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 2 

Abstract  21 

The strong temporal and spatial gradients in NO2 concentrations frequently observed in urban 22 

microenvironments are very difficult to measure and model accurately. Recent developments 23 

in low-cost air quality instruments have led to improvement in the spatial coverage of time-24 

resolved measurement, however interpolation is still needed to map pollutant concentrations 25 

and connect time- as well as space- dependent variations to urban design features. Here we 26 

propose a novel approach that uses a previously-described microscale land use regression 27 

(LUR) model to spatially interpolate data from a well-calibrated network of low-cost air 28 

quality instruments.  We use a semiconducting oxide-based ozone sensor to provide a robust 29 

correction of the output of an electrochemical NO2 sensor for ozone interference. We 30 

characterise signal noise probably associated with meniscus fluctuations as a significant error 31 

source, that can be handled with appropriate signal averaging.  The LUR model is used to 32 

provide high spatial resolution in the data set, whilst correlation with sensor measurements 33 

provides a time-dependent estimate associated with different land use types. Observations 34 

from the network of instruments showed marked variability in NO2 concentrations over short 35 

distances (on the scale of 100 m), with highest concentrations reached near bus stops, 36 

intersections and under shop awnings.  This approach connects the complex time- and space-37 

dependent variations to urban design features and is a promising way forward as a basis for 38 

objective spatial mapping of time-dependent mean concentration fields and local population 39 

exposure estimates. 40 

  41 

 42 

 43 

 44 

  45 
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1. Introduction  46 
 47 

Epidemiological studies often use modelling techniques, such as land use regression 48 

modelling or dispersion modelling, to quantify pollutant concentrations (Hoek et al., 2008; 49 

Vardoulakis et al., 2011). Land use regression (LUR) models are suitable for mapping air 50 

pollution with minimal additional data acquisition and are therefore a low-cost alternative to 51 

fixed monitoring (Jerrett et al., 2005). However, standard LUR models lack information about 52 

temporal variability particularly at the daily, hourly and sub-hourly scales. Land use 53 

regression studies also generally focus on city and regional scales where the explanatory 54 

variables have large spatial scale. The spatial resolution of the models is km and not 55 

representative of microscale environments (Mukerjee et al., 2012; Weissert et al., 2018). 56 

Thus, recent studies have focussed on urban design as a driver of air pollution. ‘Microscale’ 57 

LUR models have been developed that emphasise local urban design variables (Miskell et al., 58 

2015; Weissert et al., 2018). The distance scale of these models is 50 m and, indeed, over such 59 

small distance scales the variations are significant. To improve the temporal resolution of 60 

LUR models, previous studies have shown some success using temporally dynamic predictor 61 

variables (i.e. traffic, meteorology) (Masiol et al., 2018; Miskell et al., 2018b; Son et al., 2018; 62 

Yeganeh et al., 2018). This approach may be limited by the availability of such data at a high 63 

temporal and spatial resolution. Other studies have linked regulatory monitoring data with the 64 

output from LUR models (Cordioli et al., 2017; Johnson et al., 2013; Nethery et al., 2008; 65 

Slama et al., 2007). However, regulatory monitoring networks are typically sparsely 66 

distributed across urban areas and data from just one or two sites are used to calibrate LUR 67 

models (Cordioli et al., 2017; Johnson et al., 2013; Slama et al., 2007). Consequently, these 68 

approaches are based on the assumption that temporal variability is the same across large 69 

areas (Cordioli et al., 2017; Johnson et al., 2013). 70 
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The central question of our research is how to assess the full spatio-temporal pollution field 71 

on hourly timescale or shorter, updated at a minimum hourly, and on distance scales of 50 m.  72 

Using nitrogen dioxide (NO2) measurements from a pilot study undertaken in Auckland, New 73 

Zealand, we show that results from low-cost instruments have sufficient accuracy and 74 

precision to resolve spatial variations, then show how to combine results from a network of 75 

low-cost instruments with a microscale LUR model in order to estimate the hourly mean 76 

concentration at a high temporal and spatial resolution, taking into account the effect of land 77 

use variables. The results provide important insights into site-specific effects on the temporal 78 

variability of NO2 concentrations.  79 

 80 

2. Theory 81 

We used a microscale LUR model (Weissert et al., 2018) and a network of low-cost 82 

instruments to derive a LUR model that is updated hourly and to identify site-specific effects 83 

(e.g. interaction of bus stops and traffic lights at different times of the day). 84 

Let 𝑐𝐿̅𝑈𝑅,𝑖 denote the long-term time-averaged concentration at site i modelled by LUR, using 85 

data [𝑧] measured by diffusion tubes. The LUR model is fitted by linear least-squares 86 

regression: 87 

ℙ(𝑐𝐿̅𝑈𝑅,𝑖|[𝑧]) = ℕ([𝛽0 + ∑ 𝛽𝑗𝑞𝑗,𝑖𝑗 ], 𝜎𝐿𝑈𝑅
2 )  (1) 88 

where qj,i denotes the site characteristics and [j] are the fitted parameters, which are 89 

normally-distributed, independent random variables. Here, ℙ denotes the probability density 90 

and ℕ denotes the normal distribution (ℕ(𝜇, 𝜎)).  The coefficient 0 is derived from the j and 91 

the mean of the data and so is not an independent variable. Equation 1 is a typical LUR 92 

formulation as implied in many studies (e.g.Hoek et al., 2008).   93 

 94 
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We developed a new model for explaining the hourly mean concentration, whose expected 95 

value for any particular hour, l, and any particular site, i, 𝑐𝑖̅, is conditional upon the original 96 

LUR-modelled concentration for that site, 𝑐𝐿̅𝑈𝑅,𝑖, the measured set of hourly mean values from 97 

the sensors for that hour, [yk], and the original LUR model applied at the instrument sites, 98 

[𝑐𝐿̅𝑈𝑅,𝑘]. We assume a linear relationship between the measured, hourly-averaged sensor data, 99 

[yk,l] for any given hour of any given day, l, and the original LUR model: 100 

𝑦𝑘,𝑙 = 𝑎̂1,𝑙𝑐𝐿̅𝑈𝑅,𝑘  + 𝑒𝑙  (2) 101 

where, provided the sensors and the diffusion tubes have the same calibration slope with 102 

respect to the true NO2 concentrations, any offset error between sensors and diffusion tubes 103 

is zero-mean with normally distributed errors. If the model is fitted by linear least squares 104 

regression, then el are normally-distributed zero-mean, random errors and the slope, 𝑎̂1,𝑙, is a 105 

normally distributed random variable. Then we assume that this model applies at all other 106 

sites, i. That is, the model for the hourly-averaged concentration at site i for any given hour 107 

of any given day, l, is: 108 

𝑐𝑖̅,𝑙 =  𝑎̂1,𝑙𝑐𝐿̅𝑈𝑅,𝑖 + 𝜀𝑖,𝑙   (3) 109 

where the estimates 𝑎̂1,𝑙 are derived by least-squares fitting of equation 2. The actual 110 

distribution of the error term (indication of the model performance), i,l would reflect site-111 

specific effects that are not captured by the original LUR model, and can be determined at the 112 

instrument sites, k.   113 

 114 

3. Materials and Methods 115 

3.1 Location  116 

Auckland is New Zealand’s biggest and fastest growing city and is characterised by high 117 

traffic volumes with a large proportion of diesel vehicles (Statistics New Zealand, 2013). 118 

Road traffic is therefore the largest source of air pollution in Auckland, accounting for almost 119 
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80% of the NOx (NO2 and NO) emissions (Xie et al., 2014). However, Auckland’s coastal 120 

geographic location facilitates relatively high wind speeds, preventing a large build-up of air 121 

pollutants (Senaratne and Shooter, 2004). The focus of this pilot study was on a ~2 km long 122 

road section around 4 km south of Auckland’s city centre (Figure 1). This section of road 123 

(Dominion Road) was chosen as it not only has high vehicle traffic (average daily weekday 124 

traffic: 25,901 vehicles) (Auckland Transport, 2017) but is also a busy area for pedestrians 125 

using the shops, bars and cafés along the road. Dominion Road is also well-used by buses and 126 

commuters to Auckland’s airport and its central business district (CBD). We deployed eight 127 

instruments at different sides of the road, spaced between ~ 100 m and 1 km apart, and at 128 

different distances from intersections (Figure 1a). In addition, in a previous study carried out 129 

from November 2016 – February 2017, we measured NO2 concentrations at 40 sites, 130 

representative of the typical land use characteristics along the road section, using Palmes 131 

diffusion tubes (Weissert et al., 2018) (Figure 1b). These measurements were used to develop 132 

a microscale LUR model for the study area, which is described in detail in Weissert et al., 133 

(2018). The presence of awnings and the number of bus stops within a 100 m buffer had the 134 

highest proportional contribution (79% and 17%, respectively) to the modelled NO2 135 

concentrations, with street width and distance to major road playing a minor role. The final 136 

model explained 66% of the variability in NO2 concentrations (RMSE: 3.3 µg m-3) (Weissert 137 

et al., 2018). We also had a reference site in Auckland’s CBD, 3 km north of Dominion Road 138 

(Figure 1c). The study was undertaken over 30 days during summer when mean temperatures 139 

ranged between 14°C and 24°C (NIWA, 2017), and the wind was from the SW with speed 140 

predominantly in the range 0 – 2 m s-1 (detailed data in the Supporting Information, SI).   141 
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 142 

Figure 1. a) Map of instrument locations, b) location of the diffusion tubes deployed in the 143 

previous study and c) map of the instrument locations in relation to Auckland’s Central 144 

Business District (CBD) and the location of the reference site at the edge of the CBD.  145 

 146 

3.2 Low-cost instruments 147 

The term ‘low-cost sensor’ is often used to refer to the assembly of the detection element, 148 

measurement electronics, air-inlet, air-sampling and communications systems, and housing 149 

and mounting that together deliver the measurement result; ‘low-cost’ refers to such sensors 150 

whose installed capital cost is less than about 2% of that of a regulatory-standard reference 151 

instrument. The term ‘sensor’ can also be taken to mean just the detection element and its 152 

specifically associated electronics and calibration. Here, we use it in that way since the whole 153 

measurement package (the ‘instrument’) contains several such sensors. The deployed ‘low-154 

cost’ instruments were the AQY from Aeroqual Ltd, Auckland, New Zealand. An independent 155 
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validation of these instruments, for both ozone and NO2 has also been reported (South Coast 156 

AQMD, 2018). Since the accuracy and precision are critical to the assessment of the model 157 

developed in this paper, we give a detailed assessment here. Nitrogen dioxide in the ‘low-158 

cost’ devices was measured using an electrochemical sensor (Membrapore type O3/M5; 159 

output ~ 2 nA / (μg m-3) that was exposed directly to the atmosphere hence sampling by 160 

diffusion. The ‘low-cost’ instruments also incorporated an ozone sensor that uses a gas-161 

sensitive semiconducting (GSS) oxide, WO3, as the detection element (Aliwell et al., 2001; 162 

Hansford et al., 2005; Utembe et al., 2006; Williams et al., 2002). Air was drawn through the 163 

ozone sensor by a fan, through PTFE tubing and stainless steel filters. The ozone sensor has 164 

been extensively validated in both laboratory and field studies (Air Quality Sensor 165 

Performance Evaluation Center, 2018; Bart et al., 2014; Deville Cavellin et al., 2016; Lin et 166 

al., 2017; Miskell et al., 2018a; Williams et al., 2013). The major cause of drift in these, which 167 

occurs over the long term, is particulate deposition in the inlet and on the sensor causing ozone 168 

decomposition or diminution in the air flow. The two sensors were mounted side-by-side, 169 

protruding from the base of the polycarbonate case and protected by a shield from accidental 170 

impacts (photographs in the SI). Sensor signals were sampled every 1-minute, digitised using 171 

a 16-bit A-D converter, and transmitted using a cell-phone modem to a remote database. Key 172 

features of the device include solar shields to regulate heat, and a sophisticated inlet 173 

configuration for the ozone sensor (inert dust filters; anti-static and inert materials).  174 

 175 

3.2.1 NO2 measurements: design principles 176 

The NO2 concentrations averaged over a 2-week period, measured using diffusion tubes in 177 

the previous study (Weissert et al., 2018), varied from 4 to 30 μg m-3. Reliable measurement 178 

over such a low concentration range, that is sufficiently accurate to discriminate effects 179 

between sites, is very challenging using low-cost sensors (Baron and Saffell, 2017; Cordero 180 
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et al., 2018; Cross et al., 2017; Feinberg et al., 2018; Lewis et al., 2016; Munir et al., 2019; 181 

Popoola et al., 2018) and requires careful consideration of the sensor performance.  The 182 

electrochemical NO2 sensor is a conceptually simple but physically complex device (Baron 183 

and Saffell, 2017). A current is measured in an electrochemical cell. Conceptually, the 184 

electrode potential at a sensing electrode is set such that the reaction rate at the sensing 185 

electrode is constrained to a maximum value by the rate of diffusion of the gas through a 186 

membrane that covers the electrode. Thus, the current for the reaction of gases at low 187 

concentration in air is proportional to the product of gas concentration and diffusion 188 

coefficient through the membrane. However, the signal is the sum of an offset current and 189 

currents due to the reaction of different gases at the electrodes, and is dependent on 190 

electrocatalytic activity of the electrode materials towards the different gases that might be 191 

present. The electrode is a porous structure through which gases diffuse to the electrode-192 

electrolyte interface. The reaction current depends on wetted area, gas diffusion through the 193 

porous electrode structure, and temperature. Oscillations in water vapour pressure, 194 

temperature and water vapour transport can cause oscillations in the meniscus where the liquid 195 

electrolyte, electrode and gas meet, hence alterations in wetted area. Sudden changes in 196 

humidity indeed cause significant, rapid current transients in these electrochemical gas 197 

sensors (Pang et al., 2018; Pang et al., 2017) as we have also observed. The offset current, 198 

and the electrode reaction kinetics, can also change with time, since the reactive electrode 199 

catalyst materials change slowly with time. These effects can be significant for measurement 200 

at typical urban atmosphere concentrations, where the reaction current is typically 2% or less 201 

of the offset current for the commercial devices that we used.  202 

Ozone and nitrogen dioxide are both electroreduced at a diffusion-limited rate at the operating 203 

potential of the sensor. Thus, the measurement model for the sensor can be written:  204 

 205 
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𝑖𝑚𝑒𝑎𝑠 = 𝑖0 − 𝑘1𝐶𝑁𝑂2
− 𝑘2𝐶𝑂3

      (4) 206 

𝐶𝑁𝑂2
= 𝑏0 − 𝑏1𝑖𝑚𝑒𝑎𝑠 − 𝑏2𝐶𝑂3

     (5) 207 

 208 

Where imeas and i0 are the measured and the offset current, respectively and the parameters b0 209 

= i0/k1, b1 = 1/k1 and b2 = k2/k1 have to be determined by calibration. A simple correction can 210 

be made if an independent measure of the ozone concentration is available. In the literature, 211 

this has been done using a remote reference analyser (Mead et al., 2013) or a model for ozone 212 

concentration (Popoola et al., 2018), or another electrochemical sensor (e.g. Cordero et al., 213 

2018; Munir et al., 2019). On the microscale, with traffic-dominated emissions, variability is 214 

expected to be large both in time and space, so we rejected a remote or model-based approach. 215 

Correction using an electrochemical sensor for ozone relies on constructing sensors for which 216 

k1 and k2 are sufficiently different; however, since NO2 and O3 have virtually the same 217 

diffusion coefficient in air, they have almost the same molecular weight, k1 ≈ k2. A 218 

disadvantage of that method is that a total of 6 different parameters must be determined, and 219 

these have to remain stable, and be confirmed to be stable, over the life of the sensor. In 220 

addition, the electrochemical ozone sensor has the sensitivity to temperature and humidity 221 

fluctuations that are found for the nitrogen dioxide sensor, making the compensation difficult 222 

(Cordero et al., 2018). An alternative is to incorporate an ozone decomposition catalyst on the 223 

NO2 sensor (Hossain et al., 2016). A disadvantage of this is reliance on the unknown 224 

efficiency of the ozone catalyst, which must remain high, and be confirmed to remain high, 225 

over the life of the sensor. We have adopted an alternative approach, which is to use a 226 

semiconducting oxide-based sensor for ozone. As noted above, this sensor has been 227 

extensively validated in long-term measurements in the atmosphere, and is negligibly 228 

sensitive to humidity changes, to nitrogen oxides at atmosphere concentrations, and to 229 

temperature variations (Bart et al., 2014). 230 
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 231 

3.2.2 NO2 measurements: errors and validation 232 

Drift or errors in the NO2 measurement could arise because: 233 

a) The actual value of the offset i0 could alter from the value stored in the instrument and 234 

used in the calculation: background currents in the electrochemical cell are 235 

temperature and wetted area (hence relative humidity and interfacial tension) – 236 

dependent. Uncalibrated interferences could also cause additional currents and hence 237 

an alteration in i0. A specific issue is the response to rapid humidity changes noted 238 

above.  239 

b) The actual value of k1 could alter from the value stored in the instrument and used in 240 

the calculation: clogging of pores in the membrane by dirt deposited in the sensor, or 241 

by poisoning or ageing of the electrode. 242 

c) The actual value of b1 can change from the value stored in the instrument and used in 243 

the calculation: decomposition of ozone inside the sensor housing, inlet filter or on the 244 

membrane as a consequence of dirt deposition. 245 

d) The instrument-measured value of CO3 can drift from the true value: drift in the ozone 246 

sensor. 247 

Of particular significance is signal noise that is specifically related to exposure in the 248 

atmosphere, previously noted and attributed to atmosphere composition fluctuations (Baron 249 

and Saffell, 2017; Mead et al., 2013) (Figure 2a). The fluctuations were of relatively high 250 

frequency (Figure 2b). The amplitude distribution of the sampled signal overall could be 251 

represented as the sum of two normal distributions, varied with time, and could roughly be 252 

classified into ‘noisy’ and ‘quiet’ periods, not correlated with a diurnal cycle (Figure 2c). The 253 

standard deviation of the sampled signal did not correlate with the mean signal. This noise 254 
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was not present under laboratory conditions of constant humidity (Figure 2d). The noise was 255 

also removed if the sensor in the atmosphere was covered with a cap (Figure 2e), or was 256 

mounted at the end of a sufficiently long tube, open to the atmosphere at the end remote to 257 

the sensor, and could be altered by altering the size of the hole in the cap covering the sensor. 258 

Therefore, these fluctuations were not due to the electronics, or to rapid temperature 259 

fluctuations but were connected to exposure in the atmosphere and particularly to the design 260 

of the sensor inlet and hence probably to fluctuations around the sensor inlet that cause 261 

perturbations in the meniscus at the fluid-electrode-gas interface. Such fluctuations could 262 

perhaps be related to fluctuations in transport of water between liquid and gas phases. A 263 

reliable measurement of (NO2 + O3) could be obtained by averaging over a sufficient time. In 264 

the case of the instruments used in the present study, we used the hourly average of 265 

instantaneous measurements made once per minute. Subsequent instrument designs have used 266 

higher frequency sampling, but these were not available for the present study. For the 60-267 

point running mean, the estimated standard deviation in the mean based on the noise 268 

amplitude distribution and the sensitivity determined from calibration using the running mean 269 

was between 1.7 and 4.3 μg m-3 NO2 (‘quiet’ and ‘noisy’ periods respectively) and from the 270 

60-point running standard deviation determined over several days was 2.5 μg m-3 NO2.  271 

 272 

 273 
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 274 

Figure 2. a) Raw electrochemical sensor signal, sampled at 0.15 Hz, illustrating the offset and 275 

noise and the effect of signal averaging by a running mean. The cycle of daylight hours is 276 

superimposed. b) Expansion of time scale of a segment of the record, to illustrate the high-277 

frequency noise. c) Amplitude distribution of the noise, modelled by a sum of two Gaussians, 278 

with standard deviation 8.7 mV (equivalent to 13 μg m-3 NO2) and 21 mV (equivalent to 33 279 

μg m-3 NO2). d) Signal noise at high time resolution in ambient air in a laboratory chamber: 280 

signal standard deviation 0.67 mV, equivalent to 1 μg m-3 NO2. e) Effect of placing a cap over 281 

the sensor, outside in the atmosphere (inset: segment of the time series with cap on at high 282 

time resolution: signal standard deviation 1.4 mV, equivalent to 2.2 μg m-3 NO2.). The 283 

instrument output voltage sensitivity to current variations through the sensor is 1.4 mV / nA. 284 

 285 

To verify the performance of the devices, first ten devices were co-located for a period of 35 286 

days with reference instruments for O3 and NO2 (O3: Thermo Scientific Model 49i, NO2: 287 

Thermo Scientific Model 42i) at a site close to a motorway junction, approximately 3 km 288 

distant from the study area (Figure 1).  The performance of the O3 sensor is critical, since 289 

errors propagate directly through to the NO2 estimation.  For hourly-averaged data, individual 290 

devices showed excellent correlation between the O3 sensors and the reference analyser (Adj. 291 

R2 = 0.99) with no drift during the entire co-location period.  The O3 sensors also agreed well 292 

among each other, with an Adj. R2 of 0.98.  The major effect on the accuracy of the NO2 293 
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readings was the noise. The results were however satisfactory with sufficient averaging: we 294 

chose 1 hr as the time-scale for consistency with practise reporting results from reference 295 

stations.  As noted above, the standard deviation in the 60-point mean of the raw signal from 296 

the NO2 sensor was equivalent to 2.5 μg m-3 NO2.  We determined the measurement model 297 

coefficients (equation 5) using the final 10 days of hourly-averaged data from the co-location, 298 

before deployment (‘calibration period’) and evaluated the accuracy and precision relative to 299 

the reference instruments using the previous 23 days of data (‘test period’). The calibration 300 

period was chosen to be immediately prior to deployment to minimise the risk of drift during 301 

the deployment period.  The test period was of similar length to the site deployment. For the 302 

aggregate of all ten NO2 instruments the root mean square error (RMSE) from the 1:1 line 303 

was 5.5 µg m-3 (Figure 3).  For individual NO2 instruments, the RMSE evaluated against the 304 

reference analyser ranged from 4.1 – 5.1 µg m-3 during the test period.   305 

 306 

 307 

Figure 3. Scatter plot showing the relationship between reference data and the sensor-308 

calculated NO2 during the test period.  Dotted is the 1:1 line; solid is the regression line. 309 

 310 
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To illustrate the stability over time of the results, Figure 4 shows the hourly-average midday 311 

NO2 and O3 concentration at the reference site for each of the ten sensors, compared with the 312 

reference analyser during the test period.  313 

After the co-location at the reference site eight of the ten devices were then mounted at 314 

different sites across the study area. The instruments were mounted at approximately 3 m 315 

height in front of shops and businesses where an external power supply was available. Site 316 

photographs are given in the SI. One site (site H) was powered with solar panels and two were 317 

battery powered during daytime due to the mains supply being limited by timers. In addition, 318 

we measured wind direction and wind speed at site E using a sonic anemometer (WindSonic, 319 

Gill Instruments Ltd.) that was installed on a lamp post 5 m above the sidewalk (wind data 320 

are shown in the SI). 321 

The main concern relating to the data for the deployment period was to demonstrate the 322 

stability of the devices over time, and to demonstrate that the observed site-specific effects 323 

were significant relative to the errors of measurement. To evaluate the stability of the ozone 324 

sensors we used the mean-variance (MV) proxy matching procedure described in previous 325 

work (Miskell et al., 2016; Miskell et al., 2018a). There were just two reference instruments 326 

available at locations that were not in similar land use to the study site – the motorway junction 327 

site and a suburban site approximately 7 km distant, operated by Auckland City Council. We 328 

calculated apparent slope and offset using 3-day running mean and variance, as described 329 

previously (Miskell et al., 2018a) and did not note any significant drift.  330 

 331 
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 332 

Figure 4. Mean hourly-averaged midday NO2 concentrations (error bars: standard deviation) 333 

for each of the ten instruments at the reference site compared with the reference analyser for 334 

the test period.  335 

 336 

Figure 4 shows that, at the reference site before the deployment, midday NO2 did not show 337 

any significant long-term trend. Therefore, as a further check to assess the stability of the NO2 338 

results during the deployment, we simply checked for any long-term trend in the hourly-339 

average values at midday for each site. Figure 5 shows the results for the eight deployment 340 

sites. Any trend was at most 5 µg m-3 across the whole deployment period.  341 
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 342 

Figure 5. Long-term trend for each site (instrument) of measured hourly-averaged midday 343 

NO2 concentration during the deployment period illustrating small drift during the study 344 

period.  345 

 346 

4. Results  347 

4.1 Spatial and temporal variability of NO2 concentrations 348 

Results from the low-cost instruments showed very strong gradients in NO2 concentration in 349 

both time, and space, over short distances, of the order of 100 m. Mean diurnal NO2 350 

concentrations are illustrated in Figure 6a, and the variability is further illustrated by the 351 

diurnal variation of the standard deviation of measurements over 1 hr (Figure 6b). In general, 352 

NO2 concentrations were low, ranging from around 5 µg m-3 at night-time to a maximum 353 

between 25-30 µg m-3 during the morning rush hour on weekdays, close to heavily-trafficked 354 

intersections and bus stops (sites A, C and G: Figure 6). In contrast, other sites, even relatively 355 

close by, showed maximum concentrations below 20 µg m-3 throughout the day. The evening 356 

peak was less distinct (Figure 6). On weekends, NO2 concentrations remained below 20 µg 357 

m-3 throughout the day with no distinct morning peak (Figure 6). Ozone followed an opposite 358 

diurnal cycle to NO2 with a maximum at site E and a minimum at sites A, C and G (see SI), 359 

consistent with titration of marine background O3 against vehicle-emitted NO (Weissert et al., 360 

2017).  361 
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 362 

Figure 6. Comparison of the diurnal variability across sites of the a) mean and b) standard 363 

deviation of NO2 concentrations between weekday and weekends.  364 

 365 

4.2 Time-dependent LUR model 366 

Figure 7 gives example correlations according to equation 2 of the hourly-averaged sensor 367 

measurements with the microscale LUR model, applied at the eight sites. It indicates that, 368 

while the static linear model is reasonable (Adj. R2 = 0.70 – 0.96 for the example shown in 369 

Figure 7) there are some significant site-specific, time-dependent deviations.  370 
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 371 

Figure 7. Linear regression of hourly-averaged sensor results from one day against the static 372 

LUR model applied at the eight instrument sites. The black solid line is the slope from 373 

equation 2 and the black dashed lines are  1 standard error of the slope. The dotted red line 374 

is the 1:1 line. The panels are different hours of the day.  375 

 376 

Figure 8 shows the hourly-averaged sensor data plotted against the hourly-averaged modelled 377 

NO2 concentrations, 𝑐𝑖̅,𝑙 (equation 3), for each site over the entire deployment period. The 378 

model in general captured the time- and space-variation in NO2.  379 

 380 
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 381 

Figure 8. Hourly averaged NO2 concentrations measured at the eight sites against the 382 

modelled NO2 concentrations (𝑐𝑖̅,𝑙, equation 3). The dashed line is the 1:1 line. 383 

 384 

Figure 9 shows the difference between the modelled and measured concentrations, l,k 385 

(equation 3), coded by site, for the whole period of the study, plotted against the hourly-386 

averaged modelled data and also shows the distribution of the difference at each site.  Figure 387 

9 indicates that there is no concentration-dependent bias. Figure 10 shows the mean diurnal 388 

difference averaged over the entire deployment period, between hourly-averaged measured 389 

and modelled NO2 concentrations, evaluated for each site.  These variations are small, but the 390 

errors are also correspondingly reduced by the averaging over 30 days: estimated standard 391 

deviation ~ 1 μg m-3. Figures 9 and 10 show that there are site- and time-specific effects that 392 

are not captured by the model and that are not well-correlated with the modelled 393 

concentrations.  394 

 395 
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396 

Figure 9. Variation of the difference between modelled and measured hourly-average NO2 397 

concentrations (l,k, equation 3) with the modelled hourly-averaged concentration for the eight 398 

instrument sites, and the distribution of this difference at the different sites.  399 

 400 

 401 

Figure 10. The mean diurnal variability of l,k at the instrument sites, k. The colours show 402 

where the model over- or underestimated NO2 concentrations.  403 

 404 

5. Discussion  405 



 22 

Despite the low pollutant concentrations, the low-cost instruments successfully captured 406 

significant differences between the different sites. The model, fusing the low-cost sensor 407 

observations with the microscale LUR model, captured the time and space variation 408 

reasonably well.  The distribution of the difference between the modelled and measured NO2 409 

concentrations shown in Figure 10 shows small offsets for different instruments, that are 410 

within the error estimates developed in the ‘methods’ section.  Superimposed on these offsets, 411 

a clear diurnal variation can be seen at some sites and not at others, of the difference between 412 

measurement and model, averaged over the whole deployment (Figure 10). Although the 413 

number of sites in the study was small, a tentative assessment of the site- and time-specific 414 

effects could be made, relating the observations to specific urban design features. Table 1 415 

shows the dominant parameters for the LUR model at each instrument site, and also notes the 416 

side of the road, the presence of traffic lights and the direction with respect to the dominant 417 

direction of traffic, which determines whether traffic is stationary during the rush hour or 418 

accelerating on the instrument side of the road. The highest concentrations, which also had a 419 

notable diurnal variation, were observed at a site under an awning directly next to a bus stop, 420 

(site A and C, respectively).  Sites close to bus stops but not close to traffic lights (D, E, F) 421 

did not show a significant diurnal variation.  Site H was unusual, showing a diurnal variation 422 

with the lowest concentrations during the day.  423 

 424 

LUR modelling studies undertaken at the local (Miskell et al., 2015) and microscale (Weissert 425 

et al., 2018) in Auckland have identified the proximity and number of bus stops as key 426 

predictors for NO2 concentrations. The importance of bus stops within a short distance within 427 

the LUR model emphasises the significance of diesel buses as the major source of NOx 428 

emissions. A sizable share of NOx emissions from diesel vehicles is associated with uphill 429 

driving, acceleration on a ramp, or positive accelerations from a standstill (Franco, 2014; Gis, 430 
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2017). For turbocharged diesel engines, NO emissions increase strongly with relative positive 431 

acceleration, defined as the integral of the product of instantaneous speed and instantaneous 432 

positive acceleration over a defined section of a driving schedule, and are also correlated with 433 

gear changes during the acceleration (Giakoumis, 2018; Giakoumis and Zachiotis, 2018). The 434 

occurrence of events such as these would vary across the day, and would depend on traffic 435 

lights, the dominant direction of traffic with respect to the lights, traffic density and the 436 

interaction of traffic lights with one another (reflected in the average transit time).  A diurnal 437 

variation might thus be expected, associated with traffic lights. Sites D, E, F were some 438 

distance from traffic lights, which could account for the lack of diurnal variation of the 439 

difference between measurement and model at these sites. Site A, which recorded the highest 440 

concentrations, is upstream from a traffic light and on the west side of the road, where morning 441 

traffic is higher, and under an awning. It is directly by a bus stop. Further, it is on a slight hill, 442 

where traffic is accelerating away from the traffic light, and exit from the bus stop is impeded 443 

by parked cars. Buses at site A arrive around every 5 minutes throughout the day, likely 444 

explaining the continuously high NO2 concentrations at this site.  Whilst there is no bus stop 445 

very close to site C, this site is upstream from a traffic light, just after where a bus-only near-446 

side lane terminates at a lane for cars turning left at the traffic light (driving is on the left in 447 

New Zealand). Buses, which pass this site around every 5 minutes throughout the day, are 448 

thus stopped near the site by the traffic waiting to turn (see SI for site photos). Whilst 449 

measured concentrations at Site H were low, this site was unusual in showing a diurnal 450 

variation with overestimated concentrations during the morning and underestimated 451 

concentrations in the evening. There are a number of fast-food outlets near this site, which 452 

are busiest at night, which may explain the observed variation. Although the offsets for the 453 

different instruments were within the error estimates for the model, some tentative deductions 454 

can be made in relation to the results from sites E, F and G. Site F was not directly next to a 455 
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bus stop but it was located between the entry and exit of a large car park hence where vehicles 456 

would be accelerating, possibly explaining the higher NO2 concentrations measured by the 457 

instruments compared to the model. Similar to site A, site G was directly downstream from a 458 

traffic light, likely explaining the higher measured NO2 concentrations.  Site E was close to a 459 

bus stop and under an awning, where higher NO2 concentrations would be expected, yet 460 

measured NO2 concentrations were low.  However, there is a potential effect of the siting: the 461 

instrument was against the wall directly under the awning, where air circulation may be 462 

limited. Previous studies have shown that pollutant concentrations can be significantly lower 463 

at the building side than the kerbside (Moodley et al., 2011) and that concentrations decrease 464 

with increasing height (Vardoulakis et al., 2011), both effects possibly explaining the lower 465 

NO2 concentrations recorded by the instrument. The diffusion tubes, which were used to 466 

develop the LUR model, on the other hand were directly on the kerbside and at a lower height 467 

(2 m). 468 

While NO2 concentrations in Auckland are relatively low compared to other cities, our results 469 

indicate that the largest contribution of high NO2 concentrations is likely related to buses, 470 

which are almost exclusively diesel operated in Auckland, and start-stop traffic at traffic 471 

lights. Considering that regular commuters wait at bus stops twice a day, five times per week, 472 

which accumulates to around 60 min per week, and wait at intersections to cross the road, this 473 

can contribute considerably to an individual’s exposure (Velasco and Tan, 2016). 474 

 475 

Table 1. Dominant parameters for the LUR model (bold parameters were significant in the 476 

LUR model development) and additional parameters that seem to be relevant at the instrument 477 

locations. Values are the characteristics of each of these parameters at each instrument site. 478 

Site Awning Nr. of 

bus 

stops 

Traffic 

light 

within 

100 m 

Distance 

to bus 

stop (m) 

Side 

of 

Street 

Dominant 

direction to 

traffic light 
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within 

100 m 

A Y 3 Y 3 W Downstream 

B N 3 Y 30 E Upstream 

C Y 4 Y 70 W Upstream 

D Y 2 N 18 W - 

E Y 2 N 10 E - 

F N 2 N 15 E - 

G Y 3 Y 61 W Downstream 

H Y 1 N 37 W - 

  479 

 480 

6. Conclusion 481 

We have presented a novel approach to combine a network of low-cost air quality instruments 482 

with microscale LUR models to interpolate and map NO2 concentrations at 50 m spatial scale 483 

and hourly time-scale.  With attention to detail, specifically to the electrochemical NO2 sensor 484 

noise, and to reliable correction for the ozone interference, low-cost NO2 instruments give 485 

data that are sufficiently accurate to capture the important spatio-temporal variations of 486 

concentration of this pollutant in an urban environment, even if the concentrations are low.  487 

The study has also shown how analysis of differences between the measured and modelled 488 

concentrations can reveal specific urban design features that are not necessarily well-captured 489 

by simple linear LUR models but which might contribute disproportionately to population 490 

exposure.  Further research is needed to assess site and time specific effects across different 491 

seasons and weather conditions. However, to date long-term NO2 data from dense low-cost 492 

instrument networks are rare largely due to sensor drift and the lack of efficient calibration 493 

procedures.  494 

The ability to map air pollutants across a grid for any given day and hour at a high spatial 495 

resolution offers new opportunities for exposure assessments that take account of people 496 

moving through microenvironments at different times of the day/week/year. For example, it 497 

allows comparing the air pollution exposure along different routes to a supermarket, school 498 
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or restaurant at different hours of the day, different days of the week or month.  The method 499 

could be used as a tool to identify pollution hot spots at different times of the day, which could 500 

help urban planning. 501 

This study has indicated the importance of site-specific interaction effects between land use 502 

variables, that are not well handled by simple spatial linear models. Models which incorporate 503 

both space- and time- dependent variables, and which can be constructed through a 504 

measurement programme using simple hand-held sensors (Miskell et al., 2018b) offer a 505 

possible way forward. Another approach may be the use of geographically weighted 506 

regression models, that account for non-stationary spatial effects (Song et al., 2019). 507 

Limitations are also imposed by siting requirement for the low-cost instruments, chiefly 508 

access to power. Specifically, there is the need to ensure that the sampled air is representative 509 

of the main land use. If the network is large enough, the LUR model may be built directly 510 

using the output from the low-cost air quality instruments. This may also allow investigation 511 

of space- and time-dependent effects and model adjustments in more detail. 512 
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