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ABSTRACT 

 

The extended-period (time-varying or dynamic) equations describing incompressible flow in 

pipe networks can be classified mathematically as a set of first-order, non-homogenous, 

nonlinear differential equations. Since this set of equations cannot  normally be solved 

analytically, numerical integration or regression methods are typically used. In this paper, a 

new method for extended-period simulation, called the Explicit Integration method, is 

proposed for water pipe networks without demands. The method is based on the premise that 

a complex water pipe network can be represented by a number of simple base networks. The 

simple base networks are selected in such a way that their dynamic equations can be solved 

through explicit integration. In this paper a simple base network consisting of a fixed-head 

reservoir feeding a tank through a single pipeline is analyzed. It is then illustrated how a 

complex water pipe network can be decoupled into its constituent simple base networks and 

its dynamic behavior simulated using a step-wise procedure. The Explicit Integration method 

is then compared to the commonly used Euler numerical integration method. It is shown that 

the accuracy of the Explicit Integration method is considerably better than that of the Euler 

method for the same computational effort. 

 

 

INTRODUCTION 

 

Hydraulic models are important for the analysis and design of water pipe networks. This is 

due to the complex topology, frequent changes and sheer size of water distribution 
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networks[1]. Hydraulic models are used for various important tasks by engineers, such as the 

design of new and analysis of existing distribution networks, long-term master planning and 

operational planning.  

 

A pipe network consists of an interconnected grid of node-bounded hydraulic links. Nodes 

are generally associated with potential in the form of hydraulic head, while links are 

associated with flux in the form of flowrate. Nodes handle end conditions, such as known 

hydraulic heads and outflows from the network. Links are characterized by a unique 

relationship between their flowrates and the head differential between their start and end 

nodes, which is commonly known as the link's headloss relationship. 

 

Under normal operating conditions, water can be assumed to be an incompressible fluid, 

which allows simple mass and energy balance equations to be used to develop a mathematical 

model of a network. Transient analysis, which takes the compressibility of a fluid into 

account, is normally only performed for special cases, such as sudden valve closures or pump 

switches.  

 

Two types of simulations are used to calculate the network state (heads at the nodes and 

flows in the links) of a network under incompressible flow conditions, namely snapshot and 

dynamic simulations. Snapshot (also called static or steady-state) simulation is used to 

determine the network state at a given time instance. Mass or energy balance is used to draw 

up a system of non-linear equations, which are then solved using an iterative procedure, such 

as the Newton-Raphson [2] or Linear [3] methods. The number of equations is equal to the 

number of links or non-storage nodes in the system and can run into thousands.  The 

linearised equations obtained from each iteration of the Newton-Raphson or Linear methods 

are solved using sparse matrix techniques and the Cholesky method [4, 5].  

 

In certain cases, snapshot simulation of a network does not provide sufficient insight, and an 

analysis of the network’s hydraulic behavior with time is required. This type of simulation is 

called dynamic or extended-period simulation in this paper. The applications of dynamic 

simulation were recognized as early as 1968 by Shamir and Howard [6], although very little 

had been published on the subject by 1977 compared to the progress in snapshot analysis [2]. 

A review of published papers shows that this is still the case today. 
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The applications of extended-period simulation are numerous [7], and include the evaluation 

of source extraction and tank heads, evaluation of levels of service for demonstrating 

adherence to legal requirements, operational optimization, evaluation of the network’s 

dynamic response to events such as failures or emergencies, and long term stochastic analysis 

for evaluating network reliability. 

 

In this paper, the basic theory of extended-period simulation of incompressible fluids is 

addressed first:  the dynamic behavior of pipe networks is discussed, followed by an 

overview of the different methods currently used to solve the dynamic equations. A proposed 

new method for solving the dynamic equations, called the Explicit Integration method, is then 

developed for pipe networks without demands. The application of the Explicit Integration 

method is illustrated on an example problem, and its computational efficiency and accuracy 

compared to that of the commonly used Euler method.  

 

 

DYNAMIC NETWORK EQUATIONS 

 

Certain network parameters vary with time. These are called dynamic parameters in this 

paper and include tank heads, control schedules and certain end conditions. Dynamic end 

conditions typically include user demands, source heads controlled externally and events such 

as element failures or emergency conditions occurring in the network.  

 

Certain dynamic parameters are not known in advance and have to be calculated. The most 

common of these dynamic variables is the tank head. Control schedules, failure and 

emergency events are considerably more difficult to calculate directly and are thus often 

determined indirectly, possibly in an optimization procedure, and evaluated using extended-

period simulation. Once the values of all dynamic variables in the network are known, the 

network state can be calculated at any moment in time by performing a snapshot analysis.  

 

Dynamic equations 

 

The law of conservation of mass for incompressible flow, applied to a node with storage, 

dictates that the fluid mass entering a node minus the fluid mass leaving the node and the 

change in the node's storage volume must equal zero:  
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With: Qi the flow towards the node in link i,  

N the number of links connected to the node, 

Qd the demand at the node, 

V the node's storage volume, and  

t time. 

 

If all the flows to, and the demand from the node are lumped together as a net inflow Q, and 

the tank is assumed to have a head H and a constant cross-sectional area A, the equation can 

be written as: 

 

  Q
dt
dHA =   (2) 

 

This equation is called the dynamic tank equation. For large reservoirs, the tank area is much 

larger than the net inflow so that the term 
dt
dH  can be assumed to be zero, i.e. the tank head is 

a constant. 

 

Now consider a network consisting of a number of tanks. The dynamic behavior of the 

network is described by the set of differential equations:  

 

  QHA =
dt
d  (3) 

 

With:  A the vector of tank cross-sectional areas, 

H the vector of tank heads, and 

Q the vector of net tank inflows. 

 

The net tank inflows in a pipe network can normally not be determined analytically, but 

require an iterative solution of the static network equations (snapshot simulation). As a 

result, the dynamic tank equations can also not be solved analytically. This factor is the 
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main complication in solving the dynamic equations of pipe networks. Another 

complicating factor is that the function that is being integrated (net tank inflow) is a 

function of the integration result (tank heads). The interdependence of net inflows and 

tank heads makes solving these equations much more difficult than ordinary numerical 

integration, where the function being integrated is known at future points.  

 

The problem is further complicated by a number of factors commonly found in pipe 

networks, such as dynamic variations in network demands and end conditions, control rules 

based on the dynamically varying network state, imposed time-varying changes to the 

network configuration, and varying tank cross-sectional areas.  

 

 

Classification of the dynamic equations 

 

It is important to note that in most cases the dynamic parameters, including the tanks' net 

inflow rates and cross-sectional areas, are either known or are functions of the tank heads. 

This allows for the dynamic equations to be written in a general form as: 

 

  ( ) 0=′ tF ,, HH  (4) 

 

With: H´ the vector of first derivatives of H with respect to t. 

 

Since the first derivatives of tank heads are not required for doing a snapshot simulation of 

the network, this equation may be written explicitly as:  

 

  ( )tf ,HH =′  (5) 

 

The set of equations is now in a suitable form for application of numerical integration 

techniques such as the Euler and Improved Euler methods. To find the value of H´ for any 

specific values of t and H, the function value (right hand side of the equation) needs to be 

calculated. This involves (a) performing a snapshot simulation of the network to obtain the 

net tank inflows, and (b) converting these flow values to H´ by taking the tanks' depth-area 

relationships into consideration (for tanks with constant cross-sectional areas, this simply 

means dividing the net inflow by the cross-sectional area). 
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This general set of tank differential equations may be classified mathematically as: 

 

• Ordinary differential equations. 

• First-order, since the highest order of a derivative in the equation is one. 

• Nonlinear, since the order of H in F is not one. With pipes, for instance, the order of 

the relationship of flow as a function of differential head is close to 0.5. 

• An initial value problem, since the vector of tank heads at the start of the analysis H0 

is known, or 0HH =)( 0t .  

• Non-homogeneous, since some terms on the right hand side of the equation will 

include only t and others only H [8]. 

 

 

SOLVING THE DYNAMIC EQUATIONS 

 

There is no standard analytical solution for differential equations in the form of Equation 5, 

and also no solution for the specific case of pipe networks [9, 10]. This implies that in order 

to solve the dynamic equations, simplifying assumptions are required. Such simplifications 

can involve discretizing the differential equation, as is done in most numerical integration and 

numerical regression techniques. Alternatively, assumptions can be used to simplifying the 

equations themselves to a form that can be solved analytically. Techniques that are currently 

applied to solve the dynamic equations involve the former simplification, i.e. using numerical 

integration or regression techniques. These techniques are discussed in this section. A new 

method for solving the dynamic equations, based on simplifying the equations and then 

applying explicit integration to solve them, is proposed further on.  

 

 

Numerical Integration Methods 

 

Numerical methods are commonly used to solve problems for which no analytical 

solution is available. Numerical integration techniques can be reliable and accurate, but 

often require a high number of function evaluations. A trade-off between computational 

cost and accuracy exists with an increased number of function evaluations (and thus 

higher computational cost) required for increased accuracy. For pipe networks, each 
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function evaluation requires a snapshot simulation of the network, resulting in a 

computationally expensive procedure.  

 

In practice the two simplest, and least accurate, numerical integration methods are used to 

solve the dynamic tank equations. These methods are known as the Euler [11, 4, 12] and 

Improved Euler [10, 13] methods. Both the Euler and Improved Euler methods are 

applied by dividing the simulation period into a number of time steps, with the start and 

end times of a time step i given by (ti, ti+1); ti+1 > ti, and the length of the time step Δt =  

ti+1 -  ti. The length of the time step depends largely on the network dynamics and input 

functions [10]. The hydraulic state of the network, and thus the net tank inflows, are 

assumed to stay constant for each time step.  

 

The Euler method is the simpler of the two techniques and only requires one function 

evaluation at the start of each time step. The Improved Euler method is more accurate, but 

requires at least two function evaluations per time step. Firstly, the tank heads at the end 

of the time step are calculated using the Euler method. Another snapshot simulation is 

then performed at the end of the time step, and the tank heads at the end of the time step 

are then 'corrected' by using the average inflows of the two snapshot simulations. The 

process is repeated until convergence is achieved.  

 

The main disadvantage of both the Euler and Improved Euler methods is the sensitivity of 

their approximation errors to time step length [14]. The accuracy of numerical integration 

methods decreases with increasing time step length. As a result, the time step length has 

to be restricted. In practice, time step lengths of one hour or less are often used [1]. A 24-

hour simulation thus requires at least 24 snapshot simulations, which makes extended 

period simulations computationally expensive. Although the simulation time is not 

normally a problem, it can be an important factor when large numbers of extended-period 

simulations are required (for example in operational optimization runs), or long 

simulation periods are used. 

 

The question can be raised as to why higher order, and thus more accurate, numerical 

integration techniques are not employed to solve the dynamic tank equations. A number 

of possible reasons can be listed: 
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• Historically the main emphasis of research, development and application of 

distribution models has been directed towards snapshot simulations, and good 

research on dynamic analysis has been lacking.  

• There are normally large uncertainties present in information on demands and 

demand variations in water distribution systems. Improved accuracy in the 

simulation method will add little if it is overshadowed by inaccuracies and 

uncertainties in the input data.  

• Snapshot simulations are in themselves iterative and computationally expensive 

procedures [9]. Higher order numerical integration techniques require more 

snapshot simulations and would thus further increase the computational cost and 

simulation times. 

• Pipe networks are in a constant state of change due to variations in demands and 

operational changes in the network configuration, which require intermediate 

time steps to be used. The increase in the computational burden is directly 

proportional to the number of snapshot simulations a solution method uses per 

time step. For instance, each intermediate step will require one extra snapshot 

simulation if the Euler method is used, two if the Improved Euler method is used 

and four if the fourth order Runge-Kutta method is used. The effect of 

intermediate steps on the computational burden will thus be more pronounced for 

higher order methods. 

 

It is doubtful whether the reasons listed above still make a convincing case for using the 

Euler and Improved Euler methods in the dynamic simulation of water distribution 

systems: few improvements are still made to snapshot simulation methods and computer 

simulation time is not a significant factor in most modeling applications.  Finally, the 

accuracy of the most commonly used Euler method is far from good, as shown in the 

example application later in this paper, and it is not recommended for any practical use in 

literature [15]. It is thus important that research is conducted to find more appropriate 

methods for solving the dynamic equations of water distribution systems. While this paper 

proposes one such method, various standard numerical methods, such as the Runge-Kutta 

and Multi-step methods [16], exist which can improve the accuracy of dynamic 

simulations without introducing excessive computational burdens.  
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Euler Method 

 

The Euler method is the simplest numerical integration technique available, and it is also the 

most commonly used for extended-period analysis [12, 17].  It involves the evaluation of the 

function at the start of the time step. The tank heads at the end of the time step are then 

estimated by assuming that the function values remain constant for the duration of the step. 

Walski [18] found that, when applying the Euler method, longer time steps results in 

fluctuations in predicted flows and pressures lagging behind the actual fluctuations in the 

network. 

 

In the Euler method, the net tank inflows at the start of the time step are determined by 

performing a snapshot simulation. For each tank, the change in head for the time step is then 

estimated using the equation (from Equation 3):  

 

  
A

tQH i∆=∆  (6) 

 

The tank head at the end of the time step, Hi+1 is then calculated by adding ΔH to the tank 

head at the start of the time step, Hi:  

 

  HHH ii ∆+=+1  (7) 

 

 

Improved Euler Method 

 

In essence, the Improved Euler method applies the same strategy as the Euler method by 

assuming that the flowrate in a given time step remains constant. The main difference 

between the two methods is that, while the Euler method only does a single forward 

estimation for each time step, the Improved Euler method employs a predictor-corrector 

scheme to improve this estimate.  

 

The first step in the Improved Euler method is to make an initial estimate of the tank heads at 

the end of the time step using the Euler method (Equations 6 and 7). Another snapshot 

simulation is then done at the end of the time step. The average tank inflow between the start 
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and end of the time step is then used in Equations 6 and 7 to 'correct' the tank head at the end 

of the time step. The process is repeated until the change in tank head is within the required 

accuracy.  

 

Rao and Bree [2] and Rao et al [19] were the first to suggest a systematic procedure for doing 

dynamic analyses of water pipe networks [20] by applying the Improved Euler method. Rao 

and Bree considered demand to be a continuous function, and used the instantaneous 

demands in the Improved Euler function evaluations. They recognized that, although the 

snapshot solution is only calculated at specific time instances, the user demand function is 

known in advance for the full time step. Combining this with the mass balance principle, 

which prescribes that the total net outflow from all the tanks must be equal to the total 

demand, they added an adjustment step in which the demand error is assigned to the different 

tanks in proportion to their net outflow rates . 

 

It is simple to demonstrate that distributing the mass error between the tanks in proportion to 

their net outflow rates cannot always be justified: consider a pipe network consisting of a 

pumping line feeding a tank from a bulk storage reservoir. The full network demand is taken 

from the tank and is equal to the pumping flowrate. Under these conditions the net outflow 

from the tank will be zero and the full demand error will thus be assigned to the bulk storage 

reservoir, which has no demand and thus no associated mass balance error. The mass error 

allocation proposed by Rao and Bree can in this way increase the simulation error rather than 

compensate for it. 

 

Bhave [20] proposed a way to incorporate Rao and Bree's error equation into the snapshot 

network equations and thus obtain both the net tank outflow and the corrected tank heads in a 

single calculation step. Bhave suggested that this method would remove the requirement for a 

predictor-corrector iterative procedure, since the error adjustment is incorporated directly into 

the solution process. 

 

However, Bhave’s method for distributing mass balance errors between the tanks suffers 

from the same inherent flaw as that of Rao and Bree, namely that the net outflows from the 

tanks are not necessarily an indication of the demand (and thus of the mass balance error) 

attributable to the respective tanks.  
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The methods proposed by Rao et al and Bhave are relatively complex compared to the 

solution procedures used today [17]. The demand mass balance problem identified by Rao 

and Bree is generally overcome by performing the snapshot simulations with the average 

demand over a time step rather than the instantaneous demands at the start and ends of the 

time step. This eliminates the mass imbalance correction factor, but will have an effect on the 

flow distribution in the network due to the nonlinearity of the network hydraulics.  However, 

compared to the complications introduced by a mass balance error and the inaccuracies 

introduced by numerical integration, the effect of this assumption can be  considered 

negligible. 

 

 

Hybrid  Transient Approach 

 

Filion and Karney [17]  proposed a method that combines a numerical integration method 

with a transient simulation model to improve the accuracy and capabilities of  extended-

period simulations. Their method analyses a pipe network for short time periods near the start 

and end of a time step using a transient model, and then uses the insight gained to predict the 

behavior of the network using a modified Improved Euler approach. Their method shows a 

substantial increase in simulation accuracy, but at an increased computational cost making it 

impractical for the analysis of large networks.  

 

 

Regression methods 

 

In regression methods, empirical or semi-empirical functions are fitted to calculated data on 

the behavior of pipe networks under different operating conditions, such as relative tank 

heads, pump configurations and network demands. Lansey and Awumah [21], for instance, 

used the least square approach to fit polynomial functions to the rate of change of tank heads 

as a function of the tank heads.  

 

The biggest drawback of regression methods is that a new curve needs to be calculated for 

each possible combination of dynamic variables for each tank, increasing the number of 

curves exponentially with the number of tanks and possible network states, and thus limiting 
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the size of network that can be modeled. For instance, Lansey and Awumah [21] found that 

their methodology only works well for one or two tanks and a limited number of pumps. 

 

A further disadvantage of the method is that it cannot be applied to any general network, but 

requires a new set of regression curves whenever a change is made to the network 

configuration or a new network is analyzed. 

 

Another type of regression method was used by Coulbeck et al [9], who noted that the 

inefficiency of the dynamic solution procedure often derives from the accurate calculation of 

many intermediate values that are of less importance, when only the dynamic behavior of the 

tanks themselves is of interest. They suggested improving the method by reducing the 

number of equations to include only the important variables. 

 

Coulbeck et al's simplified dynamic model describes the basic network operation in terms of 

control and demand action on tank heads. The model is expressed as a set of linear dynamic 

equations that can be solved explicitly for the dependent variables in terms of the known 

operating conditions. Independent variables are taken as tank heads, demands and pump and 

valve control settings; and the dependent variables as node pressure and tank outflow. The 

dynamic equation for tank outflows, for instance, is then written as the sum of its response to 

changes in the independent variables. 

 

 vCpCd dZdZdQdHtd
vCpCd Z

Q
Z
Q

Q
Q

H
QQ

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=)(  (8) 

 

With: Q a vector of tank net inflows, 

H a vector of source and tank heads in the network, 

Qd a vector of the demands in the network, 

ZCp a vector of pump controls, and 

ZCv a vector of valve controls. 

  

The sensitivity coefficients for a given network state may be determined from further 

manipulation of the standard snapshot analysis results. For a network with various possible 

states (as is required in dynamic analysis), snapshot analyses are performed for perturbations 

of the independent variables for all possible states of tank heads and control pressure values 
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to determine state variant coefficients. Average values over all states or different values for 

different states may be used, depending on the required accuracy. For on-line application of 

the model, the authors suggest that the coefficient values are updated continuously to 

compensate for changes in the network state or configuration. 

 

Essentially the method proposed by Coulbeck et al is still a regression model, although it is 

more general in that the coefficients may be calculated automatically using a hydraulic model 

of the network. However, the number of coefficient values will also increase exponentially 

with increases in the numbers of variables and control rules. A trade-off would thus normally 

be required between complexity of the model (the number of coefficient values calculated) 

and accuracy. 

 

 

EXPLICIT INTEGRATION APPROACH 

 

In this section a new method for extended period modeling of pipe networks, called the 

Explicit Integration method, is developed. The Explicit Integration method is based on the 

assumption that a network can be represented by a number of simple base networks for which 

analytical solutions exist.  

 

This paper is restricted to the Explicit Integration modeling of pipe networks without 

demands. The more complicated problem of pipe networks with demands falls outside the 

scope of this paper. 

 

The Explicit Integration method is developed by first considering a simple base network, 

which consists of a fixed-head reservoir (source) which feeds a tank through a single pipe. 

The dynamic differential equation for the network is drawn up and solved using explicit 

integration. This is followed by a discussion of how complex networks can be separated into 

a number of simple base networks and their dynamic equations then solved (for the purpose 

of this discussion, pipe networks are considered complex if their dynamic equations cannot 

be solved analytically). The Explicit Integration method is then illustrated using an example 

problem. 
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Simple Base Network 

 

For simple gravity pipe networks such as a fixed-head reservoir feeding a tank through a 

single pipe (Figure 1), it is possible to explicitly solve the differential equations describing 

the network dynamics. 

 

Ideal position for Figure 1. 

  

The headloss h in the pipe is in the form [20]: 

 

  1−
=

nQKQh  (9) 

 

With: K a constant headloss coefficient. 

 Q the flowrate in the pipe. 

 n a constant headloss exponent. 

 

This equation may be rearranged to give the pipe flowrate as a function of the headloss: 

 

  n
n

hhKQ
−

′=
1

 (10) 

 

With  
n

K
K

1

1






=′  (11) 

a constant flow coefficient. 

 

Writing this equation to give the pipe flowrate in the simple base network, for the case where 

the fixed-head reservoir has a higher head than the tank, results in: 

 

  ( ) PnP HHHHKQ ≤−′= ;
1

  (12) 

 

With: H the tank head, and 

HP the fixed-head reservoir's head.  
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Substituting into Equation 2 and rearranging, results in a differential equation describing the 

dynamic behavior of the simple base network: 

 

  
( )

dt
A
K

HH

dH

nP

′
=

−
1  (13) 

   

Although the equation is still nonlinear and non-homogenous, it is a special case for which an 

analytical solution exists in the form [14]: 

 

  ( ) Ct
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n
n

n
n
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With C a constant term obtained from the initial condition H = H0 at t = t0. Substituting C into 

the equation and rearranging results in a dynamic equation for the tank head: 
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An expression for the flowrate as a function of time can be obtained by substituting this 

equation back into Equation 12: 

 

  ( ) ( ) ( ) 1
1
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Similarly, the dynamic equation for the tank can be obtained for the case where H ≥ HP as: 
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0

1
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Complex networks 
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Dynamic behavior of water pipe networks 

 

The mechanical energy per unit weight at a point in a hydraulic network above a datum level 

is given by the Bernoulli equation: 

 

  
g

v
g
pZE

2

2

++=
ρ

 (18) 

 

With: E the Bernoulli energy, 

Z the elevation of the point above the datum level, 

p gauge pressure, 

ρ the fluid density, and 

v the flow velocity. 

 

The Bernoulli energy can be calculated at any point in a balanced pipe network. At reservoir 

and tank surfaces, both gauge pressure and velocity are zero (or negligibly small) and the 

Bernoulli energy is represented by the elevation of the water surface above the datum level 

(tank head). 

 

Water always flows from a higher to a lower energy state. For gravity networks this implies 

that the heads of the higher tanks will tend to fall, while the heads of the lower tanks will tend 

to rise. The tank heads are linked by a collection of energy lines, corresponding to the energy 

levels at different points in the network. The energy lines can be visualized as a three-

dimensional grid attached to the tank water surfaces and ‘floating’ on the network. The 

energy grid will move with the tank surfaces so that a given point on the energy grid could 

either be rising, falling or invariant with time. This observation leads to the definition of a 

pivot point. 

 

 

Pivot Point 

 

Consider the simple pipe network shown in Figure 2(a), consisting of two tanks connected by 

a single uniform pipe. The Bernoulli energy in the network is shown as a line with uniform 

slope that runs above the pipe and connects the two water surfaces. As time passes, the slope 
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of the energy line reduces as its ends drop or rise with the tank heads. Since the water 

surfaces move in opposite directions, it is possible to identify a point on the energy line at 

which the energy remains invariant with time. This point is defined as the network’s pivot 

point, since the energy line can be viewed as rotating about this point. 

 

Ideal position for Figure 2. 

 

At the pivot point the network energy remains invariant with time. The importance of this 

observation is that the pivot point can be replaced by a fixed-head reservoir (with head equal 

to the energy at the pivot point) without changing the network’s dynamic behavior. The 

network is effectively decoupled into two simple networks as shown in Figure 2(b). Each 

decoupled sub-network resembles a simple base network as shown in Figure 1 and can thus 

be solved explicitly. 

 

Unless the two tanks have fixed cross-sectional areas, the position of the pivot point will 

change as the tank heads rise or fall. However, for small changes in tank heads, the pivot 

point can be assumed to remain stationary. 

 

Pivot Point Position 

 

The existence of a pivot point in more complex networks is not immediately obvious. 

Consider, for instance, the network shown in Figure 3(a) that consists of a source (fixed-head 

reservoir) and three tanks. The tanks are interconnected with a network of pipes.  

 

Ideal position for Figure 3. 

 

The first step in determining a pivot point for the network is to simplify the pipe network to 

one in which each tank is connected to a central junction as shown in Figure 3(b). This is 

done by systematic application of three simplification operators; the first to remove pipes 

(e.g. dead end pipes) from the network, and the second and third to reduce pipes in parallel 

and series to single hydraulically equivalent pipes. Since no demands exist in the network, the 

simplification does not significantly affect the accuracy of the model. 
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In the second step, the tanks are rearranged in such a way that the energy at the junction will 

be invariant with time, and thus act as a pivot point. It is possible to move tanks in the 

horizontal plane without changing the hydraulic behavior of the network - a change in the 

pipe length can, for instance, be compensated for by adjusting its diameter. To find the new 

tank positions, a horizontal axis of rotation is defined through the proposed pivot point head. 

Tanks are now moved normally to the axis of rotation to distances directly proportional to the 

rate of change in their heads. Fixed-head reservoirs are moved to positions directly above or 

below the pivot point. For small changes in tank heads, the energy lines will now rotate 

around the pivot point. The network is then decoupled into its constituent base networks by 

replacing the pivot point with a fixed-head reservoir, and the sub-networks are solved using 

explicit integration. The position of the pivot point will change with time, meaning that the 

process will have to be repeated at regular intervals to ensure acceptable accuracy of the 

results. 

 

The simplification procedure described above is complicated and time-consuming to apply.  

A simpler method was developed to estimate the position of the pivot point. A time step is 

selected and a snapshot simulation performed at the start of the step. From the results, the net 

inflow rates (negative for outflows) are determined for all the tanks in the network. These 

results already provide a valid range for the pivot point head, since the pivot point has to be 

lower than all tanks with net outflows, and higher than all tanks with net inflows to adhere to 

the observed flow directions. 

 

An initial pivot point HP is now chosen in the valid range. Using the assumed pivot point, the 

network is decoupled into its constituent simple base networks. The flow coefficient of each 

simplified sub-network is calculated from the results by rearranging Equation 10 to obtain: 
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0  (19) 

 

With: K' the pipe's flow coefficient, 

Q0 the flowrate into the tank, determined from the snapshot simulation, 

H0 the tank head, and 

n the known headloss exponent. 
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Placing the flow coefficient estimates back into Equation 10 results in a flowrate in the sub- 

network as a function of the tank head, given by the equation: 
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The tank heads in the middle of the time step are now estimated using the standard Euler 

method, and another snapshot simulation is performed with the updated tank heads. This 

results in a new set of tank inflow rates, which are used to test the accuracy of the initial pivot 

point head selection. If the true pivot point head was chosen, the sub-networks should predict 

tank inflow rates matching those of the second snapshot simulation. However, it is more than 

likely that the initial choice of pivot point head was inaccurate and that significant differences 

in flowrates will exist. The true pivot point head is now found by minimizing the error 

between the flowrates calculated using the pivot point head and the results of the second 

snapshot simulation. 

 

Equation 12 is used to predict the flowrates for the tank heads in the second snapshot 

simulation. The error in the flows predicted by the snapshot simulation (Ql) and the Explicit 

Integration models provides a measure for the accuracy of the pivot point head: 
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To find the best pivot point, the function is minimized using a standard gradient search 

method. 

 

It is necessary to expand further on two aspects of the above methodology: 

 

• The Euler method is used to calculate the tank heads used in the second snapshot 

simulation. This is done despite the fact that the Euler method may introduce 

significant errors in the tank heads when relatively long time steps are used.  

However, the Explicit Integration variables are determined from the response of tank 



 20 

inflows to changes in the tank heads, and not from the actual tank head values. Even if 

the tank heads are not determined very accurately, the corresponding inflows are 

accurate since they are obtained from a full snapshot simulation of the network. 

Application of the method to various pipe networks confirmed that the Explicit 

Integration method is not very sensitive to the time step length and that much larger 

time steps than those used with the Euler method can thus be used.  

 

• The second snapshot simulation is performed in the middle of the time step and not at 

the end of the time step as might be expected. It was found in various test applications 

that the estimation error made by the Euler method increases with time between the 

first and the second snapshot simulation. However, when the Explicit Integration 

method is used to predict the tank behavior beyond the second snapshot simulation, 

the estimation error reduces again. The estimation error is reduced to zero in this way 

at a point in time roughly double the difference between the two snapshot simulations. 

The reason for this behavior most probably lies in the way the pivot point shifts with 

time.   

 

 

Methodology 

 

A methodology is proposed for simulating gravity networks without demands using the 

Explicit Integration method. A flow diagram of the method is given in Figure 4. First the 

simulation period is divided into a number of time steps. The time step length is determined 

by the accuracy requirements and other factors such as operational controls in the network. 

Two snapshot simulations are performed in each time step, one at the start of the time step 

and the other in the middle of the time step. The tank head and flow results are used to 

determine the position of the pivot point by minimizing the error between the flow results of 

the Explicit Integration model and the second snapshot simulation. The tank heads at the end 

of the time step are then estimated and the process repeated for the next time step. 

 

Ideal position for Figure 4 
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EXAMPLE 

 

The Explicit Integration method for networks without demands is illustrated using the 

example network shown in Figure 3(a). The example network consists of a source with a 

fixed head of 180 m, which feeds three tanks, A, B and C, with initial heads of 116 m, 157.2 

m and 53.8 m respectively. The Hazen-Williams pipe headloss equation was used, so that n in 

Equation 10 equals 1.852. The source and tanks are connected by a network of pipes.  

 

For the purpose of the example, the maximum tank heads were not restricted, thereby 

allowing the tanks to fill throughout the 24-hour simulation period. As a consequence, large 

changes occurred in the tank heads, with tank A's head increasing by almost 40 m. It is 

unlikely that this scale of change will occur in real networks. However, the large head 

variations do provide a good basis for evaluating the accuracy of the simulation methods. 

 

To determine the reference or true behavior of the network, an Euler simulation was 

performed using a small time step. The accuracy of the Euler method increases with 

decreasing time step length, and a time step of one minute was considered to have sufficient 

accuracy to provide the basis for calculating the simulation errors. The hydraulic grade 

variations of the three tanks are shown in Figure 5. 

 

Ideal position for Figure 5 

 

Another simulation was then performed using the Euler method, but this time with a time step 

length of one hour, which is in line with normal simulation practice.  

 

Finally, the Explicit Integration method was applied to the example network. Two time steps 

of twelve hours each were used. A snapshot simulation was done at the start of the first time 

step, and another snapshot simulation in the middle of the step. The tank heads and 

corresponding net inflows are given in rows two to five of Table 1. 

 

Ideal position for Table 1 

 

A pivot point head for the network must now be determined, which will allow the network to 

be decoupled into its constituent simple base networks. The valid range for the pivot point 
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head is determined by the flow patterns in the snapshot simulations. It is clear from rows two 

to five of Table 1 that the pivot point head has to be between 162.2 m (H1 for tank B) and 180 

m (the head of the fixed-head reservoir). The sum-of-square error (Equation 21) is shown for 

different pivot point head values in Figure 6. The minimum sum-of-square error shown in 

Figure 6 was found using a standard gradient search method to be 179.308 m. The 

corresponding K' values for the pivot point head are given in row seven of Table 1.  

 

Ideal position for Figure 6 

 

Replacing the values into Equation 17 provides a description of the tank heads as functions of 

time for the first 12-hour time step (0 ≤ t ≤ 43200): 

 

 (22) 

    

 

 

 

The process was now repeated to find the tank head function for the second 12-hour time 

step. The full 24-hour simulation thus only required four snapshot simulations. 

 

The simulation errors introduced by the Euler and Explicit Integration methods were 

determined by comparing their results to the reference simulation results. This comparison 

showed that both the Explicit Integration and Euler methods performed well on Tank C, with 

final errors less than 2 mm. However, for Tanks A and B large differences in the performance 

of the two methods were observed as shown in Figures 7 and 8. The graphs clearly show that 

the Explicit Integration method achieved better accuracy than the Euler method for both tanks 

A and B. The Explicit Integration method also used only four snapshot simulations, 

compared to 24 snapshot simulations by the Euler method. 

 

Ideal position for Figures 7 and 8 

 

The Euler method’s error is greatest for tank A (305 mm), followed by tank B (149 mm) and 

then tank C (1.6 mm). This sequence corresponds to the changes in tank heads shown in 

Figure 5. During the simulation the flowrates into the tanks continually decline as the tanks 
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fill up. The Euler method, however, does not take this decrease in flowrate into consideration, 

but estimates the tank head solely from the flowrate at the start of each time step. This results 

in an overestimation of the flowrate, and thus also of the tank head. The greater the change in 

flowrate over the time step, the greater the resulting error will be. This explains the 

correlation between change in tank head and simulation error. 

 

The Explicit Integration method’s error differs from the Euler method’s error in that it is 

greatest for tank B (-69.0 mm) followed by tanks C (0.7 mm) and A (0.2 mm). This sequence 

corresponds to the sequence of tank flowrates (see Table 1). The pivot point head is 

determined by minimizing the sum-of-square flowrate error. This measure results in greater 

fractional errors for the sub-networks with smaller flowrates, such as tank B. 

 

 

DISCUSSION 

 

The most important reason for the Explicit Integration method's improved accuracy over 

the Euler method is that it uses considerably more network information. The Explicit 

Integration method specifically includes information on the network layout and pipe 

hydraulic behavior. The Euler method, on the other hand, only uses the tank inflows at the 

start of a time step to estimate the tank head behavior.  

 

It should be pointed out that the Euler method error would not always continue to grow 

throughout a simulation as occurred in the example application. The reason for this is that 

the tank heads at the end of a 24-hour simulation will normally be similar to the tank 

heads at the start of the simulation. In such cases the Euler method error will first 

increase, but will then decrease again as the tank head returns to its initial value.  

 

Another point of note is that the number of snapshot simulations required is also 

influenced by the number of operational events such as pumps switching, tanks filling up 

and valves changing status. When many such control events occur in a simulation run, the 

advantage of the reduced computational effort by Explicit Integration will be less. 

However, in most cases the Explicit Integration method should still provide significant 

improvements in modeling accuracy.  
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An Explicit Integration simulation results in a set of equations describing the tanks' 

dynamic behaviors. These equations provide detailed information on the tank behavior 

between simulation times and not only for the times at which snapshot simulations were 

performed. The Euler method, on the other hand, only provides tank head values at times 

when snapshot simulations are performed. To obtain tank heads at intermediate times 

linear or step-wise interpolation is typically used. Both these interpolation methods can 

result in significant increases in the simulation errors at intermediate times.  

 

The Explicit Integration method requires little additional information compared to the Euler 

method, and most of the additional information can be obtained from the standard network 

data using automated procedures.  

 

 

CONCLUSIONS 

 

In this paper, three categories of methods for solving the dynamic tank equations were 

discussed, namely regression, numerical integration and explicit integration methods.  

 

Regression methods are problem specific and their accuracy dependent on how well the 

regression equations represent the actual network behavior.  

 

Two numerical integration methods are typically used for solving the dynamic tank 

equations, namely the Euler and Improved Euler methods. The most common of the two, 

the Euler method, does not have good accuracy and should not be used for practical 

results. It is important that other numerical integration methods are also investigated to 

find a more accurate solution method with reasonable computational effort. 

 

An new method for extended period simulation of pipe networks without demands, called the  

Explicit Integration method, is proposed in this paper. In the Explicit Integration method, a 

pipe network is decoupled into a number of constituent simple base networks. The dynamic 

behaviors of the simple base networks are determined by integrating their dynamic tank 

equations explicitly, and are then used to estimate the dynamic behavior of the full pipe 

network. The accuracy of the Explicit Integration method is influenced by movements in the 
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network's 'pivot point', a point on the energy line that is used to decouple the network into its 

simple base networks.  

 

Using an example network, it was shown that the Explicit Integration method is able to model 

the dynamic behavior of tanks with improved accuracy while using substantially fewer 

snapshot simulations than the Euler method. In the example, the computational cost of 

dynamic modeling was reduced by almost 80 % from 24 snapshot simulations to just four. 

 

LIST OF SYMBOLS 

 
A = tank cross-sectional area; 

A = vector of tank cross-sectional areas; 

E = Bernoulli energy; 

h = headloss; 

H = tank head; 

HP = reservoir (fixed) head; 

H = vector of tank heads; 

H´ = vector of first derivates of tank heads with respect to t; 

K = headloss coefficient; 

K´ = flow coefficient = 
n

K

1

1






 ; 

n = headloss exponent; 

N = number of links connected to a node; 

p = pressure; 

Q = net tank inflow; 

Qd = demand; 

Qi = link flowrate; 

Q = vector of net tank inflows; 

Qd  = vector of the demands in the network; 

t = time; 

v = velocity; 

V = storage volume; 

Z = elevation; 

ZCp = vector of pump controls; 
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ZCv  = vector of valve controls; 

Δ = a change; 
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TABLES 

 
Table 1  Calculation of the first pivot point for the example network 

Row Item Tank A Tank B Tank C Source 
1 Diameter (m) 30 15.2 50 - 
2 H0 (m) 116.00 157.20 53.80 180 
3 Q0 (l/s) 395.0 45.50 110.4 -550.9 
4 H1 (m) 128.07 162.62 55.01 180 
5 Q1 (l/s) 352.8 38.06 110.0 -500.9 
6 HP (m) 179.307 
7 K´ 0.042117 0.008326 0.008140 0.6111 
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FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1  A simple base network consisting of a fixed-head reservoir feeding a tank. 
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Figure 2  (a) A pipe network consisting of two tanks connected by a single pipe. (b) An 
equivalent network with the pivot point replaced by a fixed-head reservoir. 
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Figure 3  (a) An example pipe network without demands. (b) An equivalent simplified 
network.  
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Figure 4  Flow diagram of the Explicit Integration method for gravity pipe networks without 
demands 
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Figure 5  Changes in the tank hydraulic grades with time 
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Figure 6  The sum-of-square error as a function of the pivot point (HP) 
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Figure 7  Simulation errors for tank A  

0

100

200

300

0:00 6:00 12:00 18:00 0:00

Time

| E
rr

or
 | 

(m
m

)

Euler    Explicit Integration



 37 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8  Simulation errors for tank B  
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