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Correcting for missing and irregular data in home-range estimation
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Abstract. Home-range estimation is an important application of animal tracking data that is fre-
quently complicated by autocorrelation, sampling irregularity, and small effective sample sizes. We
introduce a novel, optimal weighting method that accounts for temporal sampling bias in autocorre-
lated tracking data. This method corrects for irregular and missing data, such that oversampled times
are downweighted and undersampled times are upweighted to minimize error in the home-range esti-
mate. We also introduce computationally efficient algorithms that make this method feasible with
large data sets. Generally speaking, there are three situations where weight optimization improves the
accuracy of home-range estimates: with marine data, where the sampling schedule is highly irregular,
with duty cycled data, where the sampling schedule changes during the observation period, and when
a small number of home-range crossings are observed, making the beginning and end times more inde-
pendent and informative than the intermediate times. Using both simulated data and empirical exam-
ples including reef manta ray, Mongolian gazelle, and African buffalo, optimal weighting is shown to
reduce the error and increase the spatial resolution of home-range estimates. With a conveniently
packaged and computationally efficient software implementation, this method broadens the array of
data sets with which accurate space-use assessments can be made.

Key words: animal tracking data; autocorrelation;, home range; irregular sampling; kernel density estimation;
marine tracking data; utilization distribution.

INTRODUCTION size biases (Fleming and Calabrese 2016). In this paper, we
demonstrate that biases can also arise from under- or over-
sampling particular times in a tracking data set.

The main sources of bias in home-range estimation,
though long acknowledged in some cases (Swihart and
Slade 1985, Hansteen et al. 1997), have only recently been
addressed. First, the distinction has been made between
range and occurrence distributions, with their different
properties, whereas previously both were referred to inter-
changeably as utilization distributions (Fleming et al. 2015,
2016; Horne et al., in press). Second, the Gaussian reference
function (GRF) KDE bandwidth optimizer has been gener-
alized to handle autocorrelated data, resulting in the first
autocorrelated kernel density estimator (AKDE; Fleming
et al. 2015). Third, a small-sample-size area correction was
developed for GRF-based KDE and AKDE estimators,
denoted KDE and AKDE( (Fleming and Calabrese 2016).
Here, we consider the problem of samples that are biased
with respect to the movement data’s autocorrelation struc-
ture, in that some times are better sampled than others. This
issue is of practical concern for researchers with irregular or
missing data, which is a ubiquitous problem in movement

Accurate home-range estimates are important for conser-
vation and wildlife management interests, as they inform
animal space use requirements (Burt 1943, Hayne 1949,
Powell and Mitchell 2012). Home-range estimation is a
deceptively difficult mathematical and statistical problem
that involves the estimation of probability density functions
(Winkle 1975) from sparse samples of autocorrelated move-
ment processes (Swihart and Slade 1985, Hansteen et al.
1997, Fleming et al. 2015). In particular, home-range esti-
mation is subject to a number of biases that can result in
underestimation of home-range area. First, using a range
estimator that assumes independent data (e.g., conventional
kernel density estimator [KDE]) on autocorrelated data
results in underestimation that increases with the degree of
autocorrelation in the data (Swihart and Slade 1985, Flem-
ing et al. 2015). Second, estimates based on data whose
duration is not much longer than the average range crossing
time (i.e., data with small effective sample size for home-
range estimation) can have estimator-specific finite sample
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ecology. Moreover, the resolution of this issue also provides
mild accuracy improvements when data are autocorrelated
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and effective sample sizes are small (i.e., when few home-
range crossings are observed) even if the data are evenly
sampled.

Heterogeneity in sampling times is a common problem in
movement ecology that can arise from multiple sources. In
cases where tracking devices are programmed to collect reg-
ular observations, missing data can be caused by device mal-
function or poor signal reception at particular times or
places (Frair et al. 2004, Horne et al. 2007, Lewis et al.
2007). Examples of the latter include areas of high topo-
graphic relief, dense vegetation cover and canopy, diving
behavior in aquatic animals (Johnson et al. 2008), and bur-
rowing in terrestrial animals (Noonan et al. 2015). Inten-
tional deviations from even sampling, such as duty-cycling
or acceleration-informed sampling, are also frequently
encountered in the literature (Brown et al. 2012). Home-
range estimators that do not account for heterogeneous
sampling in time will tend to predict that animals spend
more time in areas that have better sampling coverage, even
if differences in coverage only result from sampling issues
and do not reflect underlying differences in movement
(Katajisto and Moilanen 2006, Fieberg 2007). Ideally, over-
sampled and undersampled times and locations should
receive lower and higher weights in kernel density estima-
tion, respectively, so that temporal sampling bias is cor-
rected for and probability density is neither overestimated
nor underestimated. Here, we derive AKDE weights from
first principles that account for temporal sampling bias and
weight against oversampled times.

While bandwidth optimization in the presence of auto-
correlation has only recently been addressed by AKDE
(Fleming et al. 2015), there has been some related work on
weighted kernel density estimation to account for temporal
sampling bias. Most notably, Hines et al. (2005) optimized
their KDE weights for mean estimation, under the assump-
tion of an Ornstein—Uhlenbeck movement process (Uhlen-
beck and Ornstein 1930), while optimizing their bandwidth
under the assumption of an independently sampled process.
More specifically, they applied the minimum variance unbi-
ased (MVU) mean estimator weights (w; from the formula
X =1, wix(t;)) to weighted KDE, arguing that mean
estimation and KDE are similar. Unfortunately, for more
general movement processes, MVU mean estimator weights
can be negative at times, which can result in uninterpretable
negative probabilities when applied to KDE. Katajisto and
Moilanen (2006) introduced a temporal bandwidth method
to weight data against oversampling, but they did not opti-
mize their bandwidth for statistical estimation and left it as
a user-tuned parameter. Fieberg (2007) weighted data
by sampling interval, which is asymptotically equivalent to
the method of Hines et al. (2005), and studied the problem-
atic effects of biased sampling design on home-range
estimation.

The novel contributions of this manuscript not only
include the derivation of statistically optimal weight rela-
tions, whereby our kernel-density weights and bandwidth
are simultaneously optimized for accurate density estima-
tion, but also computational derivations important for
numerically implementing weight optimization on large
tracking data sets. As we show, AKDE weight optimization
is essentially a quadratic programming (QP) problem.

CHRISTEN H. FLEMING ET AL.
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Generic QP algorithms, including the opensource R package
quadpr og (Turlach and Weingessel 2013), are too com-
putationally prohibitive for large data sets. We therefore
introduce fast algorithms specialized to our task that scale
efficiently with data quantity.

We apply our new methods to simulated examples and
real data sets featuring GPS collar malfunction on an Afri-
can buffalo, naturally irregular marine data on a reef manta
ray, and small effective sample size on a Mongolian gazelle.

METHODS

For a sample of n, ¢g-dimensional locations r(z;) at times
t;, aweighted kernel density estimate can be represented

n

PO =S wlka e, Swy=1 (1)

i=1 i=1

where w(¢) denotes the weight at time 7 and x denotes the
kernel, which we choose to be Gaussian with covariance
op—the bandwidth matrix. Both the bandwidth matrix and
the weight vector w, with w; = w(¢;), will be optimized to
minimize the mean integrated square error

Miskonw) = ( [ a0 - p@F) @

where [ dr denotes the g-dimensional volume integral and
(---) denotes the expectation value with respect to the distri-
bution of the data, r(#;), which may be autocorrelated. As
the true density function p(r) is unknown and the KDE
method is non-parametric, the MISE (Eq. 2) must be
approximated, and different approximations correspond to
different KDE methods, all being asymptotically optimal
(Silverman 1986, Izenman 1991, Turlach 1993). In Fleming
et al. (2015) the MISE was derived for autocorrelated and
possibly non-stationary data, with uniform weights and
under the Gaussian reference function (GRF) approxima-
tion, where the true density p(r) is taken to be normal in
MISE (Eq. 2) as a first-order approximation (Silverman
1986). These results readily generalize to the case of non-
uniform weights, by simply carrying the weights in Eq. 1
through the derivation, and so most of our effort will involve
their optimization and study. For a stationary movement
process, the autocorrelated GRF MISE can be represented
as the quadratic form (Fleming et al. 2015; Eq. 2).

MISE (o5, w) =
1 (4 B 2 I 3)

(o) (w Gl e o) | \/det(260)>
Gy(op) = : )

\/det(27(tl~ - lj) + 20']3)

where y(t) =09 —o6(t) is the semi-variance function,
6(t) = COV[r(z + 1),r(r)] is the autocorrelation function,
and 69 = ¢(0) is the covariance. The non-stationary band-
width relations generalize with similar ease, and also result
in a quadratic form on the weights (Appendix S.1).
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Fleming et al. (2015) have already shown that uniformly
weighted AKDE reduces to KDE in the limit of an inde-
pendent and identically distributed (IID) process. In
Appendix S.2.2, we show that the optimal weights for 11D
processes are uniform weights. This is an important result
because it shows that optimally weighted AKDE reduces to
conventional KDE when the data are not autocorrelated
and there is no temporal bias to correct. Temporal bias can-
not exist in IID data, because no time is any different from
another. Finally, in Appendix S.2.3 we show that uniform
weighting is asymptotically optimal for an evenly sampled
process with stationary autocorrelations. This confirms our
intuition that even sampling is generally ideal (Borger et al.
2006), while also informing us that optimal weighting can
improve statistical efficiency when the data are autocorre-
lated and the effective sample size is small.

Numerical considerations

In practice, we perform a nested optimization of MISE
(Eq. 3), where for each value of the bandwidth 65 we tabu-
late G(op) and then optimize the weights via quadratic pro-
gramming (QP; Bertsekas 1999). The nested quadratic
optimization problem is defined

1Tw =1, w>0

n
E wi =1, w; >0
i=1

where 1 is the vector of ones and 0 is the vector of zeros.
Problem (Eq. 5) can be solved by QP algorithms much fas-
ter than by a more general nonlinear optimizer, which will
be burdened by the high dimensionality of w. However, gen-
eric QP algorithms still have an O(n?) computational cost,
meaning that 10 times the amount of data will take
10® = 1,000 times longer to analyze. In Appendix S.3 we
derive a novel preconditioned conjugate-gradient method,
which is only O(nlogn) for stationary processes, meaning
that 10 times the amount of data will take little more than
10 times longer to analyze. This method of weight optimiza-
tion is implemented in R package ctmm (v0.3.4 and later,
available on CRAN), via the akde() method with argument
weights=TRUE, whereas weights=FALSE produces the
uniformly weighted AKDE (Fleming and Calabrese 2015,
Calabrese et al. 2016).

min w G(op)w,
w

©)
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Empirical examples

In our first empirical example, we consider an African
buffalo (Syncerus caffer, Cross et al. 2016) named “Pepper”
that was monitored for 8.5 months in Kruger National
Park, South Africa. In Calabrese et al. (2016) and Péron
et al. (2016), it was noted that Pepper has a highly irregular
sampling schedule with an artefactual daily periodicity.
Moreover, early on in Pepper’s timeseries, her average sam-
pling interval abruptly changed from 1 h to 2 h per fix,
likely due to device malfunction. Gaps in Pepper’s data
range from hours to days, and in total 71% of the

IRREGULAR DATA IN HOME-RANGE ESTIMATION
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hourly observations are missing. We contrast the uniformly
weighted and optimally weighted AKDEc range estimates
for Pepper in Fig. 1 and Appendix S4: Fig. S.1. The designa-
tion of heavily used areas is noticeably distorted by uniform
weighting, which gives exaggerated importance to the areas
where Pepper’s sampling interval happened to be 1 h and
the optimally weighted estimate results in a 28% reduction
in the estimated MISE. In this case, the oversampled times
fell outside of the bulk of the data, causing the uniformly
weighted estimate to produce a (50%) core home-range area
32% larger than that of the more accurate estimator.

Computation time for Pepper’s 1,725 locations with the
slow O(r®) algorithm was 207 s, while the fast O(nlogn)
was 46 s, both on an i5 CPU with 16 GB of RAM. This
represents a sample size where direct matrix techniques are
not prohibitive. However, if we consider a similar data set,
but with 10 x 1,725 = 17,250 locations, then the slow
algorithm will take ~2.4 d to process and require consider-
ably more RAM, while our fast algorithm will only take
~7.5 min. We note that relocation data sets wtih sample
sizes in the tens of thousands or more are becomming
increasingly common as battery technology improves (Kays
et al. 2015).

In our second empirical example, we consider data on a
female reef manta ray (Manta alfredi, Setyawan and Siani-
par 2018) monitored for 2.5 months in Komodo National

A) Uniformly weighted AKDEc

10
g | . st
= 0q .m0 &
> e
-10 | | T | | |
-60 -50 -40 -30 -20 -10
B) Optimally weighted AKDEc
10
g 5+ >
= 0 B ~— oo
< o-{ AR
-10 T T T I I I
-60 -50 -40 -30 -20 -10
X (km)
Fic. 1. African buffalo autocorrelated kernel density estimator,

corrected for sample size (AKDE(¢) range distributions with (A)
uniform weights and (B) optimal weights. The initial period of
(oversampled) hourly times is contrasted in orange. The thick black
contours denote the point estimate of the 50% (core) home-range
contour, while the gray contours denote 95% confidence intervals
on the magnitude of the core home-range area. Gridlines depict the
scale and orientation of the optimal bandwidth, and thus the esti-
mate’s resolution. As the sampling was fairly irregular for this buf-
falo, and the effective sample size was relatively small (np ~ 13),
weight optimization reduced the estimated mean integrated square
error (MISE) by 28%. Optimal weighting deemphasizes oversam-
pled areas (orange) and better emphasizes undersampled areas

(red).
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Park, Indonesia. GPS fixes were programmed to be
hourly, but were only obtainable if the manta ray hap-
pened to be at the surface at a scheduled fix time. As is
typical in marine data, the realized sampling schedule is
highly irregular and observed gaps frequently spanned
days. We demonstrate our new method on this data set in
Fig. 2 and Appendix S4: Fig. S.2, where we show that uni-
form weighting does not give appropriate importance to
poorly sampled areas of use, where the manta ray spent
more time at depth. In this case, undersampled times fell
outside of the bulk of the data, causing the uniformly
weighted estimate to produce a 95% home-range area 15%
smaller than that of the more accurate estimator, while the
80% home-range area was 28% smaller.

In our final empirical example, we consider a Mongolian
gazelle (Procapra gutturosa, Fleming et al. 2018) sampled at
23-h intervals for 17 months. Mongolian gazelles are noma-
dic herbivores that cross their nomadic range on seasonal
scales (Fleming et al. 2014q, b), which here produced effec-
tive sample sizes of ~4 for the mean and ~10 for the area,
meaning that the same quality of range estimate could be
produced with approximately 10 independently sampled
locations, if such data were possible to obtain. In this regime
of small effective sample size where few range crossings were
observed, optimal weighting produced an estimated 5%
reduction in error by upweighting the end times, which we
highlight in Fig. 3 and Appendix S4: Fig. S.3.

Simulation examples

Duty cycling—Duty cycling is the practice of periodically
suspending or reducing the sampling rate in an attempt to
collect longer periods of (intermittently) high-resolution
data, given constraints on battery life. Here we examine the
effect of duty cycling and show that naive weighting schemes
are not optimal. For example, if we sample the data at 6-h
and 24-h intervals, each 24-h sample is not necessarily worth
four 6-h samples, in terms of their relative weight. As shown
in Appendix S.2.2, if the data are sampled coarsely enough
to be uncorrelated (i.e., sampling interval > range crossing
time), there can be no temporal sampling bias and the opti-
mal weights are uniform, regardless of the relative sampling
intervals. On the other hand, if we have a burst of n loca-
tions, very close together in time, that all contain similar
information due to strong autocorrelation, then we expect
them to be each worth a factor of 1/n less than indepen-
dently sampled data. Real data, however, will typically exist
in an intermediate regime, and real data will have finite
duration. This leads to two results, both demonstrated in
Fig. 4, where two sampling intervals are employed in series.
First, at intermediate timescales, the average optimal
weights are between the two above-discussed extremes. Sec-
ond, there is a small-sample-size effect on the end times.
Because the initial and final times are less correlated with
the remainder of the data, they are more informative and
should receive higher weighting. This effect is why uniform
weights are not optimal at small effective sample sizes for
autocorrelated data, because they do not leverage this auto-
correlation structure in the data. A similar phenomenon
happens with the MVU mean estimator weights (Hines
et al. 2005).
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FiG. 2. Reef manta ray AKDEc range distributions with (A)
uniform weights and (B) optimal weights. The thick black contours
denote the point estimate of the 95% home-range contour, while the
gray contours denote 95% confidence intervals on the magnitude of
the 95% home-range area. Gridlines depict the scale and orientation
of the optimal bandwidth, and thus the estimate’s resolution. As
GPS location fixes were only obtained when the manta ray surfaced
at scheduled observation times, these data are highly irregular and
weight optimization reduced the estimated MISE by 33%. Optimal
weighting places significantly more importance on sparsely sample
regions of the manta’s home range.

Habitat-related signal loss.—Conventionally, autocorrela-
tion has been viewed as a nuisance of the data that compli-
cates analysis and reduces statistical efficiency. However,
autocorrelation offers certain advantages if its information
content can be leveraged. In Fig. 5, we demonstrate with
simulation how optimizing the weights against temporal
sampling bias can have the side effect of correcting for sam-
pling biases due to differential signal loss in unknown
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Fic. 3. Mongolian gazelle AKDE( range distributions with (A)

uniform weights and (B) optimal weights. The initial and final times
are highlighted with orange circles. The thick black contours denote
the point estimate of the 50% range contour, while the gray contours
denote 95% confidence intervals on the 50% range area. Gridlines
depict the scale and orientation of the optimal bandwidth, and thus
the estimate’s resolution. The effective sample size is fairly small
here (na ~10) and so optimal weighting reduced the estimated
MISE by 5%, largely by placing more weight on the initial and final
times to better predict past and future space use.

habitats. For instance, when considering a species that pre-
fers edge habitats between grasslands and forests, signal loss
will be worse within the forests and therefore conventional
estimators will overestimate grassland use and underesti-
mate forest use (Horne et al. 2007). However, this simulated
example assumes that habitat differences affect signal loss,
but not movement behavior. In the real world, habitat differ-
ences that are pronounced enough to affect signal loss would
also likely affect movement behavior. Disentangling these
two effects would require both non-stationary home range
estimation and weight optimization (see Appendix S.1), and
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FiG. 4. Optimal weights for simulated tracking data where, at
half way through, the schedule abruptly switches from a 6-h sam-
pling interval to a 24-h sampling interval. Optimization was per-
formed with both fast (blue) and slow (red) algorithms described in
Appendix S.3, here demonstrating their equivalence. The median
weights for each sampling frequency are depicted by a gray line, to
make clear that the optimal weighting does not make one 24-h loca-
tion worth four 6-h locations, even on average. Furthermore, there
are noticeable deviations from the average weights at the beginning
and end times, where the end locations are more independent and
thus more informative.

appropriate non-stationary movement models that capture
the habitat-specific behaviors. The core method of AKDE is
fully non-stationary (Fleming et al. 2015, Appendix B.2), and
non-stationary weight relations are given in Appendix S.1.
The development of appropriate non-stationary models and
related estimators is ongoing (Blackwell et al. 2015, Breed
et al. 2017).

DiscussioN

Sampling irregularities in animal tracking data can signif-
icantly influence statistical analyses and subsequent ecologi-
cal inference (White and Garrott 1986, Frair et al. 2004,
2010, DeCesare et al. 2005). We have derived a statistically
rigorous weighting method to account for temporal sam-
pling bias in home-range estimation. Optimal weighting can
correct for sampling irregularities, missing data, and duty-
cycled sampling schedules. Weight optimization can also
result in mild improvements for evenly sampled autocorre-
lated data, when the effective sample size is small (where few
home-range crossings were observed). As the combination
of autocorrelation and data irregularity are nearly unavoid-
able aspects of animal tracking data, it is important to have
sound statistical methods that can handle these complica-
tions. Our method differs from ordinary weighted kernel
density estimation (Silverman 1986) in that (1) the weights
are optimized simultaneously with the bandwidth to mini-
mize error in the resulting density estimate and (2) autocor-
relation is fully taken into account. The method derived
here generalizes and improves the AKDE method of Flem-
ing et al. (2015), reduces to conventional KDE in the limit
of IID data and can still be followed by the small-sample-
size bias correction of Fleming and Calabrese (2016). More-
over, we have assembled and derived computationally effi-
cient algorithms to make this weight optimization feasible
for the large data sets that are becoming the norm in
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Fic. 5. Simulated movement data (black circles) with perfect
GPS reception in the left habitat (white) and 90% signal loss in the
right habitat (gray), with orange points being lost observations. The
underlying movement process is the same in both habitat types.
Panel A depicts the true 50% core home range, which straddles the
two habitats. In panel B, a uniformly weighted estimator is used,
which is biased toward areas of better signal reception. Finally, in
panel C, the sparser data are upweighted to account for irregular
sampling caused by signal loss. Neither of the estimators in panels B
and C is aware of the two habitats, while estimator C accounts for
the habitat-related signal loss by leveraging autocorrelation struc-
ture in the data.

movement ecology (Kays et al. 2015). These weighting
methods and fast algorithms are implemented in the R
package ctmm (Fleming and Calabrese 2015, Calabrese
et al. 2016), which is available via the CRAN repository.

As weight optimization is performed simultaneously with
bandwidth optimization, this method reduces the density
estimate’s MISE while increasing its resolution by allowing
for a smaller optimal bandwidth. Whether or not uniformly
weighted density estimators under- or overestimate the
home-range area relative to optimally weighted estimators is
entirely situational (e.g., Figs. 1 and 2). More broadly, opti-
mal weighting improves the quality of home-range estimates
for some of the most difficult, yet common types of prob-
lems encountered in animal tracking data (i.e., small effec-
tive sample size or irregular sampling).

We carefully note that, although this method can correct
for temporal sampling bias, optimal weighting does not
place (non-optimized) irregularly sampled data on equal
footing with evenly sampled data, all else being equal. Given
a known movement model, one could optimize the sampling
schedule to have more density near gaps and end points and,
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in that case, such data would actually be worth more than
regularly sampled data. However, in general, home-range
estimation is more efficient with long periods of evenly sam-
pled data. Home ranges are resolved by the number of range
crossing events observed, as opposed to the number of fixes
(Fleming and Calabrese 2016). As far as home-range estima-
tion is concerned, increased sampling rates yield marginal
gains (Fleming et al. 2015: Appendix B.4).

In contrast to range distributions, occurrence distribu-
tions become more detailed with increasing sampling rate,
because they estimate where the individual was located dur-
ing the observation period (Fleming et al. 2015, 2016).
However, because occurrence distributions target the obser-
vation period, they do not predict future space use. While
coverage areas of the range distribution are the frequently
used areas, and are sampling independent, coverage areas of
the occurrence distribution are proportional to our igno-
rance as to where the individual traveled during the observa-
tion period, and are inherently sampling dependent. In the
limit of continuous sampling with zero telemetry error, the
occurrence area is zero at all quantiles, because we have per-
fect knowledge of the animal’s trajectory. When misapplied
to estimating the home range, occurrence distribution esti-
mators generally have a downward bias.

While our weights, w(z), are allowed to vary in time, we left
our bandwidth matrix, 6, constant for stationary processes.
In contrast, Hines et al. (2005) introduced an ad hoc adjust-
ment to the bandwidth matrix, ep(7) w(t)l/ 3, scaling it
with the cube root of their weights. While it is not clear how
this adjustment impacts statistical efficiency, whether posi-
tively or negatively, the idea of allowing the bandwidth to
vary in time is worth considering. More accurately, one could
attempt to optimize both time-dependent weights and time-
dependent bandwidths, possibly with a relationship between
the two enforced. Unfortunately, this optimization problem
is numerically intractable because the dependence of the
MISE on bandwidth is highly nonlinear (Appendix S.1). A
promising avenue for future research would therefore be
investigating if some simple weight—bandwidth optimization
relations could be made computationally feasible and
whether or not they have any substantial impact on statistical
efficiency.

Finally, we note that, although applied here to the
tracking records of individuals, the statistical and compu-
tational ideas in this study are necessary for future
research into species and population range estimation
with autocorrelated tracking data. Combining multiple
tracking data sets, possibly also with survey data, into a
single population estimate is of interest in many fields
where tracking data gives more exhaustive and less biased
spatial coverage than survey and transect data (Lindberg
and Walker 2007, Fieberg et al. 2010). However, different
tracks may contain different sampling schedules and cor-
respond to different movement characteristics. Therefore,
weight optimization across individuals is also critical in
deriving optimal estimates of population distributions in
the presence of autocorrelation.
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