
Development of a microscale land use regression model for predicting NO2 concentrations at 1 

a heavy trafficked suburban area in Auckland, NZ 2 

 3 

Weissert, LF1), Salmond, JA2)*, Miskell, G1), Alavi-Shoshtari, M1), Williams, DE1) 4 

 5 

1) School of Chemical Sciences, Faculty of Science, University of Auckland, New Zealand 6 

2) School of Environment, Faculty of Science, University of Auckland, Auckland, New Zealand 7 

 8 

* Corresponding author. E-mail address: j.salmond@auckland.ac.nz, Tel:+64 9 3737599 ext 9 

88650 10 

 11 

 12 

  13 

 1 



Abstract   14 

Land use regression (LUR) analysis has become a key method to explain air pollutant 15 

concentrations at unmeasured sites at city or country scales, but little is known about the 16 

applicability of LUR at microscales. We present a microscale LUR model developed for a 17 

heavy trafficked section of road in Auckland, New Zealand. We also test the within-city 18 

transferability of LUR models developed at different spatial scales (local scale and city scale). 19 

Nitrogen dioxide (NO2) was measured during summer at 40 sites and a LUR model was 20 

developed based on standard criteria. The results showed that LUR models are able to capture 21 

the microscale variability with the model explaining 66% of the variability in NO2 22 

concentrations. Predictor variables identified at this scale were street width, distance to major 23 

road, presence of awnings and number of bus stops, with the latter three also being important 24 

determinants at the local scale. This highlights the importance of street and building 25 

configurations for individual exposure at the street level. However, within-city transferability 26 

was limited with the number of bus stops being the only significant predictor variable at all 27 

spatial scales and locations tested, indicating the strong influence of diesel emissions related to 28 

bus traffic. These findings show that air quality monitoring is necessary at a high spatial density 29 

within cities in capturing small-scale variability in NO2 concentrations at the street level and 30 

assessing individual exposure to traffic related air pollutants. 31 

 32 

Keywords: LUR; air pollution; nitrogen dioxide; intra-urban air pollution; transferability; 33 

GIS  34 
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Introduction 35 

In many cities, personal exposure to air pollution is primarily determined by time spent in the 36 

transport micro-environment (Dirks et al., 2012; McNabola et al., 2009; Kaur and 37 

Nieuwenhuijsen, 2009). However, time spent in this environment is not limited to commuter 38 

activities, and high densities of people are also observed moving through transport corridors as 39 

they visit the shops, restaurants and recreational facilities found clustered along busy streets 40 

and intersections.  In such transport micro-environments the temporal and spatial variability in 41 

air pollution concentrations is large, and may be even greater than variability between cities 42 

(Hoek et al., 2008; Gurung et al., 2017).  43 

Measuring air pollutant concentrations at local (representative of a neighbourhood or suburb) 44 

or microscales (representative of individual roads) in transport corridors is especially 45 

challenging as pollutant concentrations are strongly dependent on short-term traffic conditions 46 

and the configurations of buildings and streets (Eeftens et al., 2013; Miskell et al., 2015). For 47 

example, significant reductions in pollutant concentrations can be observed just a few meters 48 

from emission sources (Grange et al., 2014), and roadside concentrations can differ 49 

substantially from local background concentrations (Vardoulakis et al., 2011). Further, 50 

buildings modify local air flow patterns causing trapping and re-circulatory flows at some 51 

locations and increased dispersion of air pollutants at other locations (Salmond and McKendry, 52 

2009; Salmond et al., 2013; Shi et al., 2016). As a result little is known about the relative 53 

importance of urban morphology, building design, traffic management and infrastructure 54 

(including phasing of traffic lights), and other details such as vegetation or bus stop positions 55 

in determining microscale air quality variability.  There is therefore a need to improve our 56 

understanding about the microscale spatial variability of air pollutants in urban hotspots if we 57 

are to develop urban planning and design tools to control and mitigate personal exposure to air 58 
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pollution in transport corridors, especially at locations where traffic as well as pedestrian 59 

activity is high (Borge et al., 2016).  60 

Land use regression (LUR) analysis which emerged as a popular method in epidemiological 61 

studies to predict air pollutant concentrations and assess individual exposure levels (Hoek et 62 

al., 2008; Jerrett et al., 2005). It has the potential to assist urban planners in identifying the key 63 

controls on local air quality in transport corridors. Based on selected land use characteristics 64 

(e.g. distance to nearest road, land cover or population density), which are now widely available 65 

through geographic information (GIS) systems, LUR models allow estimation of air pollutant 66 

concentrations at unmeasured sites based on regression analysis (Hoek et al., 2008; Jerrett et 67 

al., 2005). Thus, LUR models are often used to complement regulatory monitoring networks, 68 

which are usually sparse due to logistical and financial constraints (Hoek et al., 2008; 69 

Vardoulakis et al., 2011). Such models have been primarily developed and applied to urban 70 

scale analyses (104 - 105 m), with some applied to the regional or country scale where they 71 

have been effectively used to identify common determinants of air quality for primarily 72 

transport related pollutants such as nitrogen dioxide (NO2). These include factors such as road 73 

length, distance to major roads, land cover, traffic volume and density, population density and 74 

altitude guide Hoek et al. (2008). Final models typically explain around 60 - 70% of the 75 

variability (Beelen et al., 2013) with a range from 51% (Briggs et al., 2000; Gurung et al., 76 

2017; Morgenstern et al., 2007) to 97% (Stedman et al., 1997).  77 

However, there is little evidence to demonstrate their effectiveness (or otherwise) under the 78 

highly heterogeneous conditions typical of multi-use transport corridors, and their ability to 79 

capture and effectively represent local variability at urban hotspots may be limited (Apte et al., 80 

2017; Ghassoun et al., 2015; Hoek et al., 2008). Further, although LUR models have been used 81 

in numerous cities across Europe and North America (Hoek et al., 2008), results from other 82 

geographical regions have only recently become available and remain limited (e.g. Australia 83 

 4 



(Dirgawati et al., 2015); China (Meng et al., 2015); Nepal (Gurung et al., 2017); New Zealand 84 

(Miskell et al., 2015); Iran (Amini et al., 2016)).   85 

In this study, we present a LUR model developed for urban microscales and applied to a heavily 86 

trafficked suburban street in Auckland, New Zealand. Our study is one of a limited number of 87 

studies (such as Miskell et al., 2015) which address local to microscale spatial variability (1-3 88 

km) and use local urban design features as predictor variables (such as presence or absence of 89 

shop awnings) rather than standard landuse predictors (such as population and household 90 

density) which were homogenous within our study area. In particular, we were interested in 91 

examining the transferability of this approach. We also tested the within-city transferability of 92 

previously developed LUR models and explored the potential to extend the multi-scale model 93 

developed in Auckland’s CBD by Miskell et al. (2015) to all spatial scales and sites outside the 94 

CBD. This study therefore also offers new insights into the applicability of LUR models 95 

developed for a certain area to other locations within the same city at different scales, which 96 

has not previously been explored.   97 

 98 

Material and Methods 99 

Study area 100 

Auckland is New Zealand’s largest and fastest growing city with around 1.5 million inhabitants 101 

(Statistics New Zealand, 2013). Vehicle emissions are the largest contributor to air pollution 102 

in Auckland with traffic-related NOx (NO2, NO) emissions accounting for almost 80% of the 103 

total NOx emissions (Xie et al., 2016). However, pollutants are often dispersed by maritime 104 

winds, which occur year-round favoured by Auckland’s location on a narrow isthmus 105 

(Chappell, 2014; Senaratne and Shooter, 2004). The focus of this study was on a heavy 106 

trafficked road (Dominion Road) about 4 km south of the city center (Fig. 1). Dominion Road 107 

is a main route for buses and commuters in and out of the city as well as to the main airport 108 
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(Auckland Transport, 2017). The area is also well used by pedestrians visiting shops, bars and 109 

cafés along the road, making this an interesting area for air pollution measurements due to the 110 

high traffic and potential exposure.  111 

 112 

 113 

Fig. 1 Study sites.  114 

 115 

NO2 concentration measurements 116 

NO2 concentrations were measured by Palmes diffusion tubes at 40 sites along a 2 km section 117 

of Dominion Road (Fig 1). Sites were chosen to reflect a range of urban design features (such 118 

as the presence of building awnings, proximity to bus stops, greenspace, trees and carparks 119 

etc.). Sites were also chosen to represent the range of expected spatial variability of air pollution 120 

concentrations. The number of sites previous other LUR studies ranged from 14 – 107 (see 121 

Hoek et al. 2008, Beelen et al. 2013), with sample sizes of 40 commonly used in the ESCAPE 122 
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project (which is most commonly referenced as the standard methodology for such studies) 123 

(Beelen et al., 2013). Given the size of our sample area, and the number of different 124 

environments expected, the choice of a sample size of 40 was deemed sufficient and 125 

representative within the context of the resources available. 126 

At each site, we deployed two tubes at a height of approx. 2.5 m for four periods of 14 days 127 

between the 18th of November 2016 and the 1st of February 2017. To assess the reliability of 128 

the NO2 measurements during each campaign we used travel and laboratory blanks (AEA 129 

Energy and Environment, 2008). Palmes tubes were analysed using a spectrophotometer and 130 

NO2 concentrations calculated following standard methodology (AEA Energy and 131 

Environment, 2008). The coefficient of variance (CoV) was used to test the agreement between 132 

duplicate readings at each site and results that exceeded a CoV of 0.25 were excluded from the 133 

further analysis (Miskell et al., 2015; Mölter et al., 2012). As there was no reference regulatory 134 

air quality station near the road section studied here, we were not able to apply a seasonal 135 

adjustment to the NO2 concentrations. Thus, we used seasonally averaged NO2 concentrations, 136 

representative of typical summer conditions in this study, which are likely slightly below the 137 

annual average. For comparison, NO2 measured by routine air quality monitors from 2010 – 138 

2011 by the Auckland Council at another urban road (Khyber Pass, approx. 2 km northeast 139 

from Dominion Road) was on average 1 and 3 µg m-3 below the annual average in December 140 

and January, respectively. Slightly larger differences were observed in Auckland’s Central 141 

Business District (CBD) where five-year average NO2 concentrations measured in December 142 

and January were around 10 µg m-3 below the annual average (Miskell, 2013).  143 

 144 

Predictor variables  145 

Predictor variables for the initial stages were chosen based on a previous study undertaken in 146 

Auckland (Table 1, (Miskell et al., 2015)) and generated for each site using GIS shape files 147 

 7 



(Auckland Council, 2013-2014) and aerial photographs. Each variable was either 148 

representative of a pollution source, such as number of lanes, or dispersion modifier, such as 149 

presence of building awnings (Table 1). As traffic density was not available at this high spatial 150 

resolution we used average weekday traffic congestion during the morning rush hour (06:00 – 151 

09:00), midday (11:00 – 13:00) and evening rush hour (17:00 – 19:00) reported on Google 152 

Maps as a proxy. In this area land use, population density, household density and number of 153 

buildings show no significant spatially variability thus these predictors are not included in our 154 

analysis. 155 

Table 1. Predictor variables with defined buffer sizes and expected direction of effect. 156 

(Attached at the end of the manuscript) 157 

 158 

LUR model development 159 

The LUR model was developed based on stepwise variable selection as outlined by the 160 

ESCAPE protocol (Beelen et al., 2013; Brunekreef, 2008). First, each predictor variable was 161 

compared to the average NO2 concentrations measured throughout the study period using 162 

univariate regressions. Variables that did not follow the expected slope direction (e.g. an 163 

increase in number of traffic lanes is expected to increase air pollutants) were removed from 164 

further analysis. The variable with the highest adjusted R2 was used to start developing the 165 

LUR model and predictor variables were then added one at the time and included in the model 166 

following standard procedures of the ESCAPE protocol (Brunekreef, 2008). In the final stage, 167 

variables with a p-value > 0.1 were removed from the model sequentially.  168 

The final model was tested for multi-collinearity (variance inflation factor > 3), normality, 169 

heteroscedasticity, high-leverage points or outliers (Cook’s Distance > 1) and spatial 170 

autocorrelation (using Moran’s I) of the residuals (Brunekreef, 2008). The model was validated 171 

using two approaches that are suitable for a small sample size (Dirgawati et al., 2015; Tang et 172 
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al., 2013). First, we used the ‘leave-one-out cross-validation’ (LOOCV) method, where the 173 

final model was fitted to N – 1 sites and the predicted concentrations were compared to the 174 

measured concentration at the left-out site. As the LOOCV tends to overestimate the model 175 

performance, we also used the grouped cross-validation, where a random proportion (30%) of 176 

the data was used to train a model while the remainder was used for the prediction. This process 177 

was repeated 20 times and the average performance was used. The model performance was 178 

assessed using the R2, the root mean square error (RMSE) and the mean squared error (MSE)–179 

R2.  The MSE-R2 is a more representative metric to assess the goodness of fit around the 1:1 180 

line (Tang et al., 2013) and was calculated as:  181 

 182 

MSE − 𝑅𝑅2 = 1 −  
MSE

�1
𝑁𝑁  ∑ (𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑡𝑡)2𝑁𝑁

𝑖𝑖=1 �
 183 

 184 

where 𝑦𝑦𝑖𝑖  is the monitored NO2 concentration at each site and 𝑦𝑦�𝑡𝑡 the averaged NO2 185 

concentrations (Tang et al., 2013). Finally, the model results were mapped, with the study area 186 

divided into 50 m grid squares and NO2 concentrations predicted for the centre of each grid 187 

square using the LUR model. Inverse distance weighting (IDW) was then used to interpolate 188 

the modelled NO2 concentrations (Ghassoun et al., 2015; Liu et al., 2016). Analysis was done 189 

using R (3.2.4) and ArcGIS (v.10.2.2). 190 

 191 

Model transferability 192 

Model transferability was tested by transferring the model developed at the microscale to the 193 

local scale and city scale dataset collected during a previous study (Miskell et al., 2015). In 194 

addition, we applied the multi-scale (city and local scale) model developed by Miskell et al. 195 

(2015) to the Dominion Road dataset allowing coefficients to be flexible to explore the 196 
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potential to extend the multi-scale model to the microscale outside Auckland’s CBD. A detailed 197 

description of the multi-scale model development is provided by Miskell et al. (2015). In brief, 198 

Miskell et al. (2015) developed a strategy to identify those predictor variables that were able 199 

to explain spatial variability of NO2 at different spatial scales so that transferability of the model 200 

to either different locations or different scales may be improved. First, two LURs were 201 

developed at two different spatial scales (using the local scale and city scale data, Fig. 1) 202 

following the standard protocol. Next, these models were used on the other set of data (e.g. 203 

local scale model on the city scale data) in order to identify and remove any variables that may 204 

be present due to specifics of the data or due to model fitting (e.g. change in slope direction). 205 

The local scale model was then used on the city scale data, in order to improve the small-scale 206 

explanations, and the city scale model mostly used the local scale predictors. Following the 207 

model revision, those variables with p-values > 0.2 were removed, one at a time, to reach a 208 

new, revised model, which is referred to as the multi-scale model. This model had adjustable 209 

coefficient values for the different spatial scales in order to maximize specific fits and to give 210 

comparable performance results to those from their specific LUR models. This illustrated the 211 

potential to improve local scale explanations, with a requirement to validate this on a third, 212 

independent dataset. 213 

 214 

Results and Discussion 215 

Air pollution levels 216 

A summary of NO2 concentrations measured during each campaign and averaged over the 217 

whole study period (summer average) is shown in Table 2. In total, we made 149 measurements 218 

at the 40 sites, with some tubes lost or moved during each campaign. Overall, 32 sites had NO2 219 

concentrations from all campaigns, while the remaining sites were missing NO2 concentration 220 

measurements for one (5 sites) or two campaigns (3 sites). The lower NO2 concentrations 221 
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measured during campaign 4 are likely related to the lower traffic due to summer holidays. The 222 

duplicates generally agreed well with an average (SD) CoV of 0.052 (0.053) and no sample 223 

exceeded the threshold of 0.25. Mean NO2 concentrations measured along Dominion Road 224 

(overall 22 µg m-3) were below concentrations measured in North American and European 225 

cities reviewed by Hoek et al. (2008), but similar or above concentrations measured during the 226 

ESCAPE study in some European cities (e.g. Oslo, Norway (23 µg m-3), Copenhagen, 227 

Denmark (18 µg m-3)) (Beelen et al., 2013) and above concentrations observed in streets in 228 

Perth, Australia (12 µg m-3) (Dirgawati et al., 2015). The average was below that measured in 229 

Auckland’s CBD (34 µg m-3), where tall buildings and high bus traffic favour the build-up of 230 

pollutants (Miskell et al., 2015; Weissert et al., 2015). Given that studies typically represent 231 

annual averages, differences may partly be explained by temporal differences of the 232 

measurements as we decided to present a seasonal average representative of summer, when 233 

NO2 concentrations are generally expected to be below the annual average. As expected, higher 234 

concentrations were observed at sites around intersections while lower concentrations were 235 

observed in park areas or streets away from the main road (Fig. 2).   236 

 237 

Table 2. Descriptive statistics of the NO2 concentrations measured during summer 2016/2017 238 

along Dominion Road (units are in µg m-3). 239 

Sampling 

campaign 

n (measurements) Mean Standard 

Deviation 

(SD) 

Median Min Max Range 

1 35 23 7 22 12 34 22 

2 39 21 6 22 12 35 23 

3 36 27 7 26 15 42 27 

4 39 16 6 17 7 28 21 
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Overall 40 22 6 22 12 34 22 

 240 

 241 

 242 

Fig. 2 NO2 concentrations measured at the 40 sites (represented by the dots, with numbered 243 

dots showing sites with largest discrepancies between modelled and measured NO2 244 

concentrations) and modelled along Dominion Road.  245 

 246 

Predictor variables  247 

The predictor variables used in the final model were distance to major road, number of bus 248 

stops within a 100 m buffer, presence of awnings and street width (Table 3). Of these, presence 249 
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of awnings (dispersion determinants) had the highest proportional contribution (β * (90th 250 

percentile – 10th percentile)) to the modelled NO2 concentrations (79.08%), followed by 251 

number of bus stops within a 100 m buffer (16.52%) (Table 3). Distance to major road or street 252 

width only had a minor influence on modelled NO2 concentrations. When comparing the 253 

predictor variables with city or regional scale LUR models (e.g. Beelen et al., 2013; Hoek et 254 

al., 2008), where predictor variables are usually related to traffic and land cover, it becomes 255 

evident that local scale street and building configurations become also important at the 256 

microscale. It is interesting to note that similar variables were also observed to be important in 257 

a local scale model in Auckland’s CBD (e.g. number of bus stops, presence of awnings) 258 

(Miskell et al., 2015). Likewise, Tang et al. (2013) showed that including building and street 259 

configurations can be used to account for pollution dispersion and accumulation patterns in 260 

urban areas and improve the performance of LUR models. Following the ESCAPE protocol 261 

we removed two predictor variables from the model development (distance to tree, number of 262 

carparks) as they did not follow the expected pattern or slope of effect. In this study ‘distance 263 

to tree’ was not a significant variable in the model. This may be because trees can both act to 264 

increase and decrease air pollution concentrations depending on the dominant process. The 265 

presence of trees may improve air quality through enhanced deposition processes but trees may 266 

also decrease the dispersion of pollutants resulting in a local increase of NO2 concentrations 267 

(Janhäll, 2015; Salmond et al., 2013). We also removed ‘number of carparks’ from the model 268 

because the effect of this parameter was variable depending on buffer size.  269 

 270 

LUR model results and limitations 271 

The final model explained 66% of the variability in NO2 concentrations with a RMSE of 3.317 272 

µg m-3 (Table 3). On average, the modelled NO2 concentrations were the same as the measured 273 

NO2 concentrations with an almost equal number of over- and underestimated sites (18 and 17 274 
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sites, respectively). The largest difference between measured and modelled NO2 concentrations 275 

were observed at site 22 and 28 where modelled NO2 concentrations were 7 µg m-3 above 276 

measured NO2 concentrations. Observations at both sites were unexpectedly low given their 277 

location adjacent to Dominion road and close proximity bus stops. A further measurement 278 

campaign may be required to account for the discrepancy at these sites. In contrast, modelled 279 

NO2 concentrations at sites 34, 38 and 7 were 6 µg m-3 lower than those measured (Fig. 2). 280 

Again, the observed measurements at these sites were unexpected. Site 7 and 34 had higher 281 

measured NO2 concentrations than sites in their surroundings with similar land use 282 

characteristics. Site 38 is located relatively far away from Dominion road, but is still located 283 

along a busy road, but this road is not accounted for in the model.  284 

The R2 (MSE-R2) and RMSE of the LOOCV validation were 0.60 (0.61) and 3.839 µg m-3, 285 

respectively (Table 4). A slightly lower MSE-R2 (0.60) was achieved from the LGOCV method 286 

(Table 4). Nevertheless, both R2 are similar to the model R2 (Table 3) indicating that the model 287 

performed well under internal validation. The adjusted R2 is within the range of those achieved 288 

by LUR in European cities (55% - 92%) (Beelen et al., 2013). The RMSE, on the other hand, 289 

was lower than the RMSE of most cities in the ESCAPE study (Beelen et al., 2013), indicating 290 

a better overall accuracy of the LUR model due to data being less spread around the best-fit 291 

line.  292 

 293 
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Fig. 3 Modelled vs. measured NO2 concentrations. The blue solid line represents the best-fit 294 

and the dashed line shows the 1:1 line.    295 

 296 

The diagnostic tests conformed to the requirements for regression analyses, with VIF’s below 297 

3 (Table 3), and no high-leverage points or outliers (max. Cook’s D = 0.27) observed. The 298 

Moran’s I showed no spatial autocorrelation between the residuals (p = 0.915). NO2 299 

concentrations, as well as the residuals, were normally distributed (Shapiro Wilk, p > 0.05). 300 

The mapped NO2 concentrations indicate high NO2 concentrations underneath building 301 

awnings, which may explain the higher concentrations visible adjacent to the road rather than 302 

on the road. The presence of awnings combined with the density of bus stops also likely 303 

explains the spatial variability in NO2 concentrations along Dominion Rd (Fig. 2).  304 

 305 

Table 3. Final LUR model.  306 

LUR model β Std. 
Error 

p-value VIF Proportional 
contribution1) 

(%) 

Intercept 17.210 2.131 < 0.01   
Distance to major road -0.055 0.013 < 0.01 1.57 0.78 
Nr. of bus stops within 

a 100 m buffer 

1.400 0.687 0.056 1.44 16.52 

Awnings 5.436 1.815 < 0.01 1.15 79.08 
Street width 0.248 0.075 < 0.01 1.04 3.61 

      
Adj. R2  0.66   

R2 0.70   
RMSE (µg m-3) 3.317   
MSE-R2 0.71   

1) β * (90th percentile – 10th percentile) 307 
 308 

Table 4. Cross-validation results. 309 
 310 
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Validation 
method1) 

RMSE R2 MSE MSE-R2 Iterations 

LOOCV 3.839 0.60 14.738 0.61 - 
LGOCV 3.886 0.65 15.101 0.60 20 

 311 
 1) LOOCV = Leave-one-out cross-validation; LGOCV = grouped (leave-30%-out) cross-312 
validation.  313 
 314 

A limitation of the LUR model presented here, and microscale models in general, is the 315 

availability of traffic data at sufficient spatial and temporal scale. Google Maps traffic 316 

information only gives information about the typical traffic flow and is categorised into only 317 

four categories. Given the high spatial variability of air pollutants at the microscale future 318 

studies should also test the accuracy of the modelled NO2 concentrations mapped in Fig. 2 and 319 

how these agree with exposure measurements.  320 

 321 

Within-city transferability of LUR models  322 

The model developed in this study had relatively good performance when scaled up and  323 

applied to data previously reported at local and city scales in Auckland’s CBD (Miskell et al., 324 

2015), with an adjusted R2 of 0.57 and 0.76 and a Spearman rank correlation of 0.68 and 0.89, 325 

respectively (Table 5). Interestingly, the model performed better at the city scale, which was 326 

also the case when insignificant (p-value > 0.1) predictor variables (all except number of bus 327 

stops within 100 m) were removed (adj. R2 = 0.76, RMSE = 2.89). A slightly lower adjusted 328 

R2 and Spearman rank correlation (0.68) was obtained when the microscale model was applied 329 

to the local scale dataset in the CBD, but apart from street width all predictor variables were 330 

significant (Table 5). If street width were removed following the ESCAPE protocol, the 331 

adjusted R2 was 0.54 and the RMSE was 3.891. This suggests that unlike standard LUR models 332 

which often perform poorly when applied to different areas of the city or scaled down, the 333 
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microscale variant developed here has reasonably good transferability in terms of both space 334 

and scale. 335 

The multi-scale model presented by Miskell et al. (2015) also showed poor results when scaled 336 

down to microscales and applied to the data collected in this study. It could only explain 35% 337 

of the variability in NO2 concentrations along Dominion Road, and distance to traffic light was 338 

not a significant predictor (p-value > 0.1) (Table 5). Thus, although the multi-scale model 339 

performed well for areas within the CBD it was not able to capture the variability of NO2 340 

concentrations outside the CBD where building and road configurations can be different (less 341 

and wider spaced traffic lights, lower buildings, etc.). What is interesting to note is that the 342 

only variable that was relevant in the multiscale model at all scales within and outside the CBD 343 

is the number of bus stops within 100 m. In Auckland, buses are almost exclusively run by 344 

diesel, which is the main source of NO2 in Auckland. At smaller spatial scales (local and 345 

microscale) dispersion variables, such as presence of awnings, also becomes relevant.  346 

 347 

Table 5. External validation of the Dominion Road LUR model and performance of multi-348 

scale (local/city scale) model applied at different scales (Miskell et al., 2015). (Attached at 349 

the end of the manuscript)  350 

 351 

Implications  352 

The findings from this study have important implications for urban development indicating the 353 

importance of considering street and building configuration to minimize individual exposure 354 

to traffic related air pollutants. This might involve limiting the use of awnings near busy roads 355 

or developing pedestrian areas and walkways away from multi-lane roads. The strong influence 356 

of bus stops on NO2 concentrations also supports the need to introduce electric and hybrid 357 

buses, which will be trialled in Auckland in 2017 (Auckland Council, 2017). A recent study in 358 
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Singapore also identified bus stops as hotspots of individual exposure and suggested to set bus 359 

shelters further away from the major road (Velasco and Tan, 2016). The results further indicate 360 

that models developed at city scales may not be able to capture the small scale variability in 361 

NO2 concentrations along the road and that there is a need to consider dispersion features such 362 

as presence of awnings, supporting previous findings by Tang et al. (2013). The advantage of 363 

microscale models as presented in this study is the potential of estimating individual or 364 

population exposure at urban hotspots. These results may be used to assess differences in 365 

exposure depending on which side of the street pedestrians are walking on or to identify route 366 

choices with minimal exposure to traffic related air pollutants. Such detail is generally not 367 

available from LUR models developed at city or regional scales, which are commonly used to 368 

estimate individual exposure based on the residential address (Jerrett et al., 2007; Urman et al., 369 

2014). 370 

While the model developed at the microscale performed relatively well when transferred to 371 

different spatial scales in the city, it showed that the importance of predictor variables changes 372 

depending on location and spatial scale, limiting within-city transferability. Thus, as has been 373 

suggested by previous studies (Allen et al., 2011; Marcon et al., 2015; Vienneau et al., 2010), 374 

LUR models provide better results when developed locally and caution is required when 375 

transferring LUR models, even within cities, unless street and building configurations are 376 

similar. This also has some important implications for air quality monitoring, suggesting that 377 

future research should focus on monitoring NO2 concentrations at a high spatial resolution 378 

within urban environments in order to obtain representative small-scale variability of pollutant 379 

concentrations at urban hotspots.  380 

 381 

Conclusions  382 
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In this study, we assessed the performance of LUR modelling at the microscale representative 383 

of a busy street in Auckland, New Zealand. We showed that NO2 concentrations can be 384 

modelled at this scale with a good performance of the model (adj. R2 = 0.66, RMSE = 3.317µg 385 

m-3). Unlike LUR models developed at the city or regional scale, this study has shown that 386 

building and street configuration, such as presence of awnings, is important predictors for NO2 387 

concentrations at the street level. The microscale model performed well when transferred to 388 

the city and local scale within Auckland’s CBD, although the only significant predictor 389 

variables at all spatial scales was the number of bus stops within 100 m. The study indicated 390 

implications related to urban development, exposure assessments at urban hotspots and air 391 

quality monitoring, highlighting the importance of high density measurements or micro and 392 

local scale models to capture the small scale variability in NO2 concentrations.  393 
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Table 1. Predictor variables used for the model development with defined buffer sizes, impact and expected direction of effect.  

Variable Variable description Impact Unit Direction 
of effect 

Buffer size 
radius (m) 

Kerb length Length of kerb within buffer size Modifier m + 10, 25, 50, 100 
Distance to traffic light Distance to nearest traffic light  Source m - NA 
Distance to intersection Distance to nearest intersection Source m - NA 
Distance to major road Distance to major road (including arterial roads going 

in and out of the city, major urban roads and 
motorways) 

Source m - NA 

Height-width ratio Height of surrounding buildings divided by street 
width 

Modifier ratio + NA 

Car parks Sum of large car parks within a buffer size Source count + 25, 50, 100 
Nr. of lanes Sum of traffic lanes along nearest road Source count + NA 
Distance to bus stop Distance to nearest bus stop Source m - NA 
Nr. of bus stops Sum of bus stops within buffer size Source count + 10, 25, 50, 100 
Nr. of bus lanes Sum of bus lanes within buffer size Source count + 10, 25, 50, 100 
Tree density Tree density within buffer size Source Trees/m2 - 10, 25, 50, 100 
Distance to tree Distance to nearest tree Modifier m + NA 
Vegetation   Presence of tree within buffer size Modifier Y = 1, N = 0 - 10, 25, 50, 100 
Side of street Left or right with a north/east orientation Modifier L = 1, R = 0 NA NA 
Street width Distance from one side of the street to the other Modifier m + NA 
Awnings Presence of awnings within 10 m  Modifier Y = 1, N = 0 + NA 
Building footprint Area of buildings within a buffer size Modifier m + 25, 50, 100 
Morning rush hour traffic Average traffic flow estimated from GoogleMaps 

during weekday morning rush hour  
Source 1: Slowest, 4: 

Fastest 
+ NA 

Midday traffic Average weekday traffic flow at midday estimated 
from GoogleMaps  

Source 1: Slowest, 4: 
Fastest 

+ NA 

Evening rush hour traffic Average traffic flow estimated from GoogleMaps 
during weekday evening rush hour 

Source 1: Slowest, 4: 
Fastest 

+ NA 
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Table 5. External validation of the micro scale Dominion Road LUR model and performance of multi-scale (local/city scale) model applied at 
different scales (Miskell et al., 2015).  1)  
 

* p-value < 0.1, ** p-value < 0.05, *** p-value < 0.01 
 

Model Dataset Nr. 
Locations 

Spatial scale Variables1) Adj. R2 RMSE 
(µg m-3) 

Spearman 
rank 
correlation 

    

Micro scale  
(Dominion 
Road) 

Dominion Rd 40 Micro  
 

Distance to major rd*** 
Nr. of bus stops within 100 m 
Awnings** 
Street width** 

0.66 3.317 0.84 

 CBD 62 Local 
 

Distance to major rd* 
Nr. of bus stops within 100 m*** 
Awnings*** 
Street width 

0.57 4.852 0.68 

 CBD 21 City 
 

Distance to major rd 
Nr. of bus stops within 100 m*** 
Awnings 
Street width** 

0.76 2.758 0.89 

Multi-scale 
(Miskell et al., 
2015) 

Dominion Rd 40 Micro  Nr. of lanes 
Nr. of bus stops within 100 m** 
Distance toward traffic light 

0.35 4.647 0.59 

 CBD 62 Local  Nr. of lanes*** 
Nr. of bus stops within 100 m*** 
Distance toward traffic light** 

0.54 5.058 0.67 

 CBD 21 City Nr. of lanes*** 
Nr. of bus stops within 100 m*** 
Distance toward traffic light* 

0.79 2.661 0.91 
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