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• A microscale land use regression model
for NO2 concentrations was developed.

• Important microscale predictor vari-
ables include presence of awnings and
bus stops.

• Within-city transferability was limited
due to differences in predictor variables.

• High-density air quality measurements
are important to capture small-scale
variability.
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Land use regression (LUR) analysis has become a key method to explain air pollutant concentrations at unmea-
sured sites at city or country scales, but little is known about the applicability of LUR atmicroscales.We present a
microscale LURmodel developed for a heavy trafficked section of road inAuckland, NewZealand.We also test the
within-city transferability of LURmodels developed at different spatial scales (local scale and city scale). Nitrogen
dioxide (NO2) was measured during summer at 40 sites and a LUR model was developed based on standard
criteria. The results showed that LUR models are able to capture the microscale variability with the model
explaining 66% of the variability in NO2 concentrations. Predictor variables identified at this scale were street
width, distance to major road, presence of awnings and number of bus stops, with the latter three also being im-
portant determinants at the local scale. This highlights the importance of street and building configurations for
individual exposure at the street level. However, within-city transferability was limited with the number of
bus stops being the only significant predictor variable at all spatial scales and locations tested, indicating the
strong influence of diesel emissions related to bus traffic. These findings show that air quality monitoring is nec-
essary at a high spatial densitywithin cities in capturing small-scale variability inNO2 concentrations at the street
level and assessing individual exposure to traffic related air pollutants.
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1. Introduction

In many cities, personal exposure to air pollution is primarily deter-
mined by time spent in the transport micro-environment (Dirks et al.,
2012; McNabola et al., 2009; Kaur and Nieuwenhuijsen, 2009).
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However, time spent in this environment is not limited to commuter ac-
tivities, and high densities of people are also observed moving through
transport corridors as they visit the shops, restaurants and recreational
facilities found clustered along busy streets and intersections. In such
transport micro-environments the temporal and spatial variability in
air pollutant concentrations is large, and may be even greater than var-
iability between cities (Hoek et al., 2008; Gurung et al., 2017).

Measuring air pollutant concentrations at local (representative of a
neighbourhood or suburb) or microscales (representative of individual
roads) in transport corridors is especially challenging as pollutant con-
centrations are strongly dependent on short-term traffic conditions
and the configurations of buildings and streets (Eeftens et al., 2013;
Miskell et al., 2015). For example, significant reductions in pollutant
concentrations can be observed just a fewmeters fromemission sources
(Grange et al., 2014), and roadside concentrations candiffer substantial-
ly from local background concentrations (Vardoulakis et al., 2011). Fur-
ther, buildings modify local air flow patterns causing trapping and re-
circulatory flows at some locations and increased dispersion of air pol-
lutants at other locations (Salmond and McKendry, 2009; Salmond et
al., 2013; Shi et al., 2016). As a result little is known about the relative
importance of urban morphology, building design, traffic management
and infrastructure (including phasing of traffic lights), and other details
such as vegetation or bus stop positions in determining microscale air
quality variability. There is therefore a need to improve our understand-
ing about the microscale spatial variability of air pollutants in urban
hotspots if we are to develop urban planning and design tools to control
and mitigate personal exposure to air pollution in transport corridors,
especially at locations where traffic as well as pedestrian activity is
high (Borge et al., 2016).

Land use regression (LUR) analysis emerged as a popular method in
epidemiological studies to predict air pollutant concentrations and as-
sess individual exposure levels (Hoek et al., 2008; Jerrett et al., 2005).
It has the potential to assist urban planners in identifying the key con-
trols on local air quality in transport corridors. Based on selected land
use characteristics (e.g. distance to nearest road, land cover or popula-
tion density),which are nowwidely available through geographic infor-
mation (GIS) systems, LUR models allow estimation of air pollutant
concentrations at unmeasured sites based on regression analysis
(Hoek et al., 2008; Jerrett et al., 2005). Thus, LUR models are often
used to complement regulatorymonitoringnetworks, which are usually
sparse due to logistical and financial constraints (Hoek et al., 2008;
Vardoulakis et al., 2011). Such models have been primarily developed
and applied to urban scale analyses (104–105 m), with some applied
to the regional or country scale where they have been effectively used
to identify common determinants of air quality for primarily transport
related pollutants such as nitrogen dioxide (NO2). These include factors
such as road length, distance to major roads, land cover, traffic volume
and density, population density and altitude (Hoek et al., 2008). Final
models typically explain around 60–70% of the variability (Beelen et
al., 2013) with a range from 51% (Briggs et al., 2000; Gurung et al.,
2017; Morgenstern et al., 2007) to 97% (Stedman et al., 1997).

However, there is little evidence to demonstrate their effectiveness
(or otherwise) under the highly heterogeneous conditions typical of
multi-use transport corridors, and their ability to capture and effectively
represent local variability at urban hotspots may be limited (Apte et al.,
2017; Ghassoun et al., 2015; Hoek et al., 2008). Further, although LUR
models have been used in numerous cities across Europe and North
America (Hoek et al., 2008), results from other geographical regions
have only recently become available and remain limited (e.g. Australia
(Dirgawati et al., 2015); China (Meng et al., 2015); Nepal (Gurung et
al., 2017); New Zealand (Miskell et al., 2015); Iran (Amini et al., 2016)).

In this study, we present a LUR model developed for urban micro-
scales and applied to a heavily trafficked suburban street in Auckland,
New Zealand. Our study is one of a limited number of studies (such as
Miskell et al., 2015) which address local to microscale spatial variability
(1–3 km) and use local urban design features as predictor variables
(such as presence or absence of shop awnings) rather than standard
landuse predictors (such as population and household density) which
were homogenous within our study area. In particular, we were inter-
ested in examining the transferability of this approach. We also tested
the within-city transferability of previously developed LUR models
and explored the potential to extend the multi-scale model developed
in Auckland's CBD by Miskell et al. (2015) to all spatial scales and sites
outside the CBD. This study therefore also offers new insights into the
applicability of LUR models developed for a certain area to other loca-
tions within the same city at different scales, which has not previously
been explored.

2. Material and methods

2.1. Study area

Auckland is New Zealand's largest and fastest growing city with
around 1.5 million inhabitants (Statistics New Zealand, 2013). Vehicle
emissions are the largest contributor to air pollution in Auckland with
traffic-related NOx (NO2, NO) emissions accounting for almost 80% of
the total NOx emissions (Xie et al., 2016). However, pollutants are
often dispersed by maritime winds, which occur year-round favoured
by Auckland's location on a narrow isthmus (Chappell, 2014;
Senaratne and Shooter, 2004). The focus of this study was on a heavy
trafficked road (Dominion Road) about 4 km south of the city center
(Fig. 1). Dominion Road is a main route for buses and commuters in
and out of the city as well as to the main airport (Auckland Transport,
2017). The area is also well used by pedestrians visiting shops, bars
and cafés along the road,making this an interesting area for air pollution
measurements due to the high traffic and potential exposure.

2.2. NO2 concentration measurements

NO2 concentrations were measured by Palmes diffusion tubes at 40
sites along a 2 km section of Dominion Road (Fig. 1). Sites were chosen
to reflect a range of urbandesign features (such as thepresence of build-
ing awnings, proximity to bus stops, greenspace, trees and carparks).
Sites were also chosen to represent the range of expected spatial vari-
ability of air pollutant concentrations. The number of sites in other
LUR studies has ranged from 14 to 107 (see Hoek et al., 2008; Beelen
et al., 2013), with sample sizes of 40 commonly used in the ESCAPE pro-
ject (which is most commonly referenced as the standardmethodology
for such studies) (Beelen et al., 2013). Given the size of our sample area,
and the number of different environments expected, the choice of a
sample size of 40 was deemed sufficient and representative within the
context of the resources available.

At each site, we deployed two tubes at a height of approx. 2.5 m for
four periods of 14 days between the 18th of November 2016 and the 1st
of February 2017. To assess the reliability of theNO2measurements dur-
ing each campaign we used travel and laboratory blanks (AEA Energy
and Environment, 2008). Palmes tubes were analysed using a spectro-
photometer and NO2 concentrations calculated following standard
methodology (AEA Energy and Environment, 2008). The coefficient of
variance (CoV)was used to test the agreement between duplicate read-
ings at each site and results that exceeded a CoV of 0.25 were excluded
from the further analysis (Miskell et al., 2015; Mölter et al., 2012). As
there was no reference regulatory air quality station near the road sec-
tion studied here, we were not able to apply a seasonal adjustment to
the NO2 concentrations. Thus, we used seasonally averaged NO2 con-
centrations, representative of typical summer conditions in this study,
which are likely slightly below the annual average. For comparison,
NO2 measured by routine air quality monitors from 2010 to 2011 by
the Auckland Council at another urban road (Khyber Pass, approx.
2 km northeast from Dominion Road) was on average 1 and 3 μg m−3

below the annual average inDecember and January, respectively. Slight-
ly larger differences were observed in Auckland's Central Business



Fig. 1. Sites for the passive monitoring of nitrogen dioxide used in this study within the Auckland area.
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District (CBD)where five-year average NO2 concentrationsmeasured in
December and January were around 10 μg m−3 below the annual aver-
age (Miskell, 2013).
2.3. Predictor variables

Predictor variables for the initial stages were chosen based on a pre-
vious study undertaken in Auckland (Table 1, (Miskell et al., 2015)) and
generated for each site using GIS shape files (Auckland Council, 2013–
2014) and aerial photographs. Each variable was either representative
of a pollution source, such as number of lanes, or dispersion modifier,
such as presence of building awnings (Table 1). As traffic density was
not available at this high spatial resolution we used average weekday
traffic congestion during themorning rush hour (06:00–09:00),midday
(11:00–13:00) and evening rush hour (17:00–19:00) reported on Goo-
gleMaps as a proxy. In this area land use, population density, household
density andnumber of buildings showno significant spatially variability
thus these predictors are not included in our analysis.

2.4. LUR model development

The LURmodel was developed based on stepwise variable selection
as outlined by the ESCAPE protocol (Beelen et al., 2013; Brunekreef,
2008). First, each predictor variable was compared to the average NO2

concentrations measured throughout the study period using univariate
regressions. Variables that did not follow the expected slope direction
(e.g. an increase in number of traffic lanes is expected to increase air
pollutants) were removed from further analysis. The variable with the
highest adjusted R2 was used to start developing the LUR model and
predictor variables were then added one at the time and included in
the model following standard procedures of the ESCAPE protocol
(Brunekreef, 2008). In the final stage, variables with a p-value N 0.1
were removed from the model sequentially.



Table 1
Predictor variables used for the model development with defined buffer sizes, impact and expected direction of effect.

Variable Variable description Impact Unit Direction of
effect

Buffer size radius
(m)

Kerb length Length of kerb within buffer size Modifier m + 10, 25, 50, 100
Distance to traffic
light

Distance to nearest traffic light Source m − NA

Distance to
intersection

Distance to nearest intersection Source m − NA

Distance to major
road

Distance to major road (including arterial roads going in and out of the city, major urban
roads and motorways)

Source m − NA

Height-width ratio Height of surrounding buildings divided by street width Modifier Ratio + NA
Car parks Sum of large car parks within a buffer size Source Count + 25, 50, 100
Nr. of lanes Sum of traffic lanes along nearest road Source Count + NA
Distance to bus stop Distance to nearest bus stop Source m − NA
Nr. of bus stops Sum of bus stops within buffer size Source Count + 10, 25, 50, 100
Nr. of bus lanes Sum of bus lanes within buffer size Source Count + 10, 25, 50, 100
Tree density Tree density within buffer size Source Trees/m2 − 10, 25, 50, 100
Distance to tree Distance to nearest tree Modifier m + NA
Vegetation Presence of tree within buffer size Modifier Y = 1, N = 0 − 10, 25, 50, 100
Side of street Left or right with a north/east orientation Modifier L = 1, R = 0 NA NA
Street width Distance from one side of the street to the other Modifier m + NA
Awnings Presence of awnings within 10 m Modifier Y = 1, N = 0 + NA
Building footprint Area of buildings within a buffer size Modifier m + 25, 50, 100
Morning rush hour
traffic

Average traffic flow estimated from GoogleMaps during weekday morning rush hour Source 1: Slowest, 4:
Fastest

+ NA

Midday traffic Average weekday traffic flow at midday estimated from GoogleMaps Source 1: Slowest, 4:
Fastest

+ NA

Evening rush hour
traffic

Average traffic flow estimated from GoogleMaps during weekday evening rush hour Source 1: Slowest, 4:
Fastest

+ NA
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The final model was tested for multi-collinearity (variance inflation
factor N 3), normality, heteroscedasticity, high-leverage points or out-
liers (Cook's Distance N 1) and spatial autocorrelation (using Moran's
I) of the residuals (Brunekreef, 2008). The model was validated using
two approaches that are suitable for a small sample size (Dirgawati et
al., 2015; Tang et al., 2013). First, we used the ‘leave-one-out cross-val-
idation’ (LOOCV)method, where thefinalmodelwasfitted toN – 1 sites
and the predicted concentrations were compared to themeasured con-
centration at the left-out site. As the LOOCV tends to overestimate the
model performance, we also used the grouped cross-validation, where
a random proportion (30%) of the data was used to train a model
while the remainder was used for the prediction. This process was re-
peated 20 times and the average performancewas used. Themodel per-
formancewas assessed using the R2, the rootmean square error (RMSE)
and the mean squared error (MSE)–R2. The MSE-R2 is a more represen-
tativemetric to assess the goodness offit around the1:1 line (Tang et al.,
2013) and was calculated as:

MSE−R2 ¼ 1−
MSE

1
N
∑N

i¼1 yi−ytð Þ2
� �

where yi is the monitored NO2 concentration at each site and yt the av-
eraged NO2 concentrations (Tang et al., 2013). Finally, themodel results
were mapped, with the study area divided into 50 m grid squares and
NO2 concentrations predicted for the centre of each grid square using
the LUR model. Inverse distance weighting (IDW) was then used to in-
terpolate the modelled NO2 concentrations (Ghassoun et al., 2015; Liu
et al., 2016). Analysis was done using R (3.2.4) and ArcGIS (v.10.2.2).

2.5. Model transferability

Model transferability was tested by transferring the model devel-
oped at the microscale to the local scale and city scale dataset collected
during a previous study (Miskell et al., 2015). In addition, we applied
the multi-scale (city and local scale) model developed by Miskell et al.
(2015) to the Dominion Road dataset allowing coefficients to be flexible
to explore the potential to extend the multi-scale model to the micro-
scale outside Auckland's CBD. A detailed description of the multi-scale
model development is provided by Miskell et al. (2015). In brief,
Miskell et al. (2015) developed a strategy to identify those predictor
variables that were able to explain spatial variability of NO2 at different
spatial scales so that transferability of themodel to either different loca-
tions or different scales may be improved. First, two LURs were devel-
oped at two different spatial scales (using the local scale and city scale
data, Fig. 1) following the standard protocol. Next, these models were
used on the other set of data (e.g. local scale model on the city scale
data) in order to identify and remove any variables that may be present
due to specifics of the data or due to model fitting (e.g. change in slope
direction). The local scale model was then used on the city scale data, in
order to improve the small-scale explanations, and the city scale model
mostly used the local scale predictors. Following the model revision,
those variables with p-values N 0.2 were removed, one at a time, to
reach a new, revised model, which is referred to as the multi-scale
model. This model had adjustable coefficient values for the different
spatial scales in order to maximize specific fits and to give comparable
performance results to those from their specific LUR models. This illus-
trated the potential to improve local scale explanations, with a require-
ment to validate this on a third, independent dataset.
3. Results and discussion

3.1. Air pollution levels

A summary of NO2 concentrations measured during each campaign
and averaged over the whole study period (summer average) is shown
in Table 2. In total, we made 149 measurements at the 40 sites, with
some tubes lost or moved during each campaign. Overall, 32 sites had
NO2 concentrations from all campaigns, while the remaining sites
were missing NO2 concentration measurements for one (5 sites) or
two campaigns (3 sites). The lower NO2 concentrations measured dur-
ing campaign 4 are likely related to the lower traffic due to summer hol-
idays. The duplicates generally agreed well with an average (SD) CoV of



Table 2
Descriptive statistics of the NO2 concentrations measured during summer 2016/2017
along Dominion Road (units are in μg m−3).

Sampling
campaign

n
(measurements)

Mean Standard
deviation
(SD)

Median Min Max Range

1 35 23 7 22 12 34 22
2 39 21 6 22 12 35 23
3 36 27 7 26 15 42 27
4 39 16 6 17 7 28 21
Overall 40 22 6 22 12 34 22
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0.052 (0.053) and no sample exceeded the threshold of 0.25. Mean NO2

concentrations measured along Dominion Road (overall 22 μg m−3)
were below concentrations measured in North American and
Fig. 2. NO2 concentrations measured at the 40 sites (represented by the dots, with number
concentrations) and modelled along Dominion Road.
European cities reviewed by Hoek et al. (2008), but similar or
above concentrations measured during the ESCAPE study in some
European cities (e.g. Oslo, Norway (23 μg m−3), Copenhagen, Den-
mark (18 μg m−3)) (Beelen et al., 2013) and above concentrations
observed in streets in Perth, Australia (12 μg m−3) (Dirgawati et
al., 2015). The average was below that measured in Auckland's CBD
(34 μg m−3), where tall buildings and high bus traffic favour the
build-up of pollutants (Miskell et al., 2015; Weissert et al., 2015).
Given that studies typically represent annual averages, differences
may partly be explained by temporal differences of the measure-
ments as we decided to present a seasonal average representative
of summer, when NO2 concentrations are generally expected to be
below the annual average. As expected, higher concentrations were
observed at sites around intersections while lower concentrations
were observed in park areas or streets away from the main road
(Fig. 2).
ed dots showing sites with largest discrepancies between modelled and measured NO2



Table 3
Final LUR model.

LUR model β Std.
error

p-Value VIF Proportional
contributiona (%)

Intercept 17.210 2.131 b0.01
Distance to major
road

−0.055 0.013 b0.01 1.57 0.78

Nr. of bus stops
within a 100 m
buffer

1.400 0.687 0.056 1.44 16.52

Awnings 5.436 1.815 b0.01 1.15 79.08
Street width 0.248 0.075 b0.01 1.04 3.61
Adj. R2 0.66
R2 0.70
RMSE (μg m−3) 3.317
MSE-R2 0.71

a β ∗ (90th percentile–10th percentile).
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3.2. Predictor variables

The predictor variables used in the final model were distance to
major road, number of bus stopswithin a 100m buffer, presence of aw-
nings and street width (Table 3). Of these, presence of awnings (disper-
sion determinants) had the highest proportional contribution (β ∗ (90th
percentile–10th percentile)) to the modelled NO2 concentrations
(79.08%), followed by number of bus stops within a 100 m buffer
(16.52%) (Table 3). Distance to major road or street width only had a
minor influence on modelled NO2 concentrations. When comparing
the predictor variables with city or regional scale LUR models (e.g.
Beelen et al., 2013; Hoek et al., 2008), where predictor variables are usu-
ally related to traffic and land cover, it becomes evident that local scale
street and building configurations also become important at the micro-
scale. It is interesting to note that similar variableswere also observed to
be important in a local scale model in Auckland's CBD (e.g. number of
bus stops, presence of awnings) (Miskell et al., 2015). Likewise,
Tang et al. (2013) showed that including building and street config-
urations can be used to account for pollution dispersion and accumu-
lation patterns in urban areas and improve the performance of LUR
models. Following the ESCAPE protocol we removed two predictor
variables from the model development (distance to tree, number of
carparks) as they did not follow the expected pattern or slope of ef-
fect. In this study ‘distance to tree’ was not a significant variable in
themodel. This may be because trees can both act to increase and de-
crease air pollution concentrations depending on the dominant pro-
cess. The presence of trees may improve air quality through
enhanced deposition processes but trees may also decrease the dis-
persion of pollutants resulting in a local increase of NO2 concentra-
tions (Janhäll, 2015; Salmond et al., 2013). We also removed
‘number of carparks’ from the model because the effect of this pa-
rameter was variable depending on buffer size.

3.3. LUR model results and limitations

The final model explained 66% of the variability in NO2 concentra-
tions with a RMSE of 3.317 μg m−3 (Table 3). On average, the modelled
NO2 concentrationswere the same as themeasured NO2 concentrations
with an almost equal number of over- and underestimated sites (18 and
Table 4
Cross-validation results.

Validation methoda RMSE R2 MSE MSE-R2 Iterations

LOOCV 3.839 0.60 14.738 0.61 –
LGOCV 3.886 0.65 15.101 0.60 20

a LOOCV = Leave-one-out cross-validation; LGOCV= grouped (leave-30%-out) cross-
validation.
17 sites, respectively). The largest differences between measured and
modelled NO2 concentrations were observed at site 22 and 28 where
modelled NO2 concentrationswere 7 μgm−3 abovemeasured NO2 con-
centrations. Observations at both sites were unexpectedly low given
their location adjacent to Dominion road and close proximity to bus
stops. A further measurement campaign may be required to account
for the discrepancy at these sites. In contrast, modelled NO2 concentra-
tions at sites 34, 38 and 7 were 6 μg m−3 lower than those measured
(Fig. 2). Again, the observed measurements at these sites were unex-
pected. Site 7 and 34 had higher measured NO2 concentrations than
sites in their surroundings with similar land use characteristics. Site 38
is located relatively far away from Dominion road, but is still located
along a busy road, but this road is not accounted for in the model.

The R2 (MSE-R2) and RMSE of the LOOCV validationwere 0.60 (0.61)
and 3.839 μgm−3, respectively (Table 4). A slightly lowerMSE-R2 (0.60)
was achieved from the LGOCV method (Table 4). Nevertheless, both R2

are similar to the model R2 (Table 3) indicating that the model per-
formed well under internal validation. The adjusted R2 is within the
range of those achieved by LUR in European cities (55%–92%) (Beelen
et al., 2013). The RMSE, on the other hand, was lower than the RMSE
of most cities in the ESCAPE study (Beelen et al., 2013), indicating a bet-
ter overall accuracy of the LUR model due to data being less spread
around the best-fit line (Fig. 3).

The diagnostic tests conformed to the requirements for regression
analyses, with VIF's below 3 (Table 3), and no high-leverage points or
outliers (max. Cook's D=0.27) observed. TheMoran's I showed no spa-
tial autocorrelation between the residuals (p= 0.915). NO2 concentra-
tions, as well as the residuals, were normally distributed (ShapiroWilk,
p N 0.05). Themapped NO2 concentrations indicate high NO2 concentra-
tions underneath building awnings, whichmay explain the higher con-
centrations visible adjacent to the road rather than on the road. The
presence of awnings combined with the density of bus stops also likely
explains the spatial variability in NO2 concentrations along Dominion
Rd (Fig. 2).

A limitation of the LUR model presented here, and microscale
models in general, is the availability of traffic data at sufficient spatial
and temporal scale. GoogleMaps traffic information only gives informa-
tion about the typical traffic flow and is categorised into only four cate-
gories. Given the high spatial variability of air pollutants at the
microscale future studies should also test the accuracy of the modelled
NO2 concentrations mapped in Fig. 2 and how these agree with expo-
sure measurements.
Fig. 3.Modelled vs. measured NO2 concentrations. The blue solid line represents the best-
fit and the dashed line shows the 1:1 line. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)



Table 5
External validation of the micro scale Dominion Road LUR model and performance of multi-scale (local/city scale) model applied at different scales (Miskell et al., 2015).

Model Dataset Nr. locations Spatial scale Variablesa Adj. R2 RMSE (μg m−3) Spearman rank correlation

Micro scale (Dominion Road) Dominion Rd 40 Micro Distance to major rd⁎⁎⁎

Nr. of bus stops within 100 m
Awnings⁎⁎

Street width⁎⁎

0.66 3.317 0.84

CBD 62 Local Distance to major rd⁎

Nr. of bus stops within 100 m⁎⁎⁎

Awnings⁎⁎⁎

Street width

0.57 4.852 0.68

CBD 21 City Distance to major rd
Nr. of bus stops within 100 m⁎⁎⁎

Awnings Street width⁎⁎

0.76 2.758 0.89

Multi-scale (Miskell et al., 2015) Dominion Rd 40 Micro Nr. of lanes
Nr. of bus stops within 100 m⁎⁎

Distance toward traffic light

0.35 4.647 0.59

CBD 62 Local Nr. of lanes⁎⁎⁎

Nr. of bus stops within 100 m⁎⁎⁎

Distance toward traffic light⁎⁎

0.54 5.058 0.67

CBD 21 City Nr. of lanes⁎⁎⁎

Nr. of bus stops within 100 m⁎⁎⁎

Distance toward traffic light⁎

0.79 2.661 0.91

a ⁎p-value b 0.1, ⁎⁎p-value b 0.05, ⁎⁎⁎p-value b 0.01.
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3.4. Within-city transferability of LUR models

The model developed in this study had relatively good performance
when scaled up and applied to data previously reported at local and city
scales in Auckland's CBD (Miskell et al., 2015), with an adjusted R2 of
0.57 and 0.76 and a Spearman rank correlation of 0.68 and 0.89, respec-
tively (Table 5). Interestingly, the model performed better at the city
scale, whichwas also the casewhen insignificant (p-value N 0.1) predic-
tor variables (all except number of bus stops within 100 m) were re-
moved (adj. R2 = 0.76, RMSE = 2.89). A slightly lower adjusted R2

and Spearman rank correlation (0.68) was obtained when the micro-
scale model was applied to the local scale dataset in the CBD, but
apart from street width all predictor variables were significant (Table
5). If street widthwere removed following the ESCAPE protocol, the ad-
justed R2 was 0.54 and the RMSE was 3.891. This suggests that unlike
standard LUR models which often perform poorly when applied to dif-
ferent areas of the city or scaled down, themicroscale variant developed
here has reasonably good transferability in terms of both space and
scale.

The multi-scale model presented by Miskell et al. (2015) also
showed poor results when scaled down to microscales and applied to
the data collected in this study. It could only explain 35% of the variabil-
ity in NO2 concentrations along Dominion Road, and distance to traffic
light was not a significant predictor (p-value N 0.1) (Table 5). Thus, al-
though the multi-scale model performed well for areas within the
CBD it was not able to capture the variability of NO2 concentrations out-
side the CBD where building and road configurations can be different
(less andwider spaced traffic lights, lower buildings, etc.).What is inter-
esting to note is that the only variable that was relevant in the
multiscale model at all scales within and outside the CBD is the number
of bus stopswithin 100m. In Auckland, buses are almost exclusively run
by diesel, which is the main source of NO2 in Auckland. At smaller spa-
tial scales (local and microscale) dispersion variables, such as presence
of awnings, also become relevant.
3.5. Implications

The findings from this study have important implications for
urban development indicating the importance of considering street
and building configuration tominimize individual exposure to traffic
related air pollutants. This might involve limiting the use of awnings
near busy roads or developing pedestrian areas and walkways away
frommulti-lane roads. The strong influence of bus stops on NO2 con-
centrations also supports the need to introduce electric and hybrid
buses, which will be trialled in Auckland in 2017 (Auckland
Council, 2017). A recent study in Singapore also identified bus
stops as hotspots of individual exposure and suggested to set bus
shelters further away from the major road (Velasco and Tan, 2016).
The results further indicate that models developed at city scales
may not be able to capture the small scale variability in NO2 concen-
trations along the road and that there is a need to consider dispersion
features such as presence of awnings, supporting previous findings
by Tang et al. (2013). The advantage of microscale models as pre-
sented in this study is the potential for estimating individual or pop-
ulation exposure at urban hotspots. These results may be used to
assess differences in exposure depending on which side of the street
pedestrians are walking on or to identify route choices with minimal
exposure to traffic related air pollutants. Such detail is generally not
available from LUR models developed at city or regional scales,
which are commonly used to estimate individual exposure based
on the residential address (Jerrett et al., 2007; Urman et al., 2014).

While the model developed at the microscale performed relatively
well when transferred to different spatial scales in the city, it showed
that the importance of predictor variables changes depending on loca-
tion and spatial scale, limiting within-city transferability. Thus, as has
been suggested by previous studies (Allen et al., 2011; Marcon et al.,
2015; Vienneau et al., 2010), LUR models provide better results when
developed locally and caution is required when transferring LUR
models, even within cities, unless street and building configurations
are similar. This also has some important implications for air quality
monitoring, suggesting that future research should focus onmonitoring
NO2 concentrations at a high spatial resolution within urban environ-
ments in order to obtain representative small-scale variability of pollut-
ant concentrations at urban hotspots.

4. Conclusions

In this study, we assessed the performance of LUR modeling at the
microscale representative of a busy street in Auckland, New Zealand.
We showed that NO2 concentrations can be modelled at this scale
with a good performance of the model (adj. R2 = 0.66, RMSE = 3.317
μg m−3). Unlike LUR models developed at the city or regional scale,
this study has shown that building and street configuration, such as
presence of awnings, is an important predictor for NO2 concentrations
at the street level. The microscale model performed well when
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transferred to the city and local scale within Auckland's CBD, although
the only significant predictor variables at all spatial scales was the num-
ber of bus stops within 100 m. The study indicated implications related
to urban development, exposure assessments at urban hotspots and air
quality monitoring, highlighting the importance of high density mea-
surements or micro and local scale models to capture the small scale
variability in NO2 concentrations.
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