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ABSTRACT 

It has been well established in several experimental and modeling studies that leak 

areas are often not fixed, but vary as linear functions of pressure. Replacing this linear 

equation into the orifice equation results in a two-part modified orifice leakage 

equation with head exponents of 0.5 and 1.5 respectively. The purpose of this study 

was to incorporate the modified orifice equation into the hydraulic network 

formulation and evaluate its impact on model performance. The conventional and 

modified software were applied to 600 instances of stochastic leakage distributions in 

three different pipe networks. It was found that the conventional power leakage 

equation results in significant leakage volume and flow rate errors under certain 

conditions. In addition, a problem of non-convergence of the conventional global 



gradient algorithm for leakage exponents greater than two was observed and is 

discussed. 

INTRODUCTION 

Hydraulic network modeling software, including the commonly used Epanet package, 

(Rossman, 2000), employs a power equation to model pressure dependent outflows 

such as leakage. Researchers and practitioners in the leakage field have long realized 

that leakage does not adhere to the theoretical orifice equation (a power equation with 

a fixed exponent of 0.5) but mostly require higher power exponents to be simulated 

realistically (Ogura, 1979; Hiki, 1981). 

Several causes for the power leakage exponent diverging from the theoretical value of 

0.5 have been investigated, including leakage hydraulics (Van Zyl & Clayton, 2007), 

soil-leak interaction (Walski, 2006; Van Zyl et al., 2013) and the distribution of leaks 

in a network (Schwaller & Van Zyl, 2014). However, the overriding cause of 

variations in the leakage exponent has been shown to be that leak areas are not fixed, 

but vary with system pressure (May, 1994, Van Zyl & Clayton, 2007; Cassa et al., 

2010; Ferrante, et al., 2011; Massari et al, 2012; De Marchis et al., 2016; Fox et al, 

2016). In addition, the variations in leak area have been shown to be a linear function 

of pressure head under both elastic and viscoelastic deformation conditions for 

different leak types, pipe materials and loading states (Cassa & Van Zyl, 2013; Van 

Zyl & Cassa, 2014; Malde, 2015; Ssozi et al, 2016). 

The variations in leak area under plastic deformation and fracture conditions cannot 

be assumed linear, but Van Zyl et al (in press) argues that these mechanisms are 

unlikely to dominate the pressure-leakage response of distribution systems because 

they a) are irreversible and b) only occur when pressures are increased and not when 



they are decreased. Thus, it is assumed in this study that all leak areas vary linearly 

with pressure head. 

Van Zyl et al (in press) investigated the implications of a linear head-area relationship 

and concluded that the power equation is flawed in that its parameters aren’t constant, 

but vary with system pressure, and that the leakage exponent approaches infinity 

under certain conditions. They concluded that significant modeling errors are possible 

if the power equation is extrapolated beyond its calibration pressure range and at high 

exponent values. Finally, they recommended that the linear head-area relationship be 

explicitly incorporated in hydraulic simulation software for more realistic leakage 

modeling. 

The aim of this study was to incorporate and test the inclusion of a modified orifice 

equation, which explicitly includes a linear head-area relationship in the standard 

hydraulic network solver model. 

The next section develops a modified orifice equation that incorporates a linear 

pressure-area relationship, describes its relationship to the power formulation and 

provides a brief description of relevant water loss benchmarks. The standard hydraulic 

network model is then modified to incorporate the linear head-area relationship. 

Finally, the implications of this modification for model convergence and accuracy are 

investigated based on three example networks with stochastic leak distributions. 

BACKGROUND 

Realistic leakage modeling  

Hydraulically, leaks are orifices that should adhere to the orifice equation: 

𝑄 = 𝐶$𝐴 2𝑔ℎ                                                               … (1) 



Where Q is the orifice flow rate, Cd discharge coefficient, A orifice area, g 

acceleration due to gravity and h the head differential over the leak.  

The areas of real leaks are not constant, but can be assumed to vary linearly with 

pressure, i.e.:  

𝐴 = 𝐴) + 𝑚ℎ                                                                    … (2) 

Where A0 is the initial area (the area of the leak opening when the head differential is 

zero) and m the head-area slope.  

Replacing (2) into (1) results in the modified orifice equation, known in leakage 

practice as the FAVAD (Fixed and Variable Area Discharges) equation (May, 1994): 

𝑄 = 𝐶$ 2𝑔 𝐴)ℎ).- + 𝑚ℎ..-                                              … (3) 

An important consequence of the linearity assumption of the head-area relationship is 

that the total leakage area of a system with many leaks will also display a linear head-

area relationship. In addition, the total system initial area (A0) will be the sum of all 

the individual leak initial areas, and the total system head-area slope (m) will be the 

sum of all the individual leak head-area slopes (Schwaller et al., 2015). This means 

that Eq. (3) may be applied equally to a system (or pipe) with a single or multiple 

leaks. 

A power formulation is commonly used to model the behavior of leaks, both in 

hydraulic modeling software (Rossman, 2000) and leakage management practice 

(Lambert, 2000; Farley and Trow, 2003):  

𝑄 = 𝐶ℎ/                                                                   … (4) 



Where C is the leakage coefficient and a the leakage exponent. In modeling practice, 

such as the widely used Epanet software, the power equation is called an emitter 

(Rossman, 2000) and is used to model pressure-dependent consumer demands and 

leakage. In leakage management practice, Eq. (4) is called the power leakage equation 

and the symbol N1 is used instead of a (Lambert, 2000). 

Leakage benchmarks 

A brief overview is provided of internationally accepted water loss terminology and 

benchmarks relevant to this study (AWWA, 2016). It is desirable to split a large 

distribution system into smaller discrete zones called DMAs (district metered areas). 

Ideally DMAs should be supplied through a single metered supply point where, if 

desired, the inlet pressure can be controlled.  

The level of real losses in a DMA is appraised using the concept of an infrastructure 

leakage index (ILI), defined by: 

𝐼𝐿𝐼 = 	 3456
7456

                                                            … (5) 

Where CARL is the current annual real losses and UARL the unavoidable annual real 

losses in the system. The CARL is normally estimated by measuring the minimum 

night flow rate (MNF) entering a DMA (typically between 3:00 and 5:00 in the 

morning) and subtracting the estimated user consumption.  

The UARL (in L/day) represents the theoretical low limit of leakage that could be 

achieved in a specific system at a given pressure (AWWA, 2016; Lambert, 2009). The 

UARL formula is given by: 

𝑈𝐴𝑅𝐿 = 18𝐿< + 0.8𝑁? + 25𝐿A ℎ4B                               … (6) 



Where Lm is the length of mains (in km), Nc the number of service connections, Ls the 

length of service lines between the property boundary and water meter (in km) and 

hAZ the average zonal pressure head. The length of service lines Ls is only included in 

Eq. (6) when consumer meters are installed within the property boundary, otherwise it 

is set to zero. 

MODEL DEVELOPMENT  

The aim of this section is to propose a hydraulic model formulation that incorporates 

the modified orifice equation (3) for leakage modeling. The standard model 

formulation is first presented and the modifications to implement the modified orifice 

equation are then discussed. 

Network formulation with standard leakage power function 

The topology of a water distribution network is represented by a set of nodes and 

links (a graph). A link corresponds to a collection of pipes, valves and pumps.  

The steady state system equations are formulated by applying principles of 

conservation of mass and energy at each node and link respectively. These equations 

are solved simultaneously to obtain pressure heads at the junction nodes and flow 

rates in the links. 

User demands are lumped at network nodes and consist of both fixed and pressure-

dependent demands. The standard model for pressure-dependent demands and leakage 

is a power function: 

 𝜇D = 𝑐D 𝐻D − 𝑧D /, if	𝐻D ≥ 𝑧D (7) 

Where μM	𝑖𝑠	the lumped nodal leakage outflow, 𝑐D the leakage coefficient, 𝑧D the 

elevation of node i and a the leakage exponent. 



The steady state equations read: 

 

− 𝐴DP𝑄P
QR
PS. − 𝜇D = 𝐷D,			𝑖 = 1,⋯ , 𝑛𝑢

ℎP 𝑄P − 𝐴DP𝐻DQX
DS. = 𝐵DP𝐻D

ZQZ
DS. ,			𝑗 = 1,⋯ , 𝑛𝑝

𝑐D]
^
_ 𝜇D

^
_`^𝜇D + ℎD3a 𝜇D − 𝐻D = −𝑧D,			𝑖 = 1,⋯ , 𝑛𝑢

 (8) 

Where nu is the number of junction nodes; nf the number of fixed-head nodes; np the 

number of links; 𝑄P  the flow rate in link j; 𝐷D  the fixed demand at node i; 𝐴DP  a 

coefficient describing the existence and direction of link j (-1 if link j is directed 

toward node i, +1 if link j is directed away from node i, and 0 if link j is not connected 

to node i); 𝐵DP  is similar to 𝐴DP  but for fixed-head nodes; 𝐻D  is the head at node i; 

𝐻D
Z	the head at fixed-head node i; ℎP the headloss in link j, and ℎD3a the check valve 

head loss penalty function as proposed in Piller and van Zyl (2014) and given by: 

 ℎD3a 𝜇D = −𝑟<cd𝑚𝑎𝑥 0,−𝜇D g = −ℎ)𝑚𝑎𝑥 0,− hi
jk

g
 (9) 

Where 𝑟<cd =
lm
jkn

  is a large resistance coefficient, which is chosen to produce an 

equivalent head loss less than or equal to -ℎ) if the leakage outflow is less than or 

equal – Δ𝑄; for practical application, ℎ) = 15 m and Δ𝑄 = 0.01 L/s. 

In Epanet, emitters at nodes are modeled by adding a fictitious pipe between the node 

and a fictitious reservoir (Rossman, 2000). The head at the fictitious reservoir is the 

elevation of the junction. The frictional pipe head loss is described using Eq. (7), with 

resistance 𝑐].//  and exponent 1/a. The last equation in system shown in Eq. (8) 

describes the behavior of the fictional pipe and reservoir and, unlike the Epanet 

emitter function, includes a check valve to prevent backflow. 



The function ℎP  is differentiable with respect to 𝑄P . Moreover, we assume ℎP  is a 

strictly increasing function of 𝑄P, which is non-bounded at infinity. The system shown 

in Eq. (8) can be rewritten in matrix form as: 

 
−𝐀𝐐 − 𝛍 = 𝐃

𝐡 𝐐 − 𝐀w𝐇 = 𝐁w𝐇Z

𝐠 𝛍 − 𝐇 = −𝐙
 (10) 

Where Q is a vector of link flow rates; D a vector of fixed nodal demands; A an nu x 

np incidence matrix of the variable-head nodes, B an nf × np incidence matrix of 

fixed-head nodes; H a vector of variable nodal heads, Hf a vector of fixed nodal 

heads; h a vector of link head losses; Z a vector of elevations at variable-head nodes; 

and 𝐠 𝛍  a vector of link head losses in the fictional pipes.  

Eq. (10) has one and only one solution if matrix A is full rank in the number of 

junction nodes (Piller, 1995). Indeed, there exists an elliptic function (the Content 

function) whose minimization restricted to the mass balance equation is equivalent to 

solving Eq. (10). For A to be full rank, it is sufficient that each connected component 

or group of nodes possesses at least one fixed-head node. 

The method of Newton applied to system (10) is an iterative procedure that consists of 

sequentially solving the linear system: 

 
−𝐀 −𝐈QX,QX 𝟎QX,QX
𝐉Q 𝟎QR,QX −𝐀w

𝟎QX,QR 𝐊Q −𝐈QX,QX

𝐐Q�. − 𝐐Q

𝛍Q�. − 𝛍Q

𝐇Q�. − 𝐇Q
=

𝐀𝐐Q + 𝛍Q + 𝐃
−𝐡 𝐐Q + 𝐀w𝐇Q + 𝐁w𝐇Z

−𝒈 𝛍Q + 𝐇Q − 𝐙

 (11) 

Where 𝐉Q = ∇𝐐𝐡 𝐐𝒏  is the Jacobian matrix of the h function with regards to Q at 

𝐐𝒏; and
 
𝐊Q = ∇𝛍𝐠 𝛍𝐧  is the Jacobian matrix of the g function with regards to 𝛍 at 

𝛍𝒏. 



It may be observed that Qn+1 satisfies the mass-balance equation, as the first row of 

Eq. (11) reduced to −𝐀𝐐Q�. − 𝛍𝒏�. = 𝐃. 

Eq. (11) may be further reduced by applying a block Gaussian elimination to the 

system 

 
𝐐Q�. = 𝐐Q − 𝐉Q]. 𝐡 𝐐Q − 𝐀w𝐇Q�. − 𝐁w𝐇Z

𝛍Q�. = 𝛍Q − 𝐊Q]. 𝒈 𝛍Q − 𝐇Q�. + 𝐙
 (12) 

Where Hn+1 is solution of the linear system: 

 
𝐀𝐉Q].𝐀w + 𝐊Q]. 𝐇Q�. = ⋯

𝐀𝐉Q]. 𝐡 𝐐Q − 𝐁w𝐇Z + 𝐊Q]. 𝒈 𝛍Q + 𝐙 − 𝐀𝐐Q + 𝛍Q + 𝐃
 (13) 

Equations (12) and (13) are the foundation for the so-called hybrid methods (Hamam 

& Brameller, 1971; Carpentier et al., 1985; Todini and Pilati, 1988). One 

implementation of these hybrid methods is the global gradient algorithm (GGA) used 

in Epanet, which follows from the application of the Newton method to the system 

Eq. (10). 

Modified orifice formulation 

The modified orifice formulation has two important differences to the power 

equation: it requires the addition of two fictional pipe-reservoir systems to each node 

to simulate the two terms in (3) and the exponents of the two terms are fixed at 0.5 

and 1.5. 

The modified orifice equation (3) is written as follows:  

𝜇D = µ.D + µgD = 𝑐.D 𝐻D − 𝑧D ).- + 𝑐gD 𝐻D − 𝑧D ..-, 𝑖𝑓	𝐻D ≥ 𝑧D                    (14) 

Where 𝜇.D  is the lumped leakage outflow corresponding to exponent 0.5; 𝜇gD  is the 

lumped leakage outflow corresponding to exponent 1.5; coefficient 𝑐.Dis equal to the 



sum of 2𝑔𝐶$𝐴), and 𝑐gD is equal to the sum of 2𝑔𝐶$𝑚 of all the individual leaks 

lumped to node i.  

Including the modified orifice equation in the initial system in Eq. (8) leads to: 

 

− 𝐴DP𝑄P
QR
PS. − µ.D − µgD = 𝐷D,				𝑖 = 1,⋯ , 𝑛𝑢

ℎP 𝑄P − 𝐴DP𝐻DQX
DS. = 𝐵DP𝐻D

ZQZ
DS. ,			𝑗 = 1,⋯ , 𝑛𝑝

𝑐.D]g µ.D µ.D + ℎD3a µ.D − 𝐻D = −𝑧D,			𝑖 = 1,⋯ , 𝑛𝑢

𝑐gD]
n
� µgD `^�µgD + ℎD3a µgD − 𝐻D = −𝑧D,			𝑖 = 1,⋯ , 𝑛𝑢

 (15) 

The equivalent matrix form is: 

 

−𝐀𝐐 − 𝛍. − 𝛍g = 𝐃
𝐡 𝐐 − 𝐀w𝐇 = 𝐁w𝐇Z

𝐠� 𝛍. − 𝐇 = −𝐙
𝐠� 𝛍g − 𝐇 = −𝐙

 (16) 

Where 𝐠� 𝛍.  is a vector of link head losses at fixed-area fictional pipes; and 𝐠a 𝛍g  

a vector of link head losses at variable-area fictional pipes. 

The method of Newton applied to system (16) consists of sequentially solving the 

linear system: 

−𝐀 −𝐈QX,QX −𝐈QX,QX 	𝟎QX,QX
𝐉Q 𝟎QR,QX 𝟎QR,QX −𝐀w

𝟎QX,QR 𝐅Q 𝟎QX,QX −𝐈QX,QX
𝟎QX,QR 𝟎QX,QX 𝐕Q −𝐈QX,QX

𝐐Q�. − 𝐐Q

𝛍.Q�. − 𝛍.Q

𝛍gQ�. − 𝛍gQ

𝐇Q�. − 𝐇Q

=

𝐀𝐐𝒏 + 𝛍.Q + 𝛍gQ + 𝐃
−𝐡 𝐐𝒏 + 𝐀w𝐇𝒏 + 𝐁w𝐇Z

−𝐠� 𝛍.Q + 𝐇𝒏 − 𝐙
−𝐠a 𝛍gQ + 𝐇𝒏 − 𝐙

 (17) 

Where 𝐅Q = ∇𝛈^𝐠
� 𝛍.Q  is the Jacobian matrix of the 𝐠� function with regards to 𝛍. 

at 𝛍.Q; and
 
𝐕Q = ∇𝛈n𝐠

a 𝛍gQ   is the Jacobian matrix of the 𝐠a function with regards 

to 𝛍g at 𝛍gQ. 

It reduced to the update formulae for the flow rate on the network graph and the 

leakage components: 



 
𝐐Q�. = 𝐐Q − 𝐉Q]. 𝐡 𝐐Q − 𝐀w𝐇Q�. − 𝐁w𝐇Z

𝛍1
Q�. = 𝛍1

Q − 𝐅𝑛]. 𝐠𝐹 𝛍1
𝑛 − 𝐇Q�. + 𝐙

𝛍2
Q�. = 𝛍2

Q − 𝐕𝑛]. 𝐠𝑉 𝛍2
𝑛 − 𝐇Q�. + 𝐙

 (18) 

Where 𝐇Q�. is solution of the linear system:  

 
𝐀𝐉Q].𝐀w + 𝐅𝑛]. + 𝐕𝑛]. 𝐇Q�. = 𝐀𝐉Q]. 𝐡 𝐐Q − 𝐁w𝐇Z +⋯

𝐅𝑛]. 𝐠� 𝛍1
𝑛 + 𝐙 + 𝐕𝑛]. 𝐠a 𝛍2

𝑛 + 𝐙 − 𝐀𝐐Q + 𝛍1
𝑛 + 𝛍2

𝑛 + 𝐃
 (19) 

Uniqueness and convergence properties 

The existence, uniqueness of solution and convergence properties of the power and 

modified orifice formulations may be investigated by introducing the minimization 

problem equivalent to system (16): 

 
min𝐶 𝐐, 𝛍., 𝛍g ∶= 𝐶P 𝑄P + 𝐶D� µ.D +QX

DS.
QR
PS. 𝐶Da µgDQX

DS.

subject	to: − 𝐴DP𝑄P
QR
PS. − µ.D − µgD = 𝐷D,				𝑖 = 1,⋯ , 𝑛𝑢

 (20) 

Where C is the Content function, a generalization of the Content function introduced 

by Piller et al. in 2003 for PDM (pressure driven modeling) and DDM (demand 

driven modeling) cases; 𝐶P 𝑄P = ℎP 𝑢 − 𝐵DP𝐻D
ZQZ

DS. 𝑑𝑢k�
)  is the contribution of 

link j;  𝐶D� µ.D = 𝑔D� 𝜂 + 𝑧D 𝑑𝜂
�^i
)  is the contribution for the fixed-area fictitious 

link at node i; and  𝐶Da µgD = 𝑔Da 𝜂 + 𝑧D 𝑑𝜂
�ni
)  is the contribution for the variable-

area fictitious link at node i. C has the dimension of power and is expressed with 

unknown flow rates and leakage components as basic unknowns. The gradient vector 

of the Content function has components: 

 

 3
 k�

𝐐, 𝛍., 𝛍g = ℎP 𝑄P − 𝐵DP𝐻D
ZQZ

DS. ,			𝑗 = 1,⋯ , 𝑛𝑝
 3
 �^i

𝐐, 𝛍., 𝛍g = 𝑔D� µ.D + 𝑧D,			𝑖 = 1,⋯ , 𝑛𝑢
 3
 �ni

𝐐, 𝛍., 𝛍g = 𝑔Da µgD + 𝑧D,			𝑖 = 1,⋯ , 𝑛𝑢

 (21) 



And the Hessian matrix is diagonal with positive diagonal elements: 

 n3
 k�

n 𝐐, 𝛍., 𝛍g = J𝑗𝑗(𝑄𝑗) ≥ 0,			𝑗 = 1,⋯ , 𝑛𝑝

 n3
 �^i

n 𝐐, 𝛍., 𝛍g = 2𝑐.D]2 µ.D +
lm
Δkn

𝑚𝑎𝑥 0,−µ.D = 𝐹𝑖𝑖(µ.D) ≥ 0,			𝑖 = 1,⋯ , 𝑛𝑢
 n3
 �ni

n 𝐐, 𝛍., 𝛍g = 2
3
	𝑐gD

−
2
3	 µgD

−
1
3 + lm

Δkn
𝑚𝑎𝑥 0,−µgD = 𝑉𝑖𝑖 µgD ≥ 0,			µgD ≠ 0, 𝑖 = 1,⋯ , 𝑛𝑢

(22) 

The Hessian matrix is not defined for µgD = 0 but this could be regularized around 

zero (Piller 1995). 

C is a strictly convex function because ℎP, 𝑔D� and 𝑔Da are strictly increasing functions. 

This with the fact that the constraint set is convex proves the uniqueness of the 

solution. Moreover, C is a norm-coercive function (it tends to plus infinity, if one of 

the component tend to plus or minus infinity). This means that level sets are bounded. 

The constraint set is nonempty and closed; C is continuous and norm-coercive involve 

the existence of a solution for problem optimization (20). 

Eq. (16) is the sufficient Euler-Lagrange condition for optimality of the Content 

model [Eq. (20)] (the nodal head is the Lagrange multiplier associated to the mass-

balance constraint). By convexity of C and full rank of the incidence matrix A solving 

the minimization problem (20) or the saddle point problem (16) are equivalent. 

Limitations of the formulations 

An important point to highlight is that there is no guarantee of global convergence 

(safe convergence whatever the initial point), even if Eq. (16) is stationary condition 

for a convex minimization problem (minimization of the Content). The Newton 

procedure can be unstable and the introduction of a damping (or under relaxation) 

factor has been proposed to get the global convergence under some conditions (Ortega 



and Rheinboldt, 1970). Non-convergence cases may occur in Epanet with emitter 

exponent greater or equal to two: the corresponding head loss function on the 

fictitious pipe is sub-linear and the first derivative of the head loss function may not 

be defined at the vicinity of the solution. For power equations with exponent between 

one and two, the number of iterations generally increases with increasing exponent, 

but it does converge. Similar reasoning can be done when comparing the GGA 

algorithm that is using head loss functions with exponents close to two and the 

Newton method applied to nodal equations that are using the inverse head functions 

with exponent close to 0.5. The GGA algorithm is preferable because of producing 

less iteration in general. So, these limitations are common to all hydraulic solvers but 

depend on the formulation used. 

Another known problem in Epanet is linked with presence of zero-flow conditions 

(𝐉Q	is no longer invertible for zero flows or the ratio of the smallest to the largest 

elements on the diagonal of 𝐉Q is very large). Elhay and Simpson (2011) suggested a 

regularization technique that limits the bounds of the Schur complement eigenvalues. 

Only a modest extra computational cost is incurred when the technique is applied with 

a sufficient large bounded range. Other techniques may also be applied such as 

damping (plus a positive coefficient) on the head-loss Jacobian by Carpentier et al., 

(1987) or a modification of the Hazen-Williams friction head loss function near zero 

to force the slope to be greater than a fixed suitable number (Piller, 1995). 

With the iterates (18) and (19), the first limitation is corrected as improved GGA is 

used with pipe head loss with exponent close to 2 and two emitters with exponent 0.5 

and 1.5, producing head loss on fictitious pipe of exponent 2 and 2/3. For correcting 

the second problem of zero-flows in Epanet or other hydraulic solver, one of the 

techniques described before in the previous paragraph may be used (e.g. Piller, 1995). 



APPLICATION TO EXAMPLE NETWORKS 

Introduction 

The modified orifice model was implemented in the public domain Epanet hydraulic 

modeling package, and the implications of the modification tested on three networks 

of different sizes with stochastic leak distributions. The aim of this part of the study 

was to compare the proposed modified orifice leakage model with the conventional 

power leakage model in terms of simulation accuracy and convergence. This was 

done for the normal diurnal demand patterns, as well as cases where the system 

pressure was significantly reduced to investigate the model performance under 

pressure management conditions. 

The modified orifice formulation was implemented by modifying the Epanet source 

code in such a way that each node can have two emitters and fixing the two emitter 

exponents to 0.5 and 1.5 respectively. 

Example networks 

Three networks of different sizes (small, medium and large) were used to evaluate the 

modified orifice formulation. The small and medium networks were adapted from 

Epanet’s example networks Net1 and Net3 respectively, while the large network was 

adapted from the model of the central business district of Durban, a coastal city in 

South Africa. 

Modifications were made to the example networks to ensure that they operate under 

gravity and each was supplied from a single point. Even though the example networks 

were modified, it should be noted that the formulations can be used to model 

networks with pumps and multiple sources. The purpose of the modifications was to 



control the pressures that were used in this study. Each network was simulated at two 

input pressures selected for the purposes of this study: a high initial pressure and a 

low pressure representing the implementation of pressure management to manage 

leakage. The difference between the initial and post-pressure management pressures 

were made intentionally large to allow simulation errors to be studied. These 

pressures are not unfeasible, but were not selected to represent typical distribution 

systems. 

Table 1 summarizes the properties of the three example networks, including the 

average diurnal pressures at their average zonal points (AZPs), defined as the pressure 

at the node with an average static water pressure (AWWA 2016). 

Table 1: System properties of the small, medium and large water distribution systems 
used in this study 

Network No of 
Junctions 

Total pipe 
length 
(km) 

Pipe 
diameter 
range (mm) 

Initial 
AZP (m) 

AZP after pressure 
management (m) 

Small 8 19.3 150 – 450 81.2 21.8 

Medium 85 60.0 200 – 750 86.7 37.6 

Large 747 103.8 25 - 800 107.8 28.3 

 

 

 

 

 

 



Leakage generation and distribution 

To implement realistic leakage distributions, leaks were generated and allocated to 

system nodes according to a stochastic model proposed by Schwaller and van Zyl 

(2014). One leak was generated at a time based on the statistical distributions 

described in Schwaller and van Zyl (2014), and summarized as follows: 

• The discharge coefficient 𝐶$ was modeled using a normal distribution. 

• The initial leak area 𝐴) was modeled using a lognormal distribution for 

background leaks and a normal distribution for potentially detectable leaks. 

• The head-area slope was calculated using a generalized power function of the 

initial leakage area based on work by Cassa & Van Zyl (2013). 

The generated leak was then allocated to a random pipe using a uniform distribution 

weighted by pipe length. Finally, a random number R between zero and one was 

generated and used to distribute the leakage parameters between the two nodes of the 

pipe. Based on Eq. (3), the terms 𝑅𝐶$𝐴) 2𝑔 and (1 − 𝑅)𝐶$𝐴) 2𝑔 were added to 

the coefficients of the emitter with an exponent of 0.5 of the two pipe nodes 

respectively. Similarly, the terms 𝑅𝐶$𝑚 2𝑔 and (1 − 𝑅)𝐶$𝑚 2𝑔 were added to the 

coefficients of the emitter with an exponent of 1.5 of the two pipe nodes respectively. 

Background leaks were generated first up to a level of 69% of the system’s UARL as 

per the original definition of the UARL concept (Lambert, 2009). To replicate 

realistic systems where the leakage exponent of background leakage is often found to 

be close to 1.5 (Lambert, 2000; Lambert et al, 2013), 20 % of the background leaks 

were assigned a head-area slope equivalent to a leakage number of 100, as was done 

by Schwaller and van Zyl (2014). 



Potentially detectable leaks were then generated up to the desired level of leakage for 

the system. In this study, the level of leakage used was at ILI of eight, which 

represents a system with high but not excessive leakage. Leaks were generated until 

the ILI was within 0.001% of the target value. 

For the small network, 100% of the nodes had leakage, whereas for the medium and 

large networks, about 90% and 70% of the nodes, respectively, had leakage. 

Once all the leaks were generated, the equivalent leakage parameters for a system 

modeled with the conventional power leakage approach were estimated. The same 

system nodes with leakage in the modified orifice approach were maintained in the 

conventional power leakage approach. To do this, two simulations were performed at 

different supply pressures (a 5m head differential was used) under minimum night 

flow conditions. Two average zonal night pressures and corresponding system 

leakage flows were then obtained and used to estimate the system leakage exponent. 

Once the leakage exponent was known, the leakage coefficients for identical nodal 

leakage flows were calculated for each node under minimum night flow conditions. 

The above process was used to generate in total 600 random leakage distribution 

scenarios, whereby each of the three example networks had 200 scenarios, each with 

an ILI of eight. 

RESULTS 

The 200 leakage scenarios in each of the three networks were simulated using both 

the conventional power equation and the newly implemented modified orifice 

approaches. The results were then analyzed to allow the performance of the two 

algorithms to be compared both in terms of simulation accuracy and convergence 

speed. 



It should be noted that, the modified orifice equation is based on a fundamental fluid 

mechanics theory and incorporating the linear head-area slope, that was demonstrated 

in several studies under elastic and viscoelastic deformation conditions. In contrast, 

the power equation is purely an empirical equation with no theoretical basis. Thus, 

when presenting the results, the modified orifice formulation was assumed to provide 

the true behavior and differences between the results of the two formulations were 

described as errors in the power equation formulation. 

Simulation accuracy 

Figure 1 shows the variation of the medium system’s pressure at its average zonal 

point without leakage and under initial and pressure management conditions for both 

formulations. The pressure for the medium system without any leakage is also shown 

and even though the system had a high level of leakage, it had only a small influence 

on the average zonal pressure. 

 

Figure 1: Pressure head at the medium system’s AZP node before and after 
pressure management (PM). 
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Figure 2: Power formulation error in the total daily leakage volume for the system 
without pressure management. 

 

 

Figure 3: Power formulation error in the total daily leakage volume for the system 
with pressure management. 
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Figure 4: Typical diurnal leakage pattern at the critical node of the medium system. 

 

 

Figure 5. Average number of iterations to achieve convergence for the different 

formulations. 
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Due to the small influence of leakage on pressure, no differences in the pressures 

obtained from the modified orifice and power formulations are evident in the figure. 

The volumetric error in the total daily leakage volumes (the fractional difference in 

total system leakage volume over a 24-hour simulation) for the two leakage 

formulations is negligibly small for all three systems without pressure management as 

shown in figure 2. 

However, after pressure management the power formulation error in the daily leakage 

volume becomes substantial as shown in figure 3. The power formulation is an 

empirical approach that can only be used safely within its pressure calibration range. 

Since the power formulation in the example was calibrated under minimum night flow 

conditions for the initial system, it is not able to accurately model system leakage at 

the substantially different pressures resulting from pressure management. This is an 

important factor to consider when estimating the expected savings in leakage when 

planning pressure management interventions. 

Finally, the results showed that while the error in total system leakage for the systems 

without pressure management was negligible (figure 2), this was not true for the 

leakage volumes at individual nodes. Figure 4 shows the typical leakage pattern at the 

critical node (system node with the lowest pressure) of the medium system for the two 

formulations, both with and without pressure management. 

The two formulations give identical leakage in the initial system under minimum 

night flow conditions, since this is where the power formulation was calibrated. 

However, substantial differences are evident for other times in the initial system and 

for the whole day during pressure management. 

 



Convergence  

The modified orifice formulation required slightly more iterations to converge 

compared to the power formulation for all three systems as shown in figure 5. This 

increase is likely due to increased number of unknowns in the modified orifice 

equation, as a result of adding a second emitter to each node. 

It is known that the global gradient method has convergence problems under certain 

conditions. Some of these problems will be experienced with both the power and 

modified orifice formulations, for instance due to ill-conditioned Jacobian matrices, 

badly chosen initial solutions, a large range of link resistances or a lack of smoothness 

in the head loss function or its derivatives (inverse of a leakage function is like a head 

loss function). 

However, it was found for the power formulation that an equivalent leakage exponent 

greater than two sometimes resulted in non-convergence of the standard global 

gradient algorithm. Since the modified orifice exponents are fixed at 0.5 and 1.5, this 

problem cannot be experienced by this formulation. 

For the power equation formulation, leakage exponents above two sometimes 

occurred when generating stochastic systems with high ILI values. These large 

leakage exponents are not unrealistic and have been observed in field and laboratory 

studies (Greyvenstein, 2007; see Schwaller et al. (2014) for a summary of 

international field studies), and thus this problem needs to be addressed. 

The reason for the non-convergence was found to be related to conditions under 

which the Newton Raphson method overshoots the root and subsequently diverges 

away from it. In the global gradient algorithm, the emitter behavior is simulated 

through the head loss function of a fictional pipe, which is a power function of flow 



rate with an exponent of 1/𝛼. Non-convergence of this function for a > 2 is well 

known (for instance see Wikipedia, 2016).  

Like most other convergence problems in the global gradient algorithm, this problem 

may be solved by introducing a damping parameter into the algorithm.  

CONCLUSION 

This study investigated the implementation of a modified orifice formulation for more 

realistic simulation of leakage in water distribution systems. A modified hydraulic 

network formulation is proposed that includes a second emitter at each leakage node.  

Application of the modified formulation showed that the power and modified orifice 

leakage formulations produced similar results for total system leakage flows and 

volumes under normal diurnal pressure variations. However, the leakage flows at 

individual nodes at elevations different from the average zonal pressure were found to 

differ significantly.  

In addition, it was found that simulating systems at pressures significantly different 

from the normal diurnal range, for instance as a result of pressure management, 

results in substantial errors in both leakage flows and volumes. 

The average convergence speed of the modified orifice formulation was found to be 

slightly larger than that of the power formulation with, on average, one more 

iterations required. 

The current power formulation used in the global gradient algorithm (and 

implemented in Epanet) resulted in non-convergence when a leakage exponent greater 

than two was used. Like most other known instabilities of the Newton-Raphson 



method, this problem can be solved by introducing a damping factor into the 

convergence process.  

Finally, further studies are recommended to investigate the implications of a more 

realistic modified orifice leakage formulation on the results of modeling studies that 

include leakage, such as calibration, leak detection and operational optimization 

studies. 
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