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Abstract 8 

Portable low-cost instruments have been validated and used to measure ambient nitrogen 9 

dioxide (NO2) at multiple sites over a small urban area with 20 minute time resolution. We use 10 

these results combined with land use regression (LUR) and rank correlation methods to explore 11 

the effects of traffic, urban design features, and local meteorology and atmosphere chemistry 12 

on small-scale spatio-temporal variations. We measured NO2 at 45 sites around the downtown 13 

area of Vancouver, BC, in spring 2016, and constructed four different models: i) a model based 14 

on averaging concentrations observed at each site over the whole measurement period, and 15 

separate temporal models for ii) morning, iii) midday, and iv) afternoon. Redesign of the 16 

temporal models using the average model predictors as constants gave three ‘hybrid’ models 17 

that used both spatial and temporal variables. These accounted for approximately 50% of the 18 

total variation with mean absolute error ±5 ppb. Ranking sites by concentration and by change 19 

in concentration across the day showed a shift of high NO2 concentrations across the central 20 

city from morning to afternoon. Locations could be identified in which NO2 concentration was 21 

determined by the geography of the site, and others as ones in which the concentration changed 22 

markedly from morning to afternoon indicating the importance of temporal controls. Rank 23 

correlation results complemented LUR in identifying significant urban design variables that 24 

impacted NO2 concentration. High variability across a relatively small space was partially 25 

described by predictor variables related to traffic (bus stop density, speed limits, traffic counts, 26 

distance to traffic lights), atmospheric chemistry (ozone, dew point), and environment (land 27 

use, trees). A high-density network recording continuously would be needed fully to capture 28 

local variations. 29 

 30 
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 Changes in urban planning and design of urban form at local to urban scales have the 34 

potential to mitigate air pollution problems in cities. However, complex interactions between 35 

emission patterns, the built environment, and meteorology mean that urban air quality is highly 36 

heterogeneous in time and space which makes it difficult to develop informed decisions as to 37 

best practice. Recent developments to develop micro-scale variants of land use regression 38 

models (LURs) have shown potential to provide insight into the linkages between air quality 39 

and urban design at local scales (Rao et al. 2014; Tunno et al. 2017). However, attempts directly 40 

to apply the traditional LUR models developed for larger scales to micro-scale environments 41 

have shown poor transferability between and within cities (Mukerjee et al. 2012; Weissert et 42 

al. submitted) suggesting that different urban features are important in determining air quality 43 

patterns at different spatial scales.  44 

One limitation that neither traditional LUR nor these micro-scale versions have been 45 

able to resolve for spatially dense areas, is their reliance on temporally averaged data. This 46 

means that links between urban factors and short-term temporal variations in local scale air 47 

quality, which may be important in determining links between human exposure and urban 48 

design, are not well represented. Recent studies have shown it is possible to derive LUR models 49 

using data with improved temporal resolution using regulatory monitoring networks (Molter et 50 

al. 2010) or handheld sensors (Deville Cavellin et al. 2016). However, this can come at the cost 51 

of reduced spatial resolution. This trade-off between temporal and spatial resolution limits the 52 

ability effectively to link different land uses or urban features to local-scale air quality.  53 

 Here we propose to use the recent improvements in sensor technology which enable 54 

dense networks of reliable low-cost instruments that can measure at high temporal resolution 55 

(Wang et al. 2016) to explore further developments into local-scale LURs. These sensors 56 

enable us to include shorter-term, temporally dynamic controls such as meteorology or local 57 

traffic behavior as predictor variables, enabling the identification and modeling of pollutant 58 

hotspots which are associated with a particular event such as the morning rush hour 59 

(Michanowicz et al. 2016). The study develops multiple LUR models that cover different time 60 

periods (morning, midday, afternoon) and uses both static (set in space over time) and dynamic 61 

(change in space over time) predictor variables. We used portable sensors around the 62 

downtown area of Vancouver, BC, to measure nitrogen dioxide (NO2). LURs were constructed 63 

for the static variables using site-averaged data and typical LUR methodology (ESCAPE, 2010; 64 

Henderson et al. 2007) and for the dynamic variables using specific data from each time period. 65 

Further, we investigated the importance of different variables and site locations throughout the 66 

day based on concentrations rankings (for both high and low values and for temporally 67 
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consistent and inconsistent), which can collectively help in understanding which urban 68 

elements best explain variability at different times over a small area. This has important 69 

implications for the evaluation of human exposure, air quality management initiatives and 70 

urban design decisions. 71 

 72 

2. Methods and Materials 73 

 74 

2.1 Background and context 75 

 Measurements were made around the downtown area of Vancouver, BC (49°15’N 76 

123.6°6’W) during spring 2016 (in local areas Downtown, Fairview, Kitsilano, and West End). 77 

This area is 14.63 km2 with population of 172,050 (Statistics Canada, 2011). Ambient NO2 is 78 

a well-studied atmospheric pollutant, with high concentrations commonly measured within 79 

urban areas due to traffic emissions as the principal source (Kim Oanh et al. 2012). A seasonal 80 

cycle is present, with concentrations often higher during winter from reduced engine efficiency 81 

and less atmospheric mixing including increased observation of temperature inversions. There 82 

are also typically two daily peaks that correspond to commuting periods (Mayer, 1999). Two 83 

regulatory air quality stations are within the study area (Robson Square and Kitsilano), with 84 

only the Robson Square station operational during the measurement campaign. Vancouver has 85 

a good record of air pollution research, including a number of LUR studies (Henderson et al. 86 

2007; Abernethy et al. 2013; Su et al. 2008; Wang et al. 2013). Typical predictor variables for 87 

NO2 within these models have been traffic densities (both light and heavy vehicles), land uses, 88 

road lengths, building heights, and population densities, with Pearson correlation (R2) values 89 

between 0.52 – 0.67. 90 

 91 

2.2 Measurement campaign 92 

 Monitoring was carried out over 24 March – 21 April 2016, excluding weekends and 93 

public holidays. The time of the year was selected because historically concentrations over this 94 

period at Robson Square have been similar to annual averages. Instruments were handheld 95 

Aeroqual S500 to measure ambient NO2 and ozone, (O3 measured due to cross-interferences 96 

with NO2 sensor), a BT-Q1000X GPS to measure latitude and longitude, and a Kestrel 4500 97 

Pocket Weather Tracker to measure air temperature, relative humidity, wind speed, and dew 98 

point with instrument specifications in the S.I. We used one NO2 and one O3 instrument 99 

throughout the entire campaign. They were mounted together and measuring simultaneously. 100 

Both devices were set to record one-minute averaged measurements. They sampled the air 101 
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through similar Teflon inlets that were approximately 5 cm apart. The instruments were placed 102 

within a backpack with Teflon inlets to ensure consistency in measurement height. Ideally, 103 

sites would be monitored continuously in order to capture all spatio-temporal variation evenly, 104 

however logistical and resource constraints meant that this was not possible. The compromise 105 

was to sample locations during similar times across different days, and was similar to previous 106 

handheld LUR sensor work (Deville Cavellin et al. 2016). Each site was visited for 20 minutes 107 

at a time and visited during each of the three times: morning (between 08:00 and 11:00), 108 

midday (11:00-15:00) and afternoon (15:00-18:00). Sites were selected using results from 109 

previous Vancouver LUR work (Henderson et al. 2007), high-temporal LUR resolution work 110 

(Dons et al. 2014), and high-spatial resolution LUR work (Miskell et al. 2015). Areas with high 111 

variability in predictor variables were targeted and other sites added to achieve reasonably even 112 

spatial coverage. This resulted in 45 sites, with locations in spaces such as large parks, 113 

residential, high-rise commercial, or mixed-use shopping settings. Sites were divided into five 114 

areal sub-clusters to ensure that each site could be monitored within the required time frame 115 

(in S.I.). Traffic variables collected were counts of heavy (truck and buses) and light vehicles 116 

along the nearest road. All passing buses or trucks during sampling were counted, along with 117 

any passing car within an area where traffic loads were low (e.g. in quiet residential streets). 118 

We counted number of cars in busy areas by four one-minute periods throughout sampling. 119 

This was due both to the difficulty in counting over the entire sampling time with high traffic 120 

loads and that nearby traffic lights (phases around one-minute) caused regular patterns in 121 

passing traffic. These four counts were then added and multiplied by five to give a 20-minute 122 

estimate on number of passing cars. Notes were also made regarding the immediate 123 

surroundings and any events, such as presence of awnings or trees and any nearby construction 124 

work. Data from 19 weather underground (WU) stations (five with wind data) were linked to 125 

the five areal sub-clusters and medians derived for times when monitoring was completed to 126 

give an approximate state of the atmosphere at a wider spatial scale. Summaries on each WU 127 

cluster are provided in the S.I. 128 

 129 

2.3 Sensor calibration  130 

 Field and laboratory calibration against the regulatory monitor and careful assessment 131 

of errors from sensors are critical to evaluate the reliability of the data. The device for NO2 132 

uses an electrochemical sensor, for which there is a significant interference by ozone (Deville 133 

Cavellin et al. 2016; Lin et al. 2015). A discussion on our handling of this interference is in the 134 

Supporting Information (S.I). Instruments were calibrated in the laboratory (Figure 1A) 135 
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showing the expected unit slope (see SI). It is important, however, to check this calibration 136 

validity in the field. To do this, we used the idea of a proxy measurement, introduced in 137 

(Miskell et al. 2016). We assumed that the distribution of NO2 at the Robson Square reference 138 

station, located in the center of the study zone, over the entire monitoring length would have a 139 

similar mean and variance as that of the entire study data – i.e. the concatenated time series of 140 

all measurements from all measurement times at all measurement sites. Thus we calculated 141 

slope, a1, and offset, a0, to match the mean and variance of measured NO2, after removing 142 

cross-interference from O3 (see S.I.) to that at Robson Square, Cref :. 143 

 𝐶𝐶𝑁𝑁𝑁𝑁2 = 𝑎𝑎1�𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑂𝑂3� + 𝑎𝑎0          (1) 144 

𝑎𝑎1 = �𝑣𝑣𝑣𝑣𝑣𝑣〈𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟〉 𝑣𝑣𝑣𝑣𝑣𝑣〈𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑂𝑂3〉⁄            𝑎𝑎0 = 𝜇𝜇〈𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟〉 − 𝑎𝑎1𝜇𝜇〈𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑂𝑂3〉    (2) 145 

 146 

Where 𝐶𝐶𝑁𝑁𝑁𝑁2 denotes the concentration of NO2 calculated from the measurements, Cind the 147 

concentration indicated by the hand-held NO2 instrument, 𝐶𝐶𝑂𝑂3the ozone concentration given 148 

by the hand-held ozone instrument, var< > denotes the variance, µ< > the mean and Cref the 149 

concentration distribution for NO2 obtained from the Robson Square reference instrument. 150 

Figure 1B shows the distribution of the raw field data, whilst figure 1C shows the Robson 151 

Square distribution and the matched field distribution, calculated from equations 1 and 2. . The 152 

expanded inset of Figure 1A compares the laboratory calibration to the field normalization. 153 

The field normalization in fact well describes the low concentration range laboratory data. 154 

However, considering the full data range, the instrument constant, k (see SI) may indeed have 155 

been changed by the field measurement setup. We confirmed that field alignment of the data 156 

was correct by measuring for a day at a site in a park, away from the city center and next to 157 

another reference station.  158 

 159 
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 160 
Figure 1: A: laboratory and field calibration of the handheld NO2 instrument. Inset: comparison of laboratory 161 
and field calibration at low concentrations. Points: low concentration range laboratory measurements from main 162 
diagram; Line 1: least-squares fit of entire concentration range, shown in main figure; Line 2: slope and intercept 163 
determined by matching mean and variance of the entire instrument measurement set to that measured at the 164 
Robson Square reference station.  B: raw sensor data distribution for the entire measurement campaign;  C: Field 165 
calibration alignment. 1: distribution of data at Robson Square for the period of the entire measurement 166 
campaign, for the times of measurement; 2: sensor data with slope and offset computed to match the Robson 167 
Square mean and variance.    168 

 169 

 There was a fluctuation in the reading of the electrochemical sensor during field co-170 

location which was traced to measurement noise on the signal. It varied over time with standard 171 

deviation of ±6 ppb at one-minute measurements, and ±1.5 ppb for 20-minute means. The 172 

estimated standard deviation in 20-minute median NO2 concentrations using the sensor data in 173 

the present study, relative to a local reference station measurement, was ±3.3 ppb (s.d. of the 174 

difference between analyzer and corrected sensor measurements).  175 

 176 

2.4 Data manipulation 177 

 Monitoring periods that had measurement standard deviations significantly greater than 178 

the estimated instrument error (>± 2 error) were removed from analysis as these locations were 179 

believed to be too impacted by local-scale activities. The occurrence of such activities – usually 180 

connected with internal combustion engines such as nearby seaplanes or lawn mowing – was 181 

verified from the observation log. This resulted in the removal of 13 observations, leaving n = 182 

122 non-averaged measurements and n = 44 time-averaged locations. Since we carried out the 183 

study by visiting fixed sites at different times, the need for scaling of data to account for large-184 

scale temporal variations over time was considered. For traditional LUR models, scaling of 185 
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measured concentrations is normally performed in order to remove the effect of global variation 186 

associated with the date and time of measurement that is unrelated to local variation. Since 187 

measurements were not taken simultaneously, such regional variations should be accounted 188 

and corrected for before inter-site comparisons on spatial variables can be made. The scaling 189 

approach used here was similar to that used in previous LUR work (Abernethy et al. 2013; 190 

Wang et al. 2013). Two correction factors were derived using the Robson Square station data, 191 

for time of day (estimate on hourly), and day of monitoring from the measured period (estimate 192 

on daily). Data outside of the measurement period (night-time and weekend) were removed in 193 

order to make valid correction factors for the monitored time (see S.I. for time correction 194 

breakdown). However, the question arises as to the appropriate reference site to use for scaling. 195 

This may not be important for measurements averaged over annual time periods, however for 196 

short time-scales studied here, the choice of scaling site is important as values derived from 197 

Robson Square (an urban station) were different to those derived from a large spatial scale 198 

estimate using pooled analyzer data from around the wider Vancouver area. This underlined 199 

the complexity in time-scaling results at the local-scale and the importance of a nearby 200 

continuous data source that can give a reasonable representation on both approximate hourly 201 

and daily patterns. Checks were made between the measured and temporally adjusted data to 202 

see if any bias was introduced by using selected adjustment factors given this potential 203 

subjectivity. The median difference between scaled and un-scaled was small (0.01 ppb) and 204 

88% of differences were within 5 ppb. Therefore the data scaled to Robson Square using these 205 

two correction factors was used for the development of the ‘static’ model (spatial variable only) 206 

in order to provide better comparability across sites. As a check, a second ‘static’ LUR model 207 

was constructed using un-scaled data. The same explanatory variables were found, but with 208 

slightly poorer statistical performance. This suggested that the choice of scaling was not 209 

significantly influencing results. 210 

 211 

2.5 Land use regression model development 212 

 Predictor variables were divided into two classes; static (those that did not change over 213 

time), and dynamic (those that did change) (Table 1). The static variables were used to 214 

construct a traditional LUR, where variables were collected using observations made during 215 

monitoring, web-based mapping services, or available GIS layers. This model followed 216 

previous LUR work where the temporal variability was smoothed out by using a single 217 

averaged measurement from all data for a given site. In total, there were 29 variables tested, 218 

with small buffer sizes offered to those relevant variables due to the high spatial density focus 219 
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of the study. Each site was placed into one of four broad land use categories to describe the 220 

surrounding urban environment (‘high-rise’, ‘low-rise’, ‘residential’, and ‘park’). This allowed 221 

us to include or remove any particular land use based on their significance on NO2 variability, 222 

thus controlling for potential overfitting in the model caused by including non-significant land 223 

uses. Those land use types that were significant could then be simply identified and added to 224 

the model as a binary indicator. The dynamic variables were used to construct the dynamic 225 

LUR models, with variables collected using observations, or web data. In total, there were 11 226 

dynamic variables tested. A number of predictor variables had sub-categories relating to 227 

different data sources (distinguished in Table 1 using subscripts). The static and dynamic 228 

models followed previously used methods for LUR development (ESCAPE, 2010). These 229 

methods are described briefly. All predictor variables were tested by univariate regression to 230 

the response (NO2). The predictor variable with the highest R2 and a correct a priori direction 231 

was selected first and included in the model. Next, all predictor variables were tested for 232 

collinearity to the selected predictor variable using correlation between those prediction 233 

variables. If this was found to be acceptable (here set to < 0.6 following previous work; 234 

ESCAPE, 2010) then this variable and the selected predictor were used to construct a multi 235 

regression model. The new model with the highest adjusted R2 and with correct directions for 236 

both predictor variables was then selected. If the adjusted R2 had increased by at least 0.01 to 237 

the previous model, then this new model was accepted, with these steps repeated across all 238 

available predictor variables until no further improvements could be found in the model fit. 239 

Model building used the R package ‘caret’ and followed standard techniques.  240 

 241 
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Table 1: Selected static and dynamic predictor variable characteristics. * denotes those variables which were against the assumed direction. 242 
Variable Symbol Variable Description Measurement Unit A priori Direction of Effect 

Static 

Land use: high-rise LU:HR Location surrounded by tall 
buildings by binary response 

1 = Y; 0 = N +  

Land use: low-rise LU:LR Location surrounded by low 
urban buildings (e.g. shops) by 
binary response 

1 = Y; 0 = N + 

Land-use: residential LU:R Location surrounded by houses 
by binary response 

1 = Y; 0 = N - 

Land-use: park LU:P Location surrounded by park or 
green space by binary response 

1 = Y; 0 = N - 

Intersection Int. Location nearby an intersection 
(within 20 m) 

1 = Y; 0 = N + 

Vegetation V Location nearby some 
vegetation such as tree (within 
20 m) 

1 = Y; 0 = N - 

Cycle Lane CL Location beside a cycle lane 1 = Y; 0 = N - 

Fountain F Location nearby an operating 
fountain  

1 = Y; 0 = N - 

Awning A Location underneath an awning 1 = Y; 0 = N + 

Building height: high BH:H Observation of surrounding 
building heights (> 5 levels or 
approx. > 20 m) 

1 = Y; 0 = N + 

Building height: medium BH:M Observation of surrounding 
building heights (>3 levels, < 5 
levels, or between approx. > 10, 
< 20 m) 

1 = Y; 0 = N + 

Building height: low BH:L Observation of surrounding 
building heights (< 3 levels, or < 
10 m) 

1 = Y; 0 = N - 

Building height: none BH:N No buildings nearby 1 = Y; 0 = N - 

Speed Limit SL Speed limit along nearest road 1 = 50 km/h; 0 = 30 km/h + 
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Car Park CP Location nearby a large carpark 
space (within 50 m) 

1 = Y; 0 = N + 

Rd. Direction* RD Traffic direction along nearest 
road 

1 = Both ways; 0 = one-way + 

Rd. Orientation RO Direction of road  N, NE, E, SE, S, SW, W, NW NA 

Number of lanes NL Number of traffic lanes along 
nearest road 

Count + 

Street Width SW Width of the nearest road m + 

Dist. Rd DistR Distance to nearest road m - 

Dist. Traffic Lightsa Dist TLX Distance to nearest traffic light m - 

Dist. Water DistW Distance to the harbor m + 

Dist. Truck Route DistTR Distance to nearest established 
truck route 

m - 

Dist. Gardens* DistG Distance to nearest community 
garden 

m + 

Dist. Park DistP Distance to nearest public park m  + 

Dist. Main Rd. DistMR Location within 100 m of a 
major road 

1 = Y; 0 = N + 

Dist. Airport DistA Distance to Vancouver 
International Airport 

m - 

Dist. Rail Line DistRL Distance to nearest active rail 
line 

m - 

Rd. Lengthb RL Sum of road length within 
various buffer sizesb 

m  + 

Sum Bus Stopsb Sum BusX Sum of public bus stops within 
various buffer sizesb 

Count + 

Bus Densityc BD Number of public buses along 
nearest road per weekday 

Count + 

Dynamic 

Temperatured TX Air temperature °C - 
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Dew Pointd DPX Dew point °C - 

Relative Humidityd RHX Relative humidity % + 

Pressured hPaX Air pressure hPa + 

Wind Speedd WSX Wind speed ms-1 - 

Ozonee OX Ground-level ozone ppb S, R: -; T, T-1: + 

Weather W Observation on weather Clear, Cloudy, Overcast NA 

Sum Car Car Sum of cars along nearest road Count + 

Sum Busf BusX Sum of buses along nearest road Count + 

Sum Truck Truck Sum of trucks along nearest 
road 

Count + 

Total Vehicles Total Sum of total vehicles (cars, 
buses, and trucks) along nearest 
road 

Count + 

Truck Ratio RatioT Ratio of sum of trucks to sum of 
total vehicles along nearest road 

Count + 

Bus Ratio RatioB Ratio of sum of buses to sum of 
total vehicles along nearest road 

Count + 

Bus and Truck Ratio RatioBT Ratio of both summed buses and 
trucks to sum of total vehicles 
along nearest road 

Count + 

Hour HR Hour of day (0-24) Hour NA 

Construction C Location nearby construction 
work 

1 = Y; 0 = N + 

a Traffic lights were divided into fixed (F), actuated (A), and all. 243 
b Buffers used were 50, 100, and 200 m. 244 
c Bus density was calculated using public bus timetables. 245 
d Meteorological data were divided into the different measurements (K or WU). 246 
e Ozone data were divided into the different measurements (S: sensor, R: Robson analyzer, T: downwind analyzer, T-1: downwind analyzer an hour earlier). 247 
f Buses were divided into electric (E), gas (G), small (S), and all. 248 
 249 
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The dynamic models used un-scaled data and initially followed a similar LUR development to 250 

the static model, with the inclusion of a day of the week (DoW) variable (Patton et al. 2014). 251 

We also explored a new idea, to exploit the results from the static model. The developed static 252 

model was added as a constant, or ‘offset’ to each of the dynamic models to give three hybrid 253 

models. These models then had similar independent variables, e.g. with different coefficients, 254 

to the dynamic model, along with a constant that was determined using coefficients from static 255 

variables at each site. This caused the hybrid models to have some latent, fixed variables within 256 

this constant that helped to add in both site-unique static and temporal impacts. For each 257 

monitoring period (morning, midday, afternoon), the static model prediction for that site was 258 

set as a fixed offset and then fitting of the dynamic variables proceeded. We label this 259 

redesigned dynamic model as a ‘hybrid’ model. Offsets, where a predictor variable has a known 260 

and set coefficient, can help boost model results as known controls can already be accounted 261 

for. The reason for this redesign was that longer-term models are often found to ‘explain’ more 262 

variation within the data because they use fixed urban elements and remove local-event impacts 263 

through smoothing. By exploiting this feature we can derive a model which uses the best 264 

features of both static and dynamic models to capture temporal and spatial elements (Miskell 265 

et al. 2015). Fixing the coefficients for the static variables allows for the relationship between 266 

concentrations and static variables to be accounted for within dynamic models, contains fewer 267 

independent predictor variables (which adversely impact standard diagnostic tests), and 268 

provides a lower likelihood of observing model overfitting (Eq. 3). 269 

 270 

𝑌𝑌𝑖𝑖 = 𝛼𝛼 + [ 𝛾𝛾 ] + ∑ 𝛽𝛽𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 + 𝜖𝜖 ~ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  271 

                              ↓          (3) 272 

               [𝛾𝛾 = 𝛼𝛼𝐶𝐶 + ∑ 𝛽𝛽𝐶𝐶𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 ]              ~ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚             273 

 274 

Where: Yi = dynamic NO2 estimate, Xi = dynamic variable observation, α = dynamic model 275 

offset (model independent), β = dynamic variable coefficient (model independent), i = number 276 

of predictor model terms, γ = static offset (latent, constant), αC =constant static offset, βC = 277 

constant static variable coefficient, ϵ = dynamic error term. 278 

 279 

 Standard LUR model diagnostics were checked using adjusted R2, p-value, root mean 280 

square error – RMSE, mean absolute error – MAE for fit and accuracy; Moran’s I for residual 281 

spatial autocorrelation (p < 0.05); Shapiro-Wilk for normality testing (p < 0.05); Cook’s 282 
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Distance for influential points (D > 1); and predictor variable correlations for multicollinearity 283 

(ρ < 0.6). External model validation was also completed using subsets of the data (leave-one-284 

out cross validation and bootstrapping to test predictor coefficient stability), with adjusted R2 285 

and selected variables noted, along with spatial autocorrelation checks for clustering of selected 286 

sites. Each selected variable was tested for homoscedasticity and normality of the residuals 287 

against the appropriate response, with acceptable results and so each variable can be viewed as 288 

suitable for parametric regression. 289 

 290 

2.6 Site ranking analysis 291 

 Site ranking by concentration focuses attention on those sites that are consistently low 292 

or high in concentration in comparison with others, and on those sites that show large changes 293 

in rank according to the time of measurement. Random measurement errors affect these 294 

analyses differently to regression analyses. For each measurement period (morning, midday, 295 

afternoon) sites were ranked according to the median, unscaled concentration. For each site, 296 

we also recorded rank range – the difference between the highest and the lowest of these three 297 

ranks. The cumulative distributions of rank and rank range were divided into three zones: high, 298 

buffer and low. A buffer was used in order to make our two top and bottom samples have 299 

differences that were significant with respect to the estimated standard deviation in the 300 

measurements. Based on our top and bottom samples having sizes of n = 10, these buffer sizes 301 

were around 50% of the sample. Thus, regression models using only values from either the 302 

selected ‘high’ and ‘low’ samples may identify those urban design elements that are associated 303 

to high and low values (either concentration or range rank), respectively. Thus, we were able 304 

to identify those sites that were temporally consistent – that is, sites where the dominant effects 305 

were associated with specific time-stable characteristics of the location - and those where 306 

temporal variations were particularly important. We were also able to identify specific 307 

characteristics of the sites and times associated with high and low values of the concentration 308 

by using rank correlation with predictor variables for those sites outside the buffer zone (i.e. 309 

definitively high and definitively low). Mann-Whitney U-tests were performed on all predictor 310 

variables for the top ten and bottom ten ranked sites to identify any significant elements that 311 

differentiated the high and low groups (p < 0.05). Checks were further made across the three 312 

time periods using Kruskal-Wallis tests to investigate any elements in the top and bottom 313 

ranked sites that may be unique for certain times (p < 0.05). Qualitative checks were also 314 

completed for possible explanations into what caused a location to have high or low 315 

concentrations throughout that day, or what caused a site to be impacted by time. Finally, 316 
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selected predictor variables for each LUR were joined into three separate clusters: traffic-317 

related, urban design-related, and atmospheric-related to ascertain which time period was 318 

explained the most by which urban control.  319 

 320 

3. Results 321 

 322 

3.1 Data summary 323 

 A weekday daytime median NO2 concentration of 15.3 ppb was observed at the Robson 324 

Square reference station over the whole length of the campaign, with values ranging from 5.4 325 

to 42.4 ppb (Figure 1C). Thus, within the error estimates, the handheld sensors were well able 326 

reliably to resolve site differences. Table 2 collects the summary statistics.  327 

 328 
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Table 2: Summary on the results from different data sources on air quality and meteorology during monitoring. Time is the time-frame resolution and SD is the standard 329 
deviation. Subscript symbols represent the different data sources (S = station data, WU = Weatherunderground data, K = Kestrel data). 330 

Data Unit Time Min Median Max Mean SD 

Robson Square 
NO2 

ppb Hour 4.9 23.2 39.3 22.8 8 

Aeroqual NO2
a ppb 20-min 3.9 23.5 41 23.6c 7.6c 

Aeroqual NO2
b ppb 20-min 10.1 22 34.7 22.5 5.6 

TemperatureS °C Hour 5.8 14 25.7 14.6 4.8 

TemperatureWU °C 20-min 9.6 15 25.7 15.8 4 

TemperatureK °C 20-min 8.5 16.7 29.6 17.3 4.4 

Wind speedS ms-1 Hour 0.2 2 4.8 2 1 

Wind speedWU ms-1 Hour 0 1.2 3.2 1.1 1 

Wind speedK ms-1 20-min 0 0.4 2.1 0.4 0.4 

Relative 
humidityWU 

% 20-min 8.6 61.5 83.9 59.7 12.6 

Relative humidityK % 20-min 25.7 53.2 86.8 53.6 13.5 

PressureWU hPa 20-min 998.4 1016.8 1032.2 1014.3 8.6 

Dew pointWU °C 20-min 3.3 7.8 13.1 7.9 2.4 

Dew pointK °C 20-min 2.8 7.1 12.2 7.2 2.1 
a This is the data recorded for each site, where no temporal adjustment has been made (n = 122). 331 
b This is the site-averaged data, where temporal adjustment has been applied (n = 44). 332 
c These values are not equal to the reference station values because some data were missing hence mean and std.dev. were evaluated over a different number of values from that used for calibration 333 
 334 
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 The different time periods were somewhat similar in their summary statistics across all 335 

sites, with median (range) values of 26.5 (12.6 – 38.1), 22.6 (10.7 – 41), and 21.4 (3.9 – 39) 336 

for morning, midday, and afternoon monitoring respectively (where no temporal corrections 337 

were applied). One-way ANOVA had weak evidence of a difference (p = 0.04), with Tukey 338 

confidence intervals showing morning to have higher values than the afternoon (difference = 339 

4.3 ppb, p = 0.03).  Examination of the data in detail brings out a different story. Figure 2 shows 340 

the median concentration for each site, for the three measurement periods combined (used to 341 

build the “static” model) and for the morning, midday and afternoon periods separately. Spatio-342 

temporal variability can be clearly observed.  343 

 344 

 345 
Figure 2: Map of site median concentration (all time periods = ‘static’) and concentrations from measured time periods across 346 
the monitored area. The cross symbol denotes the Robson Square reference station. 347 
 348 

 Figure 3 shows the top and bottom ranked sites for concentration for the different time 349 

periods. ‘High’ concentrations here were the top ten highest ranked concentrations for each 350 

time (AM values > 30.5 ppb; midday > 29.5 ppb; PM > 28 ppb). The converse also applied to 351 

‘low’ concentrations (AM values < 22.15 ppb; midday < 18 ppb; PM < 15 ppb). These were 352 

selected so that some practical difference could be observed between the two groups, along 353 
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with providing reasonable sample sizes for later statistical tests, whilst ensuring that the buffer 354 

range of concentration was significantly larger than the estimated standard deviation in the 355 

measurement. Concentrations could be very different at different times of the day at sites that 356 

were spatially close. The site-averaged results tended to obscure these effects. The sites with 357 

the highest concentration tended to move south and east and those with the lowest 358 

concentration tended to move north and west as the day progressed. The effect could be simply 359 

due to the wind.  Regional wind data showed wind speed increasing on average throughout the 360 

day, with the predominant direction coming from the north and west. Greater atmospheric 361 

mixing and movement would be expected toward the afternoon (S.I.). 362 

 363 

 364 

Figure 3: top and bottom ten ranked sites for high and low concentrations for the different time periods using thresholds 365 
relative to each time (approx. high > 29 ppb and low approx. < 18 ppb). High concentration are blue triangles and low 366 
concentration are red circles. 367 
 368 

 The rank range distribution identified those sites that were least and most variable 369 

across the day (Figure 4). The least variable (“site-important”) tended to be localized in the 370 

high-rise urban center and on commuter routes in the center, and also in the more residential 371 

areas to the east. The most variable were around the edge of the main urban center, notably in 372 

the large park area to the north (Stanley Park) which is crossed by an extremely busy commuter 373 

route, and also around the bridges and commuter routes in the south of the study area. 374 

Variability in commuter traffic – more intense in the morning; more spread out in the afternoon 375 

and extending in time beyond the end of measurement for the day – might explain these results. 376 

Surprising observations are the large concentrations in Stanley Park that are well away from 377 

major roads. These observations were during the morning and were nearby water, and so may 378 

possibly be explained by passing container ships or nearby port activities coupled with a stable 379 

atmosphere. 380 

 381 
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 382 

Figure 4: cumulative distribution of the rank range, identifying the top ten consistent (small rank 383 

range: site important) and inconsistent (large rank range: time important) locations. Inset: map of 384 

selected locations (blue triangles: time important; red circles: site important).   385 

3.2 LUR results 386 

 The static LUR model identified three predictor variables (high-rise urban land use, 387 

sum of public bus stops within 200 m buffer, and speed limit) to collectively explain 53% of 388 

the observed variability in the temporally adjusted NO2 data (Table 3; Figure 5A).  389 

 390 
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Table 3: Results of the different LUR models. Symbols are in Table 1. n is the number of predictor variables in the model. 391 

Data Model n R2 Adj. R2 Formula 

Static (n = 44) Static 3 0.56 0.53 NO2 = 16.7 + 3.9[LU:HR] + 0.8[Sum Bus200] + 0.1[SL] 

Morning (n = 40) Dynamic 3 0.45 0.41 NO2 = 24.4 + 0.2[RHK] + (-0.8)[DPK] +(-0.5)[OS] 

Hybrid - 0.58 0.53 NO2 = 7.7 + offset[static model] + (-0.03)[RHK] + (-0.3)[DPK] + (-0.4)[OS] 

Midday (n = 43) Dynamic 2 0.37 0.34 NO2 = 26.3 + (-0.4)[OS] + 0.5[bus] 

Hybrid - 0.48 0.46 NO2 = 3 + offset[static model] + (-0.3)[OS] + 0.01[bus] 

Afternoon  (n = 39) Dynamic 3 0.5 0.47 NO2 = 25.1 + 0.01[car] + (-0.5)[OS] + 3.5[HR] 

Hybrid - 0.61 0.58 NO2 = (-67.8) + offset[static model] + (-0.002)[car] + (-0.4)[OS] + 4.5[HR] 

 392 
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 Univariate analysis on each of the four selected predictor variables had R2 values over 393 

0.2. Bus stop proximity is reasonable to associate with elevated NO2 concentrations (Dons et 394 

al. 2014) because buses typically have diesel engines, which have higher NO2 emissions than 395 

gasoline engines, and because stopping and restarting further increases NO2 emissions (Chen 396 

et al. 2012). Our ‘static’ model results had some similarities to those results obtained in other 397 

LUR studies in Vancouver, where data were averaged over much longer times, with similar 398 

(where appropriate) predictor variables and model performance (Henderson et al. 2007; Su et 399 

al. 2008). This therefore further validates the use of low-cost, handheld instruments for this 400 

type of study. Measured data were then divided into each time period. The static model was 401 

applied to these measurements (n = 122), and gave adjusted R2 of 0.19 (Figure 5B). This model 402 

was unable to explain the higher and lower values that are often associated with time-specific 403 

activities. The result shows why a full spatio-temporal model is needed. The dynamic models, 404 

which had traffic as well as atmosphere variables (Table 3) but did not incorporate land use, 405 

performed better but not as well as the static model on the averaged data. Predictor coefficients 406 

were also standardized to assess their relative impact on NO2 concentrations (each predictor 407 

coefficients fitted to NO2 concentration normalized to give mean = 0 and standard deviation = 408 

1). Standardized regression coefficients showed buses to have the highest relative impact on 409 

the static model (standardized coefficient = 0.43 compared to high-rise urban = 0.3 and speed 410 

limit = 0.2). Each dynamic model had the highest influence from co-located ozone, which was 411 

around double that of the other predictor variables (~ -0.55 compared to around 0.28). The 412 

hybrid models, where the static predictor variables were latent constants for each sites as 413 

described in Eq. 3, improved results for each dynamic model. Adjusted R2 values improved to 414 

0.46 - 0.58 (Figure 5C), with increases of at least ∆0.11 for each model. Two variables in the 415 

hybrid models became insignificant and experienced changes in coefficient directions, 416 

however the largest impact on the final estimate was less than 1.5 ppb and so this was viewed 417 

as minor model overfitting. Coefficient direction changes, along with predictors becoming 418 

statistically insignificant, may be due to too many predictor variables being present in the 419 

hybrid model. 420 

 421 
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 422 
Figure 5: fitted vs. observed concentrations for the different data-sets and LUR models. Black line is 1:1 line, pink circles are 423 
afternoon data, green triangles are midday data, and blue squares are morning data. 424 

 425 

 The hybrid models predicted short-term concentrations reasonably well, and accounted 426 

for much of the observed temporal variations. A DoW factor was offered to the hybrid models 427 

A 

B 

C 
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to check if this would improve results. The afternoon model had an increase in adjusted R2, 428 

with concentration increases observed on Monday (p-value = 0.06). The improvement may be 429 

due to five new independent variables introduced, and so DoW were not added to the final 430 

model. Overall internal and external validation tests were found to be acceptable, and so each 431 

model was possible to use in explaining NO2 variation around the downtown Vancouver area 432 

(Table 4). Prediction errors were reasonable with mean absolute differences typically up to 5 433 

ppb between fitted and observed values. At some sites, however, the residuals were very large, 434 

implying perhaps the effect of short-term emission sources unaccounted for in the models. 435 

External predictor direction validation, where subsets of data were selected and the model fitted 436 

ten times to see if direction changed, were acceptable, with similar values to those found when 437 

using the full dataset. External validation typically had increased performance for the hybrid 438 

models than the dynamic models. The only obvious defect in the modelling was that clustering 439 

was found for the midday dynamic (Moran’s I p < 0.001) and hybrid (p = 0.03) residuals, with 440 

some over-estimation of concentrations toward the west of the monitored area (S.I.). The part 441 

of the unexplained variability due to the sensor measurement error was estimated as 442 

approximately 5-10% for each time period. Thus, overall, approximately 60% of the total 443 

variation was able to be explained.  444 

 445 
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Table 4: Internal and external validation of the different LUR models. External validation is the average (S.D.) from 10 model runs using 20 randomly selected observations. 446 

Model Internal Validation External Validation 

Test RMSE 
(ppb) 

MAE (ppb) Moran’s I p-
value 

LOOCV 
adj. R2 

Shapiro-
Wilk p-
value 

Max. 
Cook’s D 

Adj. R2 Predictor 
direction (%) 

Model p-
value 

MAE 

Static 3.7 2.9 0.67 0.55 0.57 0.14 0.54 (0.16) 93 (14) 0.009 (0.02) 3.1 (0.3) 

Morning 
dynamic 

4.5 3.5 0.87 0.41 0.45 0.25 0.34 (0.12) 100 (0) 0.04 (0.05) 3.5 (0.5) 

Morning 
hybrid 

4.8 3.6 0.19 0.47 0.73 0.23 0.53 (0.13) 80 (17) 0.005 
(0.006) 

3.5 (0.7) 

Midday 
dynamic 

6.1 4.6 ~0 0.33 0.17 0.17 0.29 (0.13) 100 (0) 0.05 (0.06) 4.4 (0.6) 

Midday 
hybrid 

6.3 5 0.03 0.38 0.54 0.16 0.43 (0.09) 75 (25) 0.006 
(0.008) 

5 (0.2) 

Afternoon 
dynamic 

5.5 4.6 0.89 0.54 0.47 0.29 0.49 (0.12) 97 (10) 0.009 (0.02) 4.2 (0.5) 

Afternoon 
hybrid 

5.9 4.7 0.21 0.54 0.34 0.2 0.57 (0.17) 77 (22) 0.006 (0.01) 4.3 (0.9) 

447 
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3.3 Site ranking analysis  448 

 We used site ranking to minimize the effect of instrument noise. For each measurement 449 

period, we took the sites that were identified as ‘high’ and ‘low’, then used rank correlation 450 

and the U-test to identify the significant variables. The spoke diagram, Figure 6, shows the 451 

results. This plot shows the rank correlation using the U-test results for the high and low 452 

concentration sites at each time period. The selected predictor variables (each ‘spoke’) were 453 

significant for at least one of the time periods when using only those selected high and low 454 

concentration sites. Correlations which are positive show those predictor variables that are 455 

higher for the high concentrations sites (e.g. the correlation for high-rise land use is around 0.5, 456 

and so gives evidence that sites within high-rise land uses show an increase in NO2). In this 457 

diagram, the movement of the highest concentrations towards the south and east through the 458 

day is reflected in the change in sign of correlation of the variable ‘longitude’. Associated with 459 

this is the variable ‘Distance to Water’ – those distances were generally less for sites in the 460 

south-west, and to a lesser extent the variable ‘Land-Use: Residential’ – residential areas 461 

dominate in the south-west of the study zone. This effect overwhelmed any other consequence 462 

of residential land use for this particular study zone and time. The strongest negative correlation 463 

is with ozone measured by the sensor itself. This is consistent with ozone consumption by 464 

vehicle-emitted NO producing NO2. The ozone source for the downtown area of Vancouver 465 

would be marine air (Weissert et al. 2017). The other correlations with ozone downwind, ozone 466 

at the urban center (Robson Square) and NO2 at Robson Square reflect the processes of ozone 467 

titration, photolytic ozone production and transport of NO2 , NO and O3. As well as the 468 

importance of high-rise buildings (variable LU:HR) the rank correlation identifies vegetation 469 

as a significant factor causing decrease of NO2 and the presence of awnings as a factor tending 470 

to increase local NO2. Distance from road correlates generally as expected. High atmospheric 471 

pressure tends to be correlated with anticyclonic conditions which leads to still air over the city 472 

and consequently lack of dispersion of pollutants. In an urban area, NO2 is normally derived 473 

from oxidation of vehicle-emitted NO with ozone and hydroxyl radicals. Therefore traffic 474 

behaviors, downwind O3, sunlight, temperature and water vapor pressure can be expected to 475 

determine concentrations (Tunno et al. 2016; Wang et al. 2016; Michanowicz et al. 2016; Dons 476 

et al. 2014). This work has shown general conformity to these expectations. In particular, it has 477 

highlighted the importance of local O3 concentrations and how significant predictor variables 478 

can change over time to account for changing atmospheric conditions.  479 

 480 
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 481 
Figure 6: radial plot of rank correlations for the top and bottom ranked concentrations over time (blue long dash = morning, 482 
green short dash = midday, and pink solid = afternoon). Predictor variable names are those in Table 1, along with Lo. = 483 
longitude, and NOR = Robson NO2). Those sections in grey show negative correlations to NO2 and those in white show 484 
positive correlations. 485 

 486 

 The different predictor variables were grouped together by traffic, atmosphere (ozone 487 

concentration) and urban design controls, and used to see how much they explained the 488 

observed variability overall. The static model found 58% of the explained variation to be from 489 

traffic-related processes, especially buses. The morning data found urban design, traffic and 490 

atmospheric processes to describe 32%, 36% and 75% of the explained variability 491 

(overestimation due to collinearity between the groups), the midday data found urban design 492 

(46%) and atmosphere (63%) to be important, and afternoon found traffic (26%) and 493 

atmosphere (72%) to be important. From this, urban design variables were important controls 494 

on the morning and midday data, which had reduced by the afternoon. Traffic was important 495 
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during the morning and afternoon commuting periods, with the static model finding bus proxies 496 

to be the most significant determinant of elevated NO2. The urban design elements that were 497 

most significantly associated with higher NO2 concentrations were high-rise land uses, fewer 498 

nearby trees, and proximity to bus proxies (e.g. bus stops or lanes). Many of the low 499 

concentration sites were near cycle lanes, which may be a proxy for reduced traffic due to 500 

removal of traffic lanes or to the site being located off a main road where cycle lanes are often 501 

present. Locations that had consistently high concentrations throughout the day were around 502 

the built up downtown area. Unsurprisingly, major roads within the built-up area were 503 

consistently high. Comparison of sites with a consistent ranking across the day with those that 504 

were inconsistent in their ranking showed consistent sites to have higher exposure to buses (by 505 

bus lanes and bus stops) and nearby to main roads. These constitute steady emission sources. 506 

The sites where concentration varied significantly between the different measurement periods 507 

appeared to have greater traffic fluctuations, such as higher combined car, bus, and truck counts 508 

when concentrations were higher, which again appears sensible as these variables would be 509 

expected as the predominant emission source in an urban environment. Assessment of field 510 

notes also helped to shed light on some reasons for large variations in site ranking. For example, 511 

one location, ‘False Creek’, was nearby a concrete factory, which was working when this site 512 

was visited during the midday period. This measurement was significantly higher than that 513 

recorded on the other two visits. Those measurements that were labeled as ‘unstable’ (n = 10) 514 

due to high variability on the one-minute timescale were further examined for specific events 515 

using field notes. Some locations were found to have nearby combustion sources that may have 516 

accounted for this extreme short-term variability (e.g. lawn mowing, smokers, sea planes, and 517 

construction).  518 

 We only measured during daytime weekday periods, and so spatio-temporal patterns 519 

can be expected to change outside of these times. A continuous network may assist in model 520 

improvements (both static and dynamic), firstly by fitting a suitable offset from an appropriate 521 

‘urban background’ site for different times of the day, secondly by allowing for further variable 522 

exploration which might be accountable for this unknown yet identified variability, and thirdly 523 

by ascertaining if specific differences in timing of measurements influenced results. 524 

Continuous monitoring would also be useful for identifying other potential variables that 525 

straddle the dynamic/static definitions such as DoW and times of day. To operate a continuous 526 

network that delivers dynamic models would require other autonomous datasets such as traffic 527 

counters and meteorological stations at some sites or in proximity.  528 

 529 
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4. Conclusions 530 

 This work has illustrated that air quality variations across a small space may have 531 

different controls and patterns than those found at larger-scales. We have shown that, with 532 

appropriate field calibration, LUR models constructed as hybrids of static and dynamic 533 

variables can be built using portable low-cost sensors as the measurement tool. With a 534 

sufficient number of measurement locations, rank correlation methods also proved powerful in 535 

identifying control variables. This is a relatively simple technique to use to understand much 536 

about the different factors influencing concentrations and to explore mitigation through urban 537 

design. Results for the different models found a mix of traffic, urban design and meteorological 538 

variables affecting concentrations, with adjusted R2 values of 0.53 for the static model and 0.46 539 

- 0.58 for the hybrid models. It is however clear that these models do not adequately capture 540 

all observed variability as approximately 40% remained unexplained. For reliable assessment 541 

of exposure, continuous monitoring with an adequately dense network of low-cost devices 542 

would seem to be required. 543 

 544 
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