic curves,
this serves to fix the field Fp, and hence fixes the set of isomorphism classes of supersingular elliptic
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curves. The class number of B then corresponds to the number of isomorphism classes of supersingular
elliptic curves over Fp.

Coming back to quaternion orders, we can associate to each ideal-class representative a right order
Oi. This results in a list {O1, . . . , On}, where each conjugacy class of maximal orders is represented once
or twice. The number of conjugacy classes is given by the type number of B.

Let n be the class number of B and let t be the type number of B, then we can note that t < n.
The connection between the class and type numbers of B can be seen from the vantage of supersingular
elliptic curves. We already stated that the class number is the number of supersingular elliptic curves
over Fp. The type number on the other hand is the number of conjugacy classes of the endomorphisms
of these supersingular elliptic curves. The disparity between the two values arises from the fact that

E ∼= E ⇐⇒ E is defined over Fp

where ∼= represents isomorphism and E is E acted on by the Galois action, but we have that

End(E) ∼= End(E)

where ∼= represents conjugacy. A fortiori, End(E) is isomorphic to End(E) as rings!

Example. This is a nice example of how non-isomorphic elliptic curves can have isomorphic endomor-
phism rings. Let p = 83, and k = Fp2 and let E0 : y2 = x3+x be the curve with j-invariant j = 1728 ≡ 68
mod 83. Then we have the following 3-isogeny graph of supersingular elliptic curves:

0 67 28 17 68 50

α

ᾱ

3

2

2

Using E0 as the base ring, we can denote the Frobenius endomorphism by i and the endomorphism
(x, y) 7→ (−x, iy) by j, then we have that

End(E0) = Z
〈

1, j, j + k
2 ,

1 + i
2

〉
where this is over Bp,∞, the quaternion algebra ramified at p = 83 and ∞, and i2 = −83, j2 = −1 and
k = ij.

We write E(jinv) for an elliptic curve whose j-invariant is given by jinv. Then we can work out using
methods in [GPS17, §4] that

End(E(50)) = Z
〈

1 + i
2 , i, j + 151k

18 , 9k
〉
,

End(E(28)) = Z
〈

9 + i + 59j + 9k
18 ,

2i + 37j + 9k
18 ,

9j + k
2 ,k

〉
,

End(E(17)) = Z
〈

9 + i + 13j + 21k
18 ,

i + 13j + 21k
9 ,

3j + k
2 , 3k

〉
,

End(E(α)) = End(E(ᾱ)) = Z
〈

9 + 3i + j + 133k
18 ,

3i + j + 52k
9 ,

j + 7k
6 , 9k

〉
.

Clearly, E(α) 6∼= E(ᾱ) over k as they have different j-invariants, but as we can see, the endomorphism
rings are the same.
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Now, fix p and let {E1, . . . , En} be the isomorphism classes of supersingular elliptic curves over Fp.
Then we define Oi = End(Ei). This gives the isomorphism

I−1
j Ii ∼= Hom(Ei, Ej)

as a left Oj-module and a right Oi-module.
Recall that our aim is to show that the supersingular component of G(pn, `) is connected. Thus

far, we have shown the connection between supersingular isogenies and maximal orders of quaternion
algebras. In particular, we have shown that maximal orders can be connected via left and right ideals, as
a result, we are able to study the graphs made from these gadgets. The equivalence of categories allows
us to transfer the isogeny graph to the graph of maximal orders, hence a connectivity result in the latter
case can be translated to a connectivity result in the former.

The coup de grâce comes from a result from Pizer. Before presenting the theorem, we note that Pizer
considers orders of level N = p2M in Bp,∞, the quaternion algebra ramified at p and ∞. This is simply
a generalisation of the maximal orders. The maximal orders we are interested in are orders of level p2.

Furthermore, the result will assert that the graph obtained is in fact connected and is Ramanujan.
The significance of being a Ramanujan graph is that it has good mixing properties that can be used in
cryptographic proofs.

Theorem 4.17 ([Piz90, Thm. 1]). Let O be a maximal order in Bp,∞ and let ` be a prime with ` < p/4
and ` - N . Then the multi-graph G(p2, `) is defined and is a `+ 1 regular connected Ramanujan graph.

Remark. Note that Pizer proved this theorem using properties of Brandt matrices that we have omitted.
In short, for a given prime p and some integer m, Brandt matrices are matrices in M(n,Z), where n
is the number of isomorphism classes of supersingular elliptic curves over Fp2 . The (i, j)-entry of the
Brandt matrix is defined to be equal to the number of subgroup schemes K of order m in Ei such that
Ei/K ∼= Ej. Interested readers are encouraged to refer to [Gro87, §1–2].

We note that all the vertices of the supersingular component can be defined over Fp2 (cf. Theo-
rem 1.10). Also, this component is a (` + 1)-regular graph since the number of distinct subgroups of
order ` of E[`] is `+ 1.

The supersingular component does not have the `-volcano structure present in the ordinary com-
ponents. This is because the endomorphism rings are all maximal orders of Bp,∞, so there is a lack
of containment of endomorphism rings that gave rise to the levels of the `-volcano structure of their
ordinary counterparts.

In Figure 4.1, we give an example of the isogeny graph in F37 which shows an ordinary component
and the supersingular component for ` = 2 and 3. In particular, one can clearly see that the out-degree
of the `-isogeny graphs of the supersingular components is `+ 1.

4.3 Application to Cryptography
4.3.1 Group Action by Class Group
Couveignes–Rostovtsev–Stolbunov Isogeny Cryptosystem

Let p be a prime and E/Fpn be an ordinary elliptic curve with complex multiplication by O. Recall from
the discussion in §4.1 that O is an order in some imaginary quadratic field. Also, we have that if Cl(O)
is the class group of O, and a is an O-ideal, then a induces an action on the set of elliptic curves with
complex multiplication by O, and maps E to Ea via the isogeny φ : E → Ea. The kernel of φ is given
by kerφ = {P ∈ E(Fp) | α(P ) = O ∀α ∈ a} as we have seen with kernel ideals. This is known as the
class group action on the set of isomorphism classes of elliptic curves with complex multiplication by O.

Couveignes, Rostovtsev and Stolbunov [Cou06, RS06] independently proposed a key exchange proto-
col based on the above action. Alice and Bob first agree on the starting curve, E0 which is chosen from
the set of isomorphism classes of elliptic curves with complex multiplication by O. Alice chooses the
secret O-ideal a, and computes Ea using the action above. She then publishes Ea. Bob would complete
his side of the protocol and publish his public key Eb. To obtain the shared secret, Alice would compute
the action of a on Eb to obtain Eba, which will be the same as Bob’s computation of Eab, since the class
group is commutative. We call this the CRS protocol.
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Figure 4.1: Isogeny components in F37.

The hard problem here is to recover the O-ideal a when given E and Ea. This is equivalent to the
isogeny problem. However, it has since been discovered [CJS14] that there exists a quantum algorithm,
based on the Kuperberg algorithm, that is able to solve the hard problem in sub-exponential time.

The existence of a sub-exponential algorithm did not signal the end of the cryptosystem. One could
increase the parameters of the cryptosystem to thwart the attack, but this would come at the cost of the
speed of the algorithm. The main bottleneck in the CRS protocol lies in the computation of the action.
The computation of the action takes O(d), where d is the norm of the ideal or the degree of the isogeny.
Actions in the cryptosystems can factor into a sequence of smaller isogenies. However, this factorisation
very much depends on the structure of the endomorphism ring of the elliptic curve. The efficiency of the
cryptosystem hinges on reducing the norm of the largest factor in the factorisation of the action.

In 2018, De Feo, Kieffer, and Smith tackled the issue [DKS18] by seeking to reduce the norm of the
largest factor. The difficulty lies in simultaneously controlling p and the order of the elliptic curve. The
aim was to increase the size of the prime of the protocol, thereby thwarting the quantum attack, and
still find an efficient method to compute the action. However, their attempts at finding ordinary elliptic
curves for this cryptosystem were unfruitful.

CSIDH

An improvement to [DKS18] is CSIDH [CLM+18]. CSIDH uses the same principles as the protocol in
[DKS18] by maximising the number of small prime ideals where the corresponding kernels have rational
points. The key idea in this case was the use of supersingular elliptic curves which allows for one to
efficiently choose such an order. Recall that supersingular elliptic curves can be defined over Fp2 , and
EndFp(E) is a maximal order in the quaternion algebra which is ramified at p and ∞. However, when
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restricted to Fp, one gets that EndFp(E/Fp) is an order of an imaginary quadratic field. One can choose
a suitable prime and the endomorphism ring will contain suitable prime ideals. In choosing a suitable
prime, such that p+ 1 contains sufficiently many small primes, we have that EndFp(E/Fp) will contain
prime ideals of norm equal to the prime factors of p+ 1. Hence isogenies computed in the cryptosystem
can be factored into isogenies with small prime norms which are more efficient computationally.

4.3.2 Solving the Isogeny Problem when the Endomorphism Ring is Known
In this section, we investigated the possibility of applying the equivalence of categories developed in
Theorem 4.14 to the cryptosystem of Jao and De Feo. This follows [GPST16, §4] closely and is joint
work with Christophe Petit.

Let p = `nA · `mB · f − 1 as in the Jao–De Feo cryptosystem, and let E and EA be two supersingular
elliptic curves such that there exists an isogeny φA : E → EA of degree `nA between them. In this
section, we will show that having the ability to efficiently compute the endomorphism rings End(E) and
End(EA) would result in an efficient algorithm to recover φA assuming a certain natural heuristic holds.
The following result is a formal statement of this reduction which we will prove after a brief introduction.

Theorem 4.18. Let E and EA be supersingular elliptic curves over Fp2 such that E[`nA] ⊆ E(Fp2) and
suppose there is an isogeny φA : E → EA of degree `nA from E to EA. Suppose there is no isogeny
φ : E → EA of degree < `nA. Then, given an explicit description8 of End(E) and End(EA), there is an
efficient algorithm to compute φA with high probability.

Computing the endomorphism ring of a supersingular elliptic curve is a problem that is believed to be
equivalent to computing an arbitrary isogeny between two supersingular elliptic curves. The equivalence
of categories we obtained in §4.1 for supersingular elliptic curves allows us to translate the supersingular
isogeny problem to the category of maximal orders. In that category, finding a connecting ideal between
two maximal orders is simply linear algebra. However, we will show that finding an arbitrary isogeny is
insufficient for breaking SIDH; we need to find an isogeny of the correct degree (cf. remark below). In
2014, Kohel, Petit, Lauter and Tignol [KLPT14] presented an algorithm that is able to find a connecting
ideal whose norm is a prime power. However, their algorithm does not produce an isogeny that satisfies
the additional constraint that it must be of small degree, as is required in SIDH (`nA ≈ p1/2). Hence the
current state of affairs does not give a reduction of the form we require.

The aim of this section is to present an alternative method to [KLPT14] in this context. We use
some of the notation of [KLPT14].

Remark (The Importance of the Correct Isogeny). It is not sufficient to compute an arbitrary isogeny
from E to EA if one’s goal is to break SIDH. Indeed, one needs to compute an isogeny with the right
properties.

Suppose there are curves E and isogenies φA : E → EA, φB : E → EB with kerφA = GA, kerφB =
GB satisfying the commutative isogeny diagram from §2.1:

E

EA = E
GA

EB = E
GB

EAB = E
〈GA,GB〉

φA

φB

The protocol follows from the fact that E/〈GA, GB〉 = EA/〈φA(GB)〉 = EB/〈φB(GA)〉, since kerφA
and kerφB have trivial intersection, and that φA(GB) and φB(GA) can be computed using the auxiliary
information.

However, suppose an attacker given E,EA, EB and the auxiliary information is able to compute some
isogeny φ′ : E → EA such that φ′ is not equal to φA. This is the resulting picture:

8This means that one can express End(E) and End(EA) in terms of a rank 4 Z-module and give the bases of these
endomorphism rings as elements of the quaternion algebra.
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E

EA = E
GA

EB = E
GB

EAB = E
〈GA,GB〉

φA

φ′

φB

The attacker attempting to derive the shared secret j(EAB) has to compute φB(ker(φ′)) and will
obtain an isogeny with this kernel. However, the attacker will not be able to derive the shared secret since
they only have the points φB(PA) and φB(QA) to work with. The attacker can only compute φB(ker(φ′))
if kerφ′ ⊆ 〈PA, QA〉 which would imply that φ′ is an isogeny of degree dividing 2n.

This is the crux of the difficulty in giving a reduction from computing endomorphism rings to com-
puting the secret key in the Jao–De Feo cryptosystem: known algorithms to compute an isogeny from E
to EA, given End(E) and End(EA), are not likely to give an isogeny of the correct degree. However, we
can exploit the size of the secret isogeny to recover the secret isogeny. This size restriction is absent in
the general case.

We now show how the existence of a small degree isogeny actually helps the cryptanalysis of the
Jao–De Feo cryptosystem, assuming we know (or are able to compute) the endomorphism rings of the
curves in play.

Given two maximal orders O and OA, one can compute in polynomial time an ideal I that connects
them [KLPT14, Lem. 8]. Computing an isogeny of the correct degree corresponds to computing an
equivalent ideal of the correct norm. In order to find such an equivalent ideal we use the following
lemma.

Lemma 4.19 ([KLPT14, Lem. 5]). Let I be a left O-ideal of reduced norm N and α an element in I.
Then Iγ, where γ = ᾱ/N , is a left O-ideal of norm n(α).

We observe that in the context of Jao–De Feo cryptosystem, there exists by construction an element
α of small norm N`nA in I, corresponding via this lemma to an ideal of norm `nA. Moreover, as Minkowski
bases can be computed in polynomial time for lattices of dimension up to 4 [NS04], this element α can
be efficiently recovered as long as it is in fact the smallest element in I. These observations lead to the
following simple algorithm:

Algorithm 3: Computing small degree isogenies in Jao–De Feo cryptosystem given an algorithm
to compute the endomorphism ring of a random supersingular elliptic curve.
Data: `A, n, E, EA, O = End(E), OA = End(EA) such that E and EA are connected by an

isogeny of degree `nA
Result: Isogeny ϕA : E → EA of small degree `nA, or failure

1 Compute an ideal I connecting O and OA as in [KLPT14, Lem. 8];
2 Compute a Minkowski-reduced basis of I;
3 Let α be the non-zero element in I of minimal norm;
4 if n(α) 6= n(I)`nA then return failure;
5 Compute an ideal I ′ = Iᾱ/n(I) ;
6 Compute the isogeny ϕA that corresponds to I ′ using methods in [GPS17, §4];
7 Return ϕA;

The probability of failure in Step 4 will be discussed after the proof. All the steps in this algorithm
can be performed in polynomial time. The above discussion forms the proof of Theorem 4.18.

Proof of Theorem 4.18. Given an explicit representation of the endomorphism rings, we can translate
the endomorphism rings into maximal orders of quaternion algebras. One can then find, in polynomial
time, an ideal I connecting them by [KLPT14, Lem. 8].

By Lemma 4.19, it is sufficient to find an element of I of the correct norm. But given that the norm
we seek is the smallest norm in the ideal, we can use lattice reduction methods to recover the smallest
norm in polynomial time. Then using methods in [KLPT14], we can recover an isogeny with degree `nA.
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The isogeny recovered thus is not necessarily φA, but as the discussion that will follow, we will see
that it will be φA with high probability.

In the remainder of this section, we study the success probability of this algorithm on average, and
show how to use it to achieve a very large success probability.

Heuristically, we can approximate the probability that E and EA are connected by an isogeny of degree
d by estimating the probability that two randomly chosen supersingular elliptic curves are connected by
an isogeny of the same degree9.

Random pairs of supersingular elliptic curves over Fp2 are unlikely to be connected by isogenies of
degrees significantly less than √p. Indeed, when d =

∏
i p
ei
i , there are exactly

a(d) =
∏
i

(pi + 1)pei−1
i

isogenies of degree d from any curve E, hence any curve E is connected to at most
∑
d≤D a(`) curves

EA by an isogeny of degree at most D. A calculation given in [GPST16, App. A] shows that this sum
behaves asymptotically like

15
2π2D

2

as D tends to infinity. As there are roughly p/12 supersingular invariants over Fp2 we can evaluate the
success probability of the above algorithm as

SR ≈ max
(

0, 1− 15D2

2π2

/
p

12

)
≈ max

(
0, 1− 90

π2
`2nA
p

)
.

For the parameters used in the Jao–De Feo cryptosystem we expect this basic attack to succeed with a
probability larger than 50% if f > 180

π2 ≈ 18.23, where f is the cofactor in p = `nA · `mB · f ± 1. The upshot
is that a small cofactor would be able to defeat this attack.

However, the success rate of our attack can be easily improved in two ways. First, we can apply
the algorithm separately on all curves that are at distance `eA of EA for some small constant e, until it
succeeds for one of them. Clearly one of these curves will be connected to E by an isogeny of degree
`n−eA , and as a result the success rate will increase to

SR ≈ max
(

0, 1− 90
π2
`
2(n−e)
A

p

)
.

With `A = 2 and e = 10 this method will lead to a success rate above 99%, even when f = 1. Second,
we can try to use the Minkowski-reduced basis computed in Step 3 of the algorithm to find an element
α of the appropriate norm, even when it is not the smallest element. We explore two heuristic methods
in that direction in our experiments below.

Experimental Results

We tested our algorithm in MAGMA with `A = 2 and with a λ-bit prime p, a randomly selected maximal
order, another random maximal order connected to the first by a path of length ∆ = dlog`A(p)/2e + δ,
with δ ∈ {−5, . . . , 5}. One can traverse from the first order to the second via ∆ steps in the `A-isogeny
tree. This would correspond to picking a randomly selected supersingular curve over Fp2 and another
supersingular curve connected to the first by an isogeny of degree `∆A .

The first three columns of Table 4.1 (“First basis element”) correspond to the attack described in the
previous section. In other words, the algorithm succeeds if the first vector output in the reduced lattice
basis corresponds to the correct `∆A -isogeny. The next three columns (“All basis elements”) correspond
to a variant where instead of considering only the smallest element in Step 4 of the algorithm, we try
all elements in the Minkowski-reduced basis. Finally, the last three columns (“Linear combinations”)
correspond to a variant where we search for α of the right norm amongst all elements of the form

9The argument is not totally accurate as E and EA are slightly closer in the `A-isogeny graph than random pairs of
curves would be. This may a priori impact the probabilities, however a significant distortion of these probabilities would
reveal some unexpected properties of the graph, such as the existence of more or fewer loops of certain degrees than
expected.
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∑4
i=1 ciβi, where ci ∈ {−4, . . . , 4} and βi are the Minkowski-reduced basis elements. This is a naïve form

of the enumeration algorithm with an arbitrary choice of 4 as a bound. Each percentage in the table
corresponds to a success rate over 100 experiments, where a success is when we have found an element
with correct norm using the methods mentioned above.

First basis element All basis elements Linear combinations
λ λ λ

100 150 200 100 150 200 100 150 200

δ

−5 100% 99% 99% 100% 100% 99% 100% 100% 100%
−4 93% 99% 94% 98% 99% 100% 100% 100% 100%
−3 83% 84% 88% 92% 95% 99% 100% 100% 100%
−2 40% 43% 45% 81% 74% 76% 100% 100% 100%
−1 0% 2% 0% 35% 42% 35% 100% 100% 99%
0 0% 0% 0% 3% 4% 3% 100% 100% 100%
1 0% 0% 0% 1% 0% 0% 97% 99% 98%
2 0% 0% 0% 0% 0% 0% 95% 94% 91%
3 0% 0% 0% 0% 0% 0% 57% 68% 70%
4 0% 0% 0% 0% 0% 0% 25% 28% 18%
5 0% 0% 0% 0% 0% 0% 0% 3% 1%

Table 4.1: Experimental results for δ values. ` = 2.

The experimental results mean that, even if the desired isogeny does not correspond to the shortest
element in a reduced basis, a small exhaustive search over neighbouring curves under a 2δ-isogeny for
1 ≤ δ ≤ 5 will with high probability lead to a curve for which the desired isogeny is the shortest element
in a reduced basis.
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Chapter 5

Properties of PPSSAS Isogeny
Graphs

We introduced G2SIDH in Chapter 2 but omitted the security analysis. Given that the isogeny graph of
elliptic curves informs us on the security of the cryptosystems on which they are based, it is imperative
that we understand the isogeny graph of PPSSASs to quantify the security of G2SIDH. In this final
chapter we will find the number of neighbours of an arbitrary vertex in the PPSSAS graph. We will also
examine paths between two vertices in the graph.

We have seen that one can specify an isogeny by its kernel; in this chapter we explain that such an
isogeny can sometimes be decomposed in more than one way. This gives rise to a peculiar substructure (`-
diamonds) present in the isogeny graphs of PPSSASs. We find that the `-diamonds implies the existence
of numerous cycles of small length in the (`, `)-isogeny graph of PPSSASs. All these results are given in
§5.2 and §5.3. In fact, these results apply to general PPASs as we will see.

These results have implications on the cryptosystems in genus two. In particular, the number of
neighbours inform us on the security of G2SIDH as we will encounter in §5.4. We will also show in
§5.4 that the presence of `-diamonds induces collisions in the genus two extension of the isogeny hash
function.

5.1 Morphisms to Subgroups
One of the key tools in studying isogenies between abelian varieties is the correspondence between
subgroups and isogenies. This subsection explains the properties a subgroup needs to have in order to
correspond to an appropriate isogeny.

Recall Theorem 1.7 which allows us to restrict our attention to Jacobians of hyperelliptic curves of
genus two or some reducible product of two elliptic curves. We will prove this now.

Theorem 1.7. If A/Fp is a PPAS, then A ∼= JH for some smooth (hyperelliptic) genus two curve H,
or A ∼= E1 × E2 where Ei are elliptic curves.

Proof. Use [GGR05, Thm. 3.1] which says that A is isomorphic over Fpn (for some n) to the two cases in
the theorem, or to the restriction of scalars of an elliptic curve over a quadratic extension of Fpn . Since
we are working over Fp, this is absorbed into the second case.

Note that the definition of a maximal isotropic subgroup in §1.3 includes kernels of isogenies that
factor through the multiplication-by-n map. We want to focus on isogenies that do not contain these
“trivial” isogenies, hence we make the following definition:

Definition. A subgroup S of A[m] is good if A[n] 6⊆ S for any 1 < n ≤ m.

We will base our results on good maximal isotropic subgroups for the rest of this section.
The following result illustrates the preservation of principal polarisations under isogenies whose ker-

nels are isotropic.

45



Proposition 5.1. Let H be a hyperelliptic curve of genus two over Fq. Let K be a finite, good, Fq-
rational subgroup of JH(Fq). There exists a PPAS A over Fq, and an isogeny φ : JH → A with kernel
K, if and only if K is a maximal m-isotropic subgroup of JH [m] for some positive integer m.

Proof. (⇐) The quotient JH → JH/K always exists as an isogeny between abelian varieties [Ser88,
III.3.12]. Since JH is the Jacobian of a hyperelliptic curve, it has a principal polarisation λ. Now
consider the polarisation µ = [deg φ] ◦ λ on JH , then we certainly have K = kerφ ⊆ kerµ, and
since K is isotropic, we use [Mil86a, Thm. 16.8] to get a polarisation λ′ on JH/K. Using [Mil86a,
Rem. 16.9], we have that deg λ′ = 1 and so JH/K is a PPAS.
By Theorem 1.7, we have that A is the Jacobian of a hyperelliptic curve of genus two or a product
of two elliptic curves.

(⇒) This is a simple application of [Mil86a, Thm. 16.8].

Using the results above, we can focus on the type of subgroups of the torsion group that correspond
to the isogenies we would like to investigate. We will denote by Cn the cyclic group of order n, and use
e to denote the group identity.

Lemma 5.2. Let A be a PPAS. If K is a good maximal `n-isotropic subgroup, then it cannot be cyclic.

Proof. Suppose that K is cyclic, then the pairing is trivial on K due to the alternating property of
the Weil pairing. But it can then be shown that there is an isotropic subgroup isomorphic to C2

`n that
contains K. Indeed, such a subgroup must exist: Suppose that 〈P 〉 = K, then let Q ∈ A[`n], such that
〈P 〉 ∩ 〈Q〉 = {e}, then if e(P,Q) = 1, we are done. Otherwise, suppose that e(P,Q) = µd 6= 1. One can
show that there exists some Q with the properties above such that d is co-prime to `n, hence, taking
f ≡ d−1 mod `n, we have that e(P, [f ]Q) = 1, and so K ⊂ 〈P, [f ]Q〉 ∼= C2

`n and is isotropic.

Proposition 5.3. Let A be a PPAS. Then the good maximal `n-isotropic subgroups of A[`n] are isomor-
phic to

C`n × C`n or C`n × C`n−k × C`k

where 1 ≤ k ≤ bn/2c.

Proof. We see, from Lemma 5.2 and the fact that the maximal isotropic subgroups must be good, that
K must have rank 2 or 3. If K has rank 2, then it can be shown that to be maximal, K must have the
structure C`n × C`n by repeated inclusions.

Let C`a × C`b × C`c × C`d be a subgroup of A[`n]. To simplify notation, we write this as [a, b, c, d].
Without loss of generality, we can take a ≥ b ≥ c ≥ d. Then we have that the dual is [n−a, n−b, n−c, n−d]
(since the composition with the original isogeny is multiplication-by-`n) and n−a ≤ n−b ≤ n−c ≤ n−d.
Hence to get the symmetry as specified by Theorem 1.3, we must have that n − a = d and n − b = c.
Since we must have that one of the indices is zero, we take d = 0 and the result follows.

This result narrows down the subgroups that we need to study in order to understand sequences of
(`, `)-isogenies between PPASs.

5.2 Number of Neighbours
In this section, we will consider the structure of an (`, `)-isogeny graph, Gpn,`.

Definition. Let p and ` be distinct primes, then the (`, `)-isogeny graph Gpn,` is the directed graph whose
vertices are isomorphism classes of PPASs over the algebraic closure of the field, and edges (A1, A2) are
present between two PPAS A1, A2 if there is an (`, `)-isogeny φ : A1 → A2.

We begin by investigating the number of neighbours that each vertex is connected to. We approach
this task by choosing an arbitrary PPAS and considering isogenies emanating from this surface. Then
the nascent isogeny graph is a rooted graph at the chosen surface. Our first theorem counts the number
of elements n steps from the root.
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Theorem 5.4. Let A be a PPAS, ` be a prime different from p and n > 2. Then the number of good
`n-maximal isotropic subgroups of A[`n] is

`2n−3(`2 + 1)(`+ 1)
(
`n + `

`n−2 − 1
`− 1 + 1

)
if n is even, and

`2n−3(`2 + 1)(`+ 1)
(
`n + `n−1 − 1

`− 1

)
if n is odd.

The proof of the theorem builds on the number of subgroups of the torsion subgroup (cf. Propo-
sition 5.6). We then count the number of maximal isotropic subgroups since these form the kernels of
the isogenies that preserve principal polarisations (cf. Proposition 5.5). The proof of the theorem then
follows by summing the number of maximal isotropic subgroups.

Proposition 5.5. Let A be a PPAS. Let N(a, b, c) be the number of good maximal isotropic subgroups
of A isomorphic to C`a × C`b × C`c . Then

(a) N(n, n− a, a) = `3n−2a−4(`2 + 1)(`+ 1)2, where 1 ≤ a < n/2;

(b) N(n, n, 0) = `3n−3(`2 + 1)(`+ 1);

(c) N(2k, k, k) = `4k−3(`2 + 1)(`+ 1).

Before imposing the isotropic condition on the subgroups via pairings, it is useful to know the number
of subgroups of a particular structure in the torsion group. The following proposition enumerates them.

Proposition 5.6. Let S(a, b, c, d) be the number of subgroups of C4
`n which are isomorphic to C`a ×

C`b × C`c × C`d . Then

(a) S(n, n− a, a, 0) = `4n−2a−6(`2 + 1)(`+ 1)2(`2 + `+ 1), where 1 ≤ a < n/2;

(b) S(n, n, 0, 0) = `4n−4(`2 + 1)(`2 + `+ 1);

(c) S(2k, k, k, 0) = `6k−5(`2 + 1)(`+ 1)(`2 + `+ 1).

To give a flavour of our strategy, we will prove the second case in Proposition 5.5. The proof will
show us the ingredients needed for the rest of the cases.

Proposition 5.7. Let A be a PPAS. Let N(a, b, c) be the number of good maximal isotropic subgroups
of A isomorphic to C`a × C`b × C`c . Then N(n, n, 0) = `3n−3(`2 + 1)(`+ 1).

Proof. Note that this is equivalent to finding a subgroup isomorphic to C2
`n in A[`n] ∼= C4

`n which satisfies
the isotropic condition.

So we need to find 2 elements in C4
`n that have full order, are isotropic under the Weil pairing and

generate subgroups with trivial intersection. To make things concrete, let 〈P1, . . . , P4〉 = C4
`n . Let us

pick the first element X ∈ C4
`n . This involves picking a full order element in C4

`n for which we have
`4n − `4n−4 choices. Let X =

∑
[ai]Pi.

To pick the second element Y ∈ C4
`n , we need to pick a full order element but also ensure that Y is

isotropic to X under the Weil pairing. If we write Y =
∑

[bi]Pi, then we require that

e`(X,Y ) = e`(P1, P2)a1b2−a2b1 · e`(P1, P3)a1b3−a3b1 · e`(P1, P4)a1b4−a4b1

· e`(P2, P3)a2b3−a3b2 · e`(P2, P4)a2b4−a4b2 · e`(P3, P4)a3b4−a4b3

= 1 .
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But this is a linear condition on the selection of the bi’s. Thus this gives us `3n − `3n−3 choices10. But
we need to pick Y such that 〈X〉 ∩ 〈Y 〉 = {e}. In other words, since Y has order `n, we need that
`n−1Y /∈ 〈X〉.

Given that Y has full order, we need to avoid (` − 1)`3(n−1) elements. Hence the total number of
choices for Y is

`3n − `3(n−1) − (`− 1)`3(n−1) .

Now, we need to divide the choices we have for X and Y by the number of generating pairs in a subgroup
C2
`n . The total number of generating pairs is (`2n − `2(n−1))(`2n − `2(n−1) − (` − 1)`2(n−1)). Hence the

total number of maximal isotropic C2
`n subgroups of C4

`n is

(`4n − `4n−4)(`3n − `3(n−1) − (`− 1)`3(n−1))
(`2n − `2(n−1))(`2n − `2(n−1) − (`− 1)`2(n−1))

= `3n−3(`2 + 1)(`+ 1) .

The over-arching strategy for counting the rest of the cases is the same as in Proposition 5.7. We
first find the number of choices to pick generators for the subgroup, then we quotient that number by
the number of ways the same subgroup can be generated by different generators. In other words, we
need to find the following:

Number of ways to generate the subgroup
Number of generators generating same subgroup .

Then to find the number of maximal isotropic subgroups, we note (as we did in the proof of Propo-
sition 5.7) that the isotropic condition is a linear constraint. This goes into reducing the count for the
subsequent generators.

Using this strategy, we will prove the remaining two cases from Proposition 5.6.

Proposition 5.8. Let G = (C`n)4. If 1 ≤ a < n/2, then the number of subgroups isomorphic to
H = C`n × C`n−a × C`a is

`4n−2a−6(`2 + 1)(`+ 1)2(`2 + `+ 1) .

We will first need to prove a result on the number of elements of varying orders in H.

Lemma 5.9. With G and H as in the above proposition, we have the following:

(a) the number of elements of order `n in H is `2n−1(`− 1),

(b) the number of elements of order `n−a in H is `2n−a−2(`2 − 1),

(c) the number of elements of order `a in H is `3a − `3(a−1).

Proof. (a) The element of order `n can only come from the first component C`n ⊆ H, and there are
`n − `n−1 of them. We then have a free choice of the second and third generators which means we
have `n choices for them. Hence the result follows.

(b) The element of order `n−a cannot come from the last component C`a ⊆ H. So it can either come
from the first or second component C`n , C`n−a ⊆ H.
Suppose that it came from the first component C`n ⊆ H, then that is a total of `n−a − `n−a−1

choices for the first generator. We then have a free choice on the second and third generators,
hence the number of choices in this case is (`n−a − `n−a−1)`n−a`a.
If the element of order `n−a came from the second component C`n−a ⊆ H, then we need that the
rest of the components do not have order `n−a to avoid double counting. Hence the number of
choices in this case is `n−a−1(`n−a − `n−a−1)`a.
The result follows when we sum the two cases.

10To see this, note that each e`(Pi, Pj) = µαi,j , where µ is an `-root of unity and αi,j is some integer. We can express
the isotropic condition as

b4(α1,4a1 + α2,4a2 + α3,4a3) ≡
α1,2(a2b1 − a1b2) + α1,3(a3b1 − a1b3)
+α2,3(a3b2 − a2b3) + α1,4a4b1
+α2,4a4b2 + α3,4a4b3

(mod `) .

In the case where (α1,4a1 + α2,4a2 + α3,4a3) 6≡ 0, we have free choices for b1, b2, b3 (not all divisible by `) and so have
`3n − `3n−3 choices.

48



(c) This is straightforward.

Proof of Prop. 5.8. To count the numerator, we need to count the number of ways to choose each of the
three components. The number of choices for the first component is straightforward: it is given by the
number of elements of order `n in G and this is just `4n − `4(n−1). For the second generator, we need to
count all the elements of order `n−a that are linearly independent to the first generator. That is, denoting
the first generator as A and the generator to be chosen as B, we need to ensure that 〈A〉∩ 〈B〉 = {e}. In
other words, since B has order `n−a, we need that `n−a−1B /∈ 〈A〉. Notice that `n−a−1B has order ` and
there are only `− 1 elements of order ` in 〈A〉 and there are `n−a−1 choices of B lying above `n−a−1B.
The last generator is chosen similarly but the condition is now 〈C〉 ∩ 〈A,B〉 = {e}.

As for the denominator, the subtlety is getting the number of elements of the correct order in H.
This has been dealt with in Lemma 5.9.

The first term is the number of elements of order `n in H which is equal to `n(`n − `n−1).
The second term is the number of elements of order `n−a in H that are linearly independent to the

first generator. Let our second generator be B and the first generator be A. This is similar to the
numerator in that we need `n−a−1B /∈ 〈A〉. There are still `− 1 elements of order ` in 〈A〉, but there are
now (`n−a−1)2`a choices of B lying above `n−a−1B. Indeed, there are `n−a−1 choices in both the first
and second components and `a choices in the last.

The last term is similar to the numerator.
Putting everything together, one can check that the count is[

`4n − `4(n−1)] [`4(n−a) − `4(n−a−1) − (p− 1)p4(n−a−1)] [`4a − `4(a−1) − (`2 − 1)`4(a−1)]
[`n(`n − `n−1] [`2n−a−2(`2 − 1)− (`− 1)(`n−a−1)2`a]

[
`3a − `3(a−1) − (`2 − 1)`3(a−1)

]
and the result follows.

Proposition 5.10. Let G = (C`2k)4, then the number of subgroups isomorphic to C`2k × C`k × C`k is

`6k−5(`2 + 1)(`+ 1)(`2 + `+ 1) .

Proof. The number of choices for the first generator is the number of elements with order `2k: there are
`4(2k) − `4(2k−1) of them.

The number of choices for the second generator is the number of elements of order `k
(
= `4(k) − `4(k−1))

minus those that generate subgroups that have non-trivial intersection with the subgroup generated by
the first generator

(
= (`− 1)`4(k−1)).

The number of choices for the third generator is also the number of elements of order `k
(
= `4(k) − `4(k−1)),

minus those which are linearly dependent to the first and second generators. Indeed, fix the generators
chosen for the first two components to be A and B. We need to subtract from the number of order `k
elements, the number elements C of order `k such that [`k−1]C ∈ 〈A,B〉. Then we note that there are
`2 − 1 elements of order ` in 〈A,B〉. And there are `4(k−1) elements lying over `4(k−1)C.

Hence the total number of choices for the generators is:[
`4(2k) − `4(2k−1)

] [
`4(k) − `4(k−1) − (`− 1)`4(k−1)

] [
`4(k) − `4(k−1) − (`2 − 1)`4(k−1)

]
.

As for the denominator, the number of elements of order `k in C`2k × C`k × C`k is given by

`3k−3(`− 1)(`2 + `+ 1) .

The rest of the proof then follows from the denominator taking the form[
(`2k − `2k−1)(`k)(`k)

] [
`3k−3(`− 1)(`2 + `+ 1)− (`− 1)(`3(k−1))

]2
.

Proposition 5.11. The number of maximal isotropic subgroups isomorphic to C`2k × C`k × C`k is

`4k−3(`2 + 1)(`+ 1) .
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Proof. We now know how to obtain the number of subgroups isomorphic to C`2k × C`k × C`k using the
preceding result. The proof then follows from making the same observation as in Proposition 5.7 that
the isotropic condition is a linear constraint on the second and third generators.

This leads to the value[
`4(2k) − `4(2k−1)] [`3(k) − `3(k−1) − (`− 1)`3(k−1)] [`3(k) − `3(k−1) − (`2 − 1)`3(k−1)]

[(`2k − `2k−1)(`k)(`k)]
[
`3k−3(`− 1)(`2 + `+ 1)− (`− 1)(`3(k−1))

]2 ,

which one can check is equal to
`3(n−1)(`2 + 1)(`+ 1) .

We will omit the last proof since it follows from the above methods and the equations in Proposi-
tion 5.6.

5.3 Number of Paths Between Two Vertices
Let A be a PPAS, and let K be a finite subgroup of order `2n. In this section, we are interested in the
paths between A and A/K in GFp,` which have length n. Hence, for the remainder of this section, paths
between vertices mean paths between such an (A,A/K) pairing of length n.

Now, suppose we have an isogeny which has a maximal isotropic kernel K with order `2n, then we
can decompose this isogeny into a sequence of n (`, `)-isogenies:

A
φ1−−−→ A1

φ2−−−→ A2
φ3−−−→ . . .

φn−−−→ A/K .

As mentioned in the introduction, this decomposition of isogenies may be non-unique. The non-
uniqueness arises from kernels whose structure allows for more than one subgroup isomorphic to C`×C`.
The key observation is that these subgroups form the kernels of φ1. In that spirit, the next two lemmata
will give properties for the kernels of the first isogeny.

Lemma 5.12. Let A be a PPAS. Let K be a maximal isotropic subgroup of A[`n] which is isomorphic
to C`n × C`n−a × C`a for some a ≥ 0. Let 〈P,Q,R〉 = K such that P,Q,R have orders `n, `n−a, `a
respectively.

(a) Let Pi, Qi, Ri ∈ Ai be elements mapped from P = P0, Q = Q0, R = R0 under the sequence of
isogenies as stated above. Then [`n−i−1]Pi ∈ kerφi+1 for all i ≥ 0.

(b) The first (`, `)-isogeny must have kernel

〈[`n−1]P, [`n−a−1]Q+ [k][`a−1]R〉 for 0 ≤ k ≤ `− 1, or 〈[`n−1]P, [`a−1]R〉 .

Proof. (a) One can show by contradiction that if there is a kernel not containing Pi, then we will have
cyclic kernels, which cannot be a kernel of a (`, `)-isogeny by Lemma 5.2.
Next, let P ′ ∈ 〈Pi〉, Q′ ∈ 〈Qi〉, and R′ ∈ 〈Ri〉 such that P ′, Q′, R′ all have order `. Then kernels
cannot be of the form P ′ +Q′, P ′ +R′, Q′ +R′. Indeed, it can be shown by examining the pairing
e`(P ′ + Q′, P ′ + R′) to see that one either obtains a cyclic kernel, or that the subgroup above is
not isotropic.

(b) We have from the first part that [`n−1]P must be a generator of the group. The second generator
must be chosen from the remaining points of order `. By the isotropic condition of K, we have
that they are all trivial on the pairing as well.

Lemma 5.13. Let G ∼= C`n×C`n−a×C`a and H be abelian groups. Let 〈P,Q,R〉 = K such that P,Q,R
have orders `n, `n−a, `a respectively. If φ : G→ H is a group homomorphism, with

kerφ =
〈
[`n−1]P, [`n−a−1]Q+ [k][`a−1]R

〉
for 1 ≤ k ≤ `− 1 and a ≤ n/2, then H ∼= C`n−1 × C`n−a × C`a−1 .
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Proof. We have that φ(P ) has order `n−1 and Q has order `n−a, since [`n−a−1]Q /∈ kerφ. Since the order
of the kernel is `2, we must have that H ∼= C`n−1 × C`n−a × C`a−1 .

We can now study the different isogenies that exist between two vertices on the graph. In particular,
we will be counting the number of different paths between two vertices on the graph.

Consider the simple cases first, where there is only one path between two vertices, or where two
vertices are separated by two (`, `)-isogenies.

Proposition 5.14. Let A be a PPAS, and let K ∼= (C`n × C`n−a × C`a). Let P (n, a) be the number of
paths from A to A/K. Then

(a) P (n, 0) = 1 for all n;

(b) P (2, 1) = `+ 1.

Proof. (a) Since kernels of (`, `)-isogenies cannot be cyclic, the only possible subgroup of order `2 of
C`n × C`n is C` × C`, and there is only one choice for this subgroup.

(b) Let K = C`2 × C` × C`. Then from Lemma 5.12 (and using its notation) we must have that the
first isogeny has kernel

〈[`]P,Q+ [k]R〉 for 0 ≤ k ≤ `− 1 , or 〈[`]P,R〉 .

There are `+1 choices for the first kernel. Thereafter, there is only one choice for the second kernel
and so we have a total of `+ 1 paths.

Now, we can prove the general case.

Theorem 5.15. Using the notation above, where P (n, a) is the number of paths in a (C`n×C`n−a×C`a)-
isogeny. Then P (n, a) satisfies the following recursive equation:

P (n, a) = 2P (n− 1, a− 1) + (`− 1)P (n− 1, a) ,

where 1 ≤ a < n/2, and with the following boundary conditions:

P (n, 0) = 1 , P (2, 1) = `+ 1 .

Proof. We will prove this by induction. The base cases of the induction steps are easy and the boundary
conditions follow from Proposition 5.14. We will show the induction step.
Let us suppose that the recursive formula holds for P (n− 1, a− 1) and P (n− 1, a). Now, suppose that
our kernel is isomorphic to C`n ×C`n−a ×C`a . Since each (`, `)-isogeny has a kernel of the form C`×C`,
we have, from Lemma 5.12(2), that the first isogeny must have a kernel of the form

〈[`n−1]P, [`n−a−1]Q+ [k][`a−1]R〉 for 0 ≤ k ≤ `− 1 , or 〈[`n−1]P, [`a−1]R〉 .

It is clear that if the kernel is given by

〈[`n−1]P, [`n−a−1]Q〉 or 〈[`n−1]P, [`a−1]R〉 ,

then the residual kernel will be of the form

C`n−1 × C`n−a−1 × C`a or C`n−1 × C`n−a × C`a−1

respectively. Otherwise, if the first kernel has the form

〈[`n−1]P, [`n−a−1]Q+ [k][`a−1]R〉 for 1 ≤ k ≤ `− 1 ,

the residual kernel will be of the form C`n−1 × C`n−a × C`a−1 by Lemma 5.13. Hence we are done.

Proposition 5.14 actually shows us the different paths that can exist between vertices in the graph.
In particular, for kernels with rank 2, there can only be a single path between the domain and codomain.
However, for kernels with rank 3, there can be a multitude of paths that exist between the domain and
codomain. It can be seen that the following shapes (`-diamonds) are the basic paths drawn out by kernels
with group structure C`2 × C` × C` for different `’s.
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` = 2 ` = 3 ` = 5 ` = 7

The non-uniqueness of these paths can be seen more explicitly in this example, where we will consider
kernels with order 256. The key to each example is to the find the number of C2 × C2 subgroups of
each kernel since this would correspond with the number of possible (2, 2)-isogenies. Firstly, we note
that the structure of maximal isotropic subgroups of order 256 must be C16 × C16, or C16 × C4 × C4,
or C16 × C8 × C2 by Proposition 5.3. The easy case is when the kernel K0 has the structure C16 × C16.
This is because there is only one C2×C2 subgroup in K. Hence, there is only one isogeny path available
and we have a straight line. The other isogeny graphs are given in Figure 5.1.

Now, let us consider the case when the kernel K1 has the structure C16 ×C4 ×C4. We will label the
isomorphism classes of the surfaces by (n), where n is a natural number. We will denote the first surface
by (1).

We can represent the 3 generators ofK1 by P , Q and R, where their orders are 16, 4 and 4 respectively.
There are 3 different C2 × C2 subgroups of K given by 〈[8]P, [2]Q〉, 〈[8]P, [2]R〉 and 〈[8]P, [2](Q + R)〉
in accordance to Lemma 5.12. Hence, we can and will denote the (2, 2)-subgroups of K by the scalar
preceding Q and R. For instance, the three subgroups given here are denoted by (2, 0), (0, 2) and (2, 2).

These 3 subgroups lead to non-isomorphic surfaces labelled as (2), (3) and (4). The edges are labelled
by the subgroup corresponding to the isogeny.

Consider the vertex (2), and consider the (2, 2)-isogeny from (2) with kernel11 〈[4]P, [2]R〉 and denote
the codomain by (8). One can see that the isogeny from (1) to (8) has kernel 〈[4]P, [2]Q, [2]R〉.

One can also map from (3) and (4) to (8) via the kernels (2,0) and (2,0). Immediately, one can spot
the diamonds mentioned prior to this example. Indeed, the diamonds can be seen repeatedly in the
graph.

Vertices can form tips of the diamond when there is a C4 × C2 × C2 subgroup in the kernel. This is
best illustrated in the next example where the kernel K2 has structure C16×C8×C2. Using the notation
from the previous example, K2 will be given by 〈P ′, Q′, R′〉, where P ′ = P , [2]Q′ = Q and R′ = [2]R

Starting from the vertex (1) again, we have the same 3 subgroups, which result in the same surfaces
(2), (3) and (4). We also have that the three surfaces will all have maps into (8) as before. However, the
residual kernel at (2) is now isomorphic to C8 × C8, hence we see that the isogeny path from (2) down
to (18) is a straight line. The residual kernel at (4) on the other hand, is C8×C4×C2, hence it contains
C4 × C2 × C2 as a subgroup and so, (4) forms the tip of another diamond.

Another thing to note about this case is that the moment R is in the kernel, we cannot have C4 ×
C2 × C2 as a subgroup of the residual kernel. This can be observed from the diagonal right-to-left lines
in Figure 5.1b.

Lastly, Figure 5.2 shows all the neighbours which are two (2, 2)-isogenies away. So the top vertex is
connected to each of the middle and bottom vertices by an isogeny of degree 4 and 16 respectively. The
diamonds corresponding to kernels with the structure C4×C2×C2, (though contorted) are present and
their number is as predicted in Proposition 5.5.

5.4 Application to Cryptography

The discussion in the previous sections will be utilised to analyse the security of G2SIDH of §2.3 and
the generalisation of the CGL hash function of §2.2 to genus two.

11Note that we actually mean 〈[4]φ(P ), [2]φ(R)〉, where φ corresponds to the (2, 2)-isogeny from (1). We will drop φ for
ease of notation.
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Figure 5.1: Isogeny subgraphs when the kernel has order 256.
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Figure 5.2: Isogeny graph from an arbitrary vertex showing 2 layers of isogenies.

5.4.1 Collisions in the Genus Two Isogeny-based Hash Function

Recall the CGL hash function in §2.2. In the genus two case of the hash function, due to the additional
isogenies available to a single vertex (15 as opposed to 3), it is hoped that one can achieve a higher
security level with a smaller number of steps. In [Tak18], Takashima outlined an algorithm for obtaining
a sequence of (2, 2)-isogenies without backtracking. He also implicitly suggested the generalisation of the
CGL hash function to genus two. The genus two version of the CGL hash uses the input bits to traverse
the (2, 2)-isogeny graph of PPSSASs. The algorithm begins at a pre-chosen PPSSAS and begins a walk
based on the binary input to the algorithm. The walk on the graph is similar to the original CGL hash
with a difference of an increased number of paths at each iteration.

One of the main results of [CLG09] is the proof that the CGL hash function is collision resistant.
The vague intuition for this is that the supersingular elliptic curve isogeny graph is locally tree-like, i.e.
there are no small cycles in a small enough subgraph. This assumption fails in the genus two case as
any diamond configuration leads to a collision in the hash. An attacker can find two pairs of inputs so
that the walks collide. Using the 2-diamond as an example (see Fig. 5.3), where a hash is performed by
walking along the left-most path. An attacker, with the knowledge that the hash has traversed through
a diamond, will be able to choose either the middle path or the right-most path to achieve a collision.

In terms of endomorphisms, the collision resistance in the CGL hash is achieved by the lack of
endomorphisms of degree 2k, where k is small, in the graph. However, as we have seen in the previous
section, we might be able to find endomorphism of degree 16 (or cycles of length 4) after 2 iterations of
the genus two hash.

A recent paper by Castryck, Decru and Smith [CDS19] remedied this problem by restricting the
isogeny paths to not include `-diamonds. Setting ` = 2, they were able to work with Richelot isogenies
and restrict the quadratic splittings that would result in `-diamonds.
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Figure 5.3: Example of a collision in the genus two hash.

5.4.2 Security and Analysis of G2SIDH
We will first show that G2SIDH takes place over the field of Fp2 as is the case in SIDH with our choice
of initial hyperelliptic curve. We will then tackle the security complexity of G2SIDH by using the results
of Theorem 5.4.

Base Field

Recall the procedure of choosing a base hyperelliptic curve where we performed a random walk on the
(2, 2)-isogeny graph from the vertex corresponding to H : y2 = x6 + 1. Since there is a Richelot isogeny
to a product of two supersingular elliptic curves, the next result tells us that H is in fact superspecial.

Lemma 5.16 ([Oor75]). Let A be an abelian variety over a field of characteristic p and of dimension
g ≥ 2, and let Eg → A be an isogeny of degree d, where E is a supersingular elliptic curve. If p - d then
A ∼= Eg.

Since G2SIDH employs (2,2) and (3,3)-isogenies over a field of characteristic co-prime to 2 and 3, the
PPASs in the protocol will be superspecial. The results in a paper by Ibukiyama and Katsura [IK94]
state that every principally polarised supersingular abelian surface is isomorphic to one defined over Fp2 .

Hence G2SIDH with the initial selection of a base hyperelliptic curve H takes place over the field of
Fp2 .

Security Estimates

In this section, we will define the computational problem needed to analyse our cryptosystem.
Let p be a prime of the form 2n · 3n · f − 1, and fix a supersingular hyperelliptic curve of genus two H

over Fp2 and let JH denote its Jacobian. Fix bases for JH [2n] and JH [3m], denoting them by {Pi}i=1,2,3,4
and {Qi}i=1,2,3,4 respectively.

Problem (Computational Genus Two Isogeny (CG2I) Problem). Let φ : JH → JA be an isogeny whose
kernel is given by K. Given JA and the images {φ(Qi)}, i ∈ {1, 2, 3, 4}, find generators for K.

The analogue problem in genus one has been conjectured to be hard. However, due to the higher reg-
ularity of the genus two isogeny graph, we are able to perform a smaller number of isogeny computations
to achieve the same security level as compared to SIDH.

Let us look at the complexities of the algorithms one can employ against the CG2I problem, where the
task is to recover the isogeny φA : JH → JA when given JH and JA. We note that from Theorem 5.4, we
have that the number of elements in the n-sphere is approximately `3n ≈

√
p3, hence a naïve exhaustive

search on the leaves of JH has a complexity of O(
√
p3). One can improve on this by considering the

meet-in-the-middle search by listing all isogenies of degree `n from JH and JA and finding collisions in
both lists. The meet-in-the-middle search has a complexity of O( 4

√
p3). 12. This compares favourably

with the genus one case which has classical security of O( 4
√
p), and quantum security of O( 6

√
p). An

example of a prime which one can use to achieve 128-bits of security is 171-bits, whereas the genus one
case requires 512-bits for the same level of security.

The additional information provided by the presence of auxiliary points has not affected the security
of SIDH aside from the two attacks detailed in Chapter 3, and the attack of [Pet17]. The security of the

12We note that a recent result by Jaques and Schanck [JS19] states that the Claw finding algorithm is expensive to
implement in a realistic quantum computing model, and that attackers are better off employing Grover’s algorithm which
has a complexity of O( 4

√
p3).
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auxiliary points of G2SIDH should be inherited from the security of those points in SIDH since attacks
on one should be transferable to the other.

Due to the aforementioned reasons, we conjecture the CG2I problem to be computationally infeasible.

Existing Attacks on SIDH

Due to the similarity of G2SIDH and SIDH, many of the cryptanalysis papers on SIDH [GPST16, Ti17,
GW17, Pet17, EHL+18] may be applicable to G2SIDH. We can group the attacks into two classes: curves
and points, and computing endomorphism rings.

Attacks on curves and points include the adaptive attack [GPST16] and fault attacks [Ti17, GW17].
Attacks via the computation of endomorphism rings include the methods using auxiliary points to find a
subring of the endomorphism ring [Pet17] and using the Deuring correspondence [EHL+18]. The purpose
of computing the endomorphism ring is due to the result in [GPST16] that showed a reduction, in most
cases, that the SIDH problem is at most as difficult as computing the endomorphism ring. The key
observation behind this result is that the isogenies tend to be short paths in the graph, and so a lattice
reduction performed on the basis of the connecting ideal would yield an element that corresponds to the
secret isogeny via results in [KLPT14].

However, we will not be able to analyse these attacks in detail and will leave this as future work.
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Chapter 6

Future Directions

Following the publication of [GPST16], a countermeasure to the adaptive attack was proposed in [AJL17].
To foil the adaptive attack outlined in Chapter 3, the authors suggested that both parties perform
multiple instances of the key exchange before hashing the resulting output. We will briefly sketch this
idea here. To ease the exposition, we will demonstrate how Alice performs the modified key exchange
with two instances; it will be obvious how one can extend it to more instances.

The set up is exactly the same as in SIDH, so let p = 2n · 3m · f − 1 be a prime and let E be a
supersingular elliptic curve over Fp2 . We fix generators for the torsion groups as such: 〈PA, QA〉 = E[2n]
and 〈PB , QB〉 = E[3m].

To perform the key exchange, Alice would pick a(i)
1 , a

(i)
2 , where i = 1 or 2. Since we have two instances,

we will use superscripts to denote which instance we are on. Alice computes her secret subgroups

G
(i)
A = 〈[a(i)

1 ]PA + [a(i)
2 ]QA〉

for i = 1, 2. These will be the kernels to her secret isogenies φ(i)
A . She computes the codomains E(i)

A and
the points PB and QB under both isogenies, i.e. φ(i)

A (PB) and φ(i)
A (QB) for i = 1, 2. She then sends the

message (
E

(i)
A , φ

(i)
A (PB), φ(i)

A (QB)
)
i=1,2

to Bob. Bob will perform his side of the protocol and sends his public key to Alice.
To compute the shared secret, Alice would take Bob’s public key and computes

Hi,j =
〈[
a

(i)
1

]
φ

(j)
B (PA) +

[
a

(i)
2

]
φ

(j)
B (QA)

〉
for i, j = 1, 2. She uses this to compute zi,j , the j-invariant of the codomain of the isogeny whose kernel
is Hi,j . The shared secret will be Hash(z1,1, z1,2, z2,1, z2,2) using some preimage resistant hash function.
This multiple instance of SIDH is called k-SIDH, where k is the number of instances. The above example
is 2-SIDH. The authors have proposed letting k = 113 for a user working in E[2n] and k = 94 for one
working in E[3m].

An interesting question is if an extended version of the adaptive attack can be made to work in the
presence of this countermeasure. If the attack is incapacitated due to this modification, one would like
to know what the lowest k needed to foil the attack. A low k (such as 2) would vastly improve the
efficiency of this countermeasure and would allow users to have static keys.

Moving away from genus one, there are a number of open problems to be considered in genus two.
There is a problem of efficient (`, `)-isogeny algorithms for ` > 3. This has been addressed in [CR15,
LR15, LR12, CE15], but an implementation13 based on these ideas is not yet ready for cryptographic
use.

The cryptanalysis of G2SIDH that we have left open at the end of Chapter 5 is yet another avenue
of research one could explore. The extension of the adaptive attack to G2SIDH has parallels to SIDH
with multiple instances described above. An interesting question is if the attack on one can carry over
the other.

13A library written in MAGMA called AVIsog can be found in http://avisogenies.gforge.inria.fr/.
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The generalisation of Deuring’s correspondence in Chapter 4 to the case of PPSSASs is an extremely
fascinating topic. This would open up the understanding of the structure of PPAS (`, `)-isogeny graphs,
and also the possibility of group actions on PPSSASs over the field Fp.

Lastly, the issue of connectedness of the PPSSAS (`, `)-isogeny graph has not been addressed in this
thesis. A conjecture in [CDS19] postulates that the superspecial (`, `)-isogeny graph is connected. A
resolution of this hypothesis can have implications on the security of G2SIDH.
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Appendix A

Implementation of Genus Two SIDH

We have implemented the key exchange scheme in MAGMA using p of 100-bits. This yields a classical
security of 75-bits and a quantum security of 50-bits. The first round of the key exchange which required
the mapping of points took 145.7 seconds for Alice and 145.41 seconds for Bob. The second round of the
key exchange took 74.8 seconds for Alice and 72.29 seconds for Bob.

The implementation took parameters eA = 51 and eB = 32, and f = 1 with
p = 4172630516011578626876079341567 .

The base hyperelliptic curve is defined by
H : y2 = (380194068372159317574541564775i+ 1017916559181277226571754002873)x6

+ (3642151710276608808804111504956i+ 1449092825028873295033553368501)x5

+ (490668231383624479442418028296i+ 397897572063105264581753147433)x4

+ (577409514474712448616343527931i+ 1029071839968410755001691761655)x3

+ (4021089525876840081239624986822i+ 3862824071831242831691614151192)x2

+ (2930679994619687403787686425153i+ 1855492455663897070774056208936)x
+ 2982740028354478560624947212657i+ 2106211304320458155169465303811

where i2 = −1 in Fp2 .
The generators of the torsion subgroups are given by

P1 =

(
x2 + (2643268744935796625293669726227i+ 1373559437243573104036867095531)x

+2040766263472741296629084172357i+ 4148336987880572074205999666055,
+(2643644763015937217035303914167i+ 3102052689781182995044090081179)x

+1813936678851222746202596525186i+ 3292045648641130919333133017218

)
,

P2 =

(
x2 + (1506120079909263217492664325998i+ 1228415755183185090469788608852)x

+510940816723538210024413022814i+ 325927805213930943126621646192,
+(1580781382037244392536803165134i+ 3887834922720954573750149446163)x

+167573350393555136960752415082i+ 1225135781040742113572860497457

)
,

P3 =

(
x2 + (3505781767879186878832918134439i+ 1904272753181081852523334980136)x

+646979589883461323280906338962i+ 403466470460947461098796570690,
+(311311346636220579350524387279i+ 1018806370582980709002197493273)x

+1408004869895332587263994799989i+ 1849826149725693312283086888829

)
,

P4 =

(
x2 + (2634314786447819510080659494014i+ 72540633574927805301023935272)x

+1531966532163723578428827143067i+ 1430299038689444680071540958109,
+(3957136023963064340486029724124i+ 304348230408614456709697813720)x

+888364867276729326209394828038i+ 2453132774156594607548927379151

)
,

Q1 =

(
x2 + (2630852063481114424941031847450i+ 66199700402594224448399474867)x

+497300488675151931970215687005i+ 759563233616865509503094963984,
+(1711990417626011964235368995795i+ 3370542528225682591775373090846)x

+2409246960430353503520175176754i+ 1486115372404013153540282992605

)
,

Q2 =

(
x2 + (950432829617443696475772551884i+ 3809766229231883691707469450961)x

+1293886731023444677607106763783i+ 2152044083269016653158588262237,
+(3613765124982997852345558006302i+ 4166067285631998217873560846741)x

+2494877549970866914093980400340i+ 3422166823321314392366398023265

)
,

Q3 =

(
x2 + (1867909473743807424879633729641i+ 3561017973465655201531445986517)x

+614550355856817299796257158420i+ 3713818865406510298963726073088,
+(846565504796531694760652292661i+ 2430149476747360285585725491789)x

+3827102507618362281753526735086i+ 878843682607965961832497258982

)
,

Q4 =

(
x2 + (2493766102609911097717660796748i+ 2474559150997146544698868735081)x

+843886014491849541025676396448i+ 2700674753803982658674811115656,
+(2457109003116302300180304001113i+ 3000754825048207655171641361142)x

+2560520198225087401183248832955i+ 2490028703281853247425401658313

)
.
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The secret scalars of Alice and Bob are
α1 = 937242395764589 , α2 = 282151393547351 , α3 = 0 , α4 = 0 ,
α5 = 0 , α6 = 0 , α7 = 1666968036125619 , α8 = 324369560360356 ,
α9 = 0 , α10 = 0 , α11 = 0 , α12 = 0 ,
β1 = 103258914945647 , β2 = 1444900449480064 , β3 = 0 , β4 = 0 ,
β5 = 0 , β6 = 0 , β7 = 28000236972265 , β8 = 720020678656772 ,
β9 = 0 , β10 = 0 , β11 = 0 , β12 = 0 ,

Using their secret scalars, they will obtain the following pair of hyperelliptic curves
HA : y2 = (3404703004587495821596176965058i+ 403336181260435480105799382459)x6

+ (3001584086424762938062276222340i+ 3110471904806922603655329247510)x5

+ (1017199310627230983511586463332i+ 1599189698631433372650857544071)x4

+ (2469562012339092945398365678689i+ 1154566472615236827416467624584)x3

+ (841874238658053023013857416200i+ 422410815643904319729131959469)x2

+ (3507584227180426976109772052962i+ 2331298266595569462657798736063)x
+ 2729816620520905175590758187019i+ 3748704006645129000498563514734 ,

HB : y2 = (3434394689074752663579510896530i+ 3258819610341997123576600332954)x6

+ (3350255113820895191389143565973i+ 2681892489448659428930467220147)x5

+ (2958298818675004062047066758264i+ 904769362079321055425076728309)x4

+ (2701255487608026975177181091075i+ 787033120015012146142186182556)x3

+ (3523675811671092022491764466022i+ 2804841353558342542840805561369)x2

+ (3238151513550798796238052565124i+ 3437885792433773163395130700555)x
+ 1829327374163410097298853068766i+ 3453489516944406316396271485172 .

The auxiliary points computed are the following

φB(P1) = ±

(
x2 + (576967470035224384447071691859i+ 3905591233169141993601703381059)x

+1497608451125872175852448359137i+ 2622938093324787679229413320405,
(2205483026731282488507766835920i+ 1887631895533666975170960498604)x

+2270438136719486828147096768168i+ 1098893079140511975119740789184

)
,

φB(P2) = ±

(
x2 + (200280720842476245802835273443i+ 3878472110821865480924821702529)x

+476628031810757734488740719290i+ 2957584612454518004162519574871,
(3949908621907714361071815553277i+ 630639323620735966636718321043)x

+901597642385324157925700976889i+ 2429302320101537821240219151082

)
,

φB(P3) = ±

(
x2 + (4133157753622694250606077231439i+ 2486410359530824865039464484854)x

+217800646374565182483064906626i+ 1249364962732904444334902689884,
(1265490246594537172661646499003i+ 2130834160349159007051974433128)x

+2580286680987425601000738010969i+ 578046610192146114698466530758

)
,

φB(P4) = ±

(
x2 + (6601102003779684073844190837i+ 87106350729631184785549140074)x
+2330339334251130536871893039627i+ 1494511552650494479113393669713,

(1706314262702892774109446145989i+ 3539074449728790590891503255545)x
+1950619453681381932329106130008i+ 685170915670741858430774920061

)
,

φA(Q1) =

(
x2 + (3464040394311932964693107348618i+ 1234121484161567611101667399525)x

+17895775393232773855271038385i+ 3856858968014591645005318326985,
(2432835950855765586938146638349i+ 3267484715622822051923177214055)x

+985386137551789348760277138076i+ 1179835886991851012234054275735

)
,

φA(Q2) =

(
x2 + (363382700960978261088696293501i+ 3499548729039922528103431054749)x

+3832512523382547716418075195517i+ 3364204966204284852762530333038,
(3043817101596607612186808885116i+ 4027557567198565187096133171734)x

+4087176631917166066356886198518i+ 1327157646340760346840638146328

)
,

φA(Q3) =

(
x2 + (3946684136660787881888285451015i+ 1250236853749119184502604023717)x

+3358152613483376587872867674703i+ 467252201151076389055524809476,
(1562920784368105245499132757775i+ 987920823075946850233644600497)x
+1675005758282871337010798605079i+ 1490924669195823363601763347629

)
,

φA(Q4) =

(
x2 + (1629408242557750155729330759772i+ 3235283387810139201773539373655)x

+1341380669490368343450704316676i+ 1454971022788254094961980229605,
(2393675986247524032663566872348i+ 3412019204974086421616096641702)x

+1890349696856504234320283318545i+ 841699061347215234631210012075

)
.

This allows for both parties to compute the final isogeny to obtain(
1055018150197573853947249198625i+ 2223713843055934677989300194259,
819060580729572013508006537232i+ 3874192400826551831686249391528,
1658885975351604494486138482883i+ 3931354413698538292465352257393

)
as their common G2-invariants.
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