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ABSTRACT 

The Engineering discipline has relied on computers to perform numerical calculations in 

many of its sub-disciplines over the last decades. The advent of Graphical Processing Units 

(GPUs), a parallel stream processor, has the potential to speed up generic simulations that 

facilitate engineering applications aside from traditional computer graphics applications, 

using GPGPU (general purpose programming on the GPU). The potential benefits of 

exploiting the GPU for general purpose computation require the program to be highly 

arithmetic intensive and also data independent. This paper looks at the specific application of 

the Conjugate Gradient method used in hydraulic network solvers on the GPU and compares 

the results to conventional CPU implementations. The results indicate that the GPU becomes 

more efficient as the data set size increases. However, with the current hardware and the 

implementation of the Conjugate Gradient algorithm, the application of stream processing to 

hydraulic network solvers is only faster and more efficient for exceptionally large water 

distribution models, which are seldom found in practice. 

Keywords: Computer programming; GPGPU; Hydraulic modeling 

INTRODUCTION   

The multi-billion dollar gaming industry has created a continuous and strong demand for 

more realistic computer graphics and faster animations in PC games (Monti et al. 2005). As a 

result, Graphical Processing Units (GPUs) have seen vast performance increases in 

processing capacity. At the time of writing, commercially available AMD GPUs were 

equipped with up to 3,200 parallel processors capable of 4.64x10
12

 single precision floating 

point operations per second, or 4,640 GFLOPs (AMD 2009). Thus the GPU has become a a 

mass-parallel processing unit with thousands of processors. 

Manuscript
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Due to the overwhelming demand for GPUs in the gaming industry, GPUs have become 

considerably cheaper than CPUs with similar processing power. This has created an incentive 

for programmers to exploit the processing power of GPUs for non-graphical problems, such 

as those found in engineering disciplines. This movement was strengthened by certain GPU 

developments such as increased speed, increased parallel processors, IEEE 32-bit floating 

point precision and the unlocking of former fixed pipelines in graphics hardware (St-Laurent 

2004; Owens et al. 2005). Large IT corporations, such as Nvidia, AMD, Intel, Microsoft, 

IBM, Apple and Toshiba recognized the potential for GPUs, and have all made significant 

advances in the field in recent years (Evans 2009). 

The aim of this study was to investigate the application of stream processing on the GPU to 

water distribution network solvers. The paper starts off by introducing GPUs and their 

potential in general purpose programming. It introduces necessary concepts and terminology, 

and an overview of the GPU programming paradigm. It then describes how stream processing 

on the GPU was applied within hydraulic network solvers using the Conjugate Gradient 

solver. Finally, the results and conclusions are presented. 

GRAPHICAL PROCESSING UNIT (GPU) 

The GPU is a dependent, auxiliary component of a computer designed for the mathematical 

manipulation of computer graphics, and thus does not possess the more wide-ranging 

capabilities of the CPU (Owens et al. 2007). Even though the primary purpose of the GPU is 

in the area of graphics, it is capable of running more general instructions and is considered a 

programmable floating-point processor. 
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 Figure 1: Growth in CPU and GPU processing capacity 

The processing capacity of GPUs has been nearly doubling every year. This rate is 1.4 times 

greater than Moore’s Law, which states that the CPU processor's performance doubles every 

18 months (Owens et al. 2007; Ekman et al. 2005). Figure 1 shows the increase in processing 

capacities of Intel CPUs compared to ATI and Nvidia GPUs since 2006. The primary driver 

of the GPU performance increase has not only been clock rate, but also increases in the 

number of processors on the GPU, allowing for a higher level of parallelization. 

It is important to note that parallel processing is not unique to GPUs, but can also be 

implemented on CPUs through threads that run on multiple processors on the same computer 

or on a cluster of computers. However, generally CPU parallelization is limited by the 

number of processors on the computer’s motherboard (at the time of writing the 

commercially available limit is eight processors), and cost. Consider, for instance, a typical 4-

core CPU, the Intel Core i7-975, costing $999 upon release (Anandtech 2009) which can 

process up to 55.36 GFLOPs (Intel 2009). In comparison, current GPUs such as the Nvidia 

GTX 295 and AMD Radeon HD5970 are substantially more powerful with processing 

capacities of 1,788 and 4,640 GFLOPs respectively, while at the same time significantly 

cheaper, with release date prices of $550 and $650 respectively (GPUReview.com 2010).  

GPU applications have already outperformed CPU-only clusters in a variety of different 

applications. One notable example at the University of Antwerp in Belgium is the creation of 
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a supercomputer using 4 Nvidia 9800GX2 GPUs (with the same processing capacity as a 

cluster of 300 Intel Core 2 Duo 2.4GHz CPUs), for less than $5,750 for use in tomography, a 

technique to produce three dimensional images of internal organs through the combination of 

a large number of X-rays (De Maesschalck 2008; University of Antwerp 2009). Recent 

studies (see Guidolin et al 2010; Wu et al 2011) in the field of hydroinformatics have used 

CUDA for hydraulic network modeling. 

There are a number of important differences between the operation of the CPU and GPU. The 

GPU stores memory in a specialized and rigid memory structure, called texture memory, 

which acts like the CPU’s random access memory (Karsten and Trier 2004). In addition, 

loops used in the conventional programming model on a CPU are replaced with shader 

programs, or kernels, on the GPU. Shader programs are instruction sets that continually 

operate on data streams sent to the processor until all the data have been processed. The GPU 

processors can all run the same shader program simultaneously, and thus process the data in a 

highly parallel manner (Harris 2005; Karsten and Trier 2004). Finally, computations 

performed in functions on the CPU are also performed in shader programs on the GPU. A 

program can be made up of several shader programs as several functions combine to produce 

a program. 

GPUs are not likely to threaten the prominence of CPUs since they are developed for very 

specific applications. Stream processing on the GPU should rather be seen to complement the 

CPU as a co-processor for certain types of applications. Nonetheless, it is likely that GPUs 

will play an important role in engineering calculations in the future.  Evans (2009) suggests 

that non-graphical computation on GPUs could be the most important computing trend over 

the next 10 years.   

 

GPU Operation 

To do stream processing, it is important to understand how the host (CPU) directs the GPU to 

perform calculations, and how the GPU itself operates. The process is graphically illustrated 

in Figure 2. 
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Figure 2: Diagrammatical view of the classical CPU and GPU setup (adapted from Owen et 

al. 2007) 

 

The host is responsible for managing the computer’s resources, interacting with the outside 

world and sending commands to the GPU (Pharr and Fernando 2005). Communication 

between the host and the GPU is performed through a bus, which is simply a set of wires that 

carry data (Dokken el al. 2007). The capacity of the bus is limited, but the need to send data 

between the host and GPU can be reduced by accessing local memory on the GPU in the 

form of caches (vertex buffer or framebuffer) and texture memory (Owens et al. 2005). The 

most common bus used in modern graphics cards is the PCI (Peripheral Component 

Interconnect) Express bus.  

 

The use of the framebuffer minimizes the latency and communication required to send the 

data back to the host and then sending it to the GPU at a later stage (Nvidia 2006). Therefore, 

the data is generally adapted so it can be stored on the framebuffer and used in all proceeding 

calculations.  

 

The classic graphics pipeline is shown in Figure 2. This pipeline has been used in graphics 

cards for the last 20 years, with improvements emerging in the functionality and 

programmability within each of the stages. Data from memory is made available to the GPU 

through the use of textures, which consist of arrays of pixels (Harris 2005). Textures are 

processed by the shader programs and are output as fragments. Fragments contains pixels, as 

well as extended data like depth, normal, and texture coordinates (Dokken et al 2007). Before 
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fragments become pixels, they still undergo many different operations (Nvidia 2006). Each 

pixel typically consists of four channels of data, three for the primary colors and the fourth 

for transparency. Thus, in a non-graphical context a pixel can be viewed as a one-, two-, 

three-, or four-dimensional vector-array of numbers (Patin 2003).  

 

The first stage of the graphics pipeline (the vertex processor) transforms each of the vertices 

from world space to screen space. Textures are only processed once they are mapped onto 

these vertices. The second stage, called the rasterization stage, fills each of the triangles 

produced in the first stage with a color. The output of this stage is a fragment for every place 

where a pixel is situated. This stage is performed off screen (Möller and Haines 2002).  

 

The third and final stage, called the fragment stage, determines what color each fragment 

must be. The fragment program reads from any global memory address, through the use of 

textures in a process called texture mapping (Dokken et al. 2007), but only writes to the 

framebuffer.  

 

The output from the pipeline is a texture, which is stored in the framebuffer (Owens et al. 

2005). The output from the framebuffer can either be sent back to the CPU or reused within 

the graphics pipeline.  

 

Important GPU hardware limitations are the amount of memory allocated to a single texture, 

and the total amount of data that can be stored on the GPU’s onboard memory. Once the total 

onboard memory limit is reached on a Windows XP-based system, the GPU cannot process 

the data stream. Windows Vista and Windows 7 accommodate for the limit in onboard 

graphics memory by introducing the ability to use global memory for the GPU, and thus the 

total memory required to process the algorithm would not be a limiting factor (Microsoft 

2006). The use of this virtualized memory, however, causes losses in processing power, 

because the GPU has to send and receive data from the CPU through the bus. 

 

Unified GPUs were first introduced in the Nvidia GeForce 8800, in 2006, and have since 

become the standard for GPUs. Prior to unified processors, GPUs consisted of a fixed number 

of fragment and vertex processors. Unified processors consist of many stream processors 

which manage GPU processing resources more efficiently as stream processors dynamically 

switch between performing fragment or vertex processes. This eliminates the need for 
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programmers to consider load balancing of the different processors. Thus, unified GPUs have 

become ideal general-purpose parallel floating-point processors (Nvidia 2006).  

 

Programming for the GPU  

The languages and API (Application Program Interface) available to program for the GPU all 

exploit the GPU’s graphical capabilities for non-graphical calculations (Owens et al. 2005). 

While there are small differences between the languages, they all follow the same basic 

framework. The main programming languages available for stream processing on the GPU 

include: 

 

Shader based API 

 CG (C for Graphics) used for Nvidia graphics cards 

 HLSL (High Level Shader Language) used by Microsoft through DirectX 

 GLSL (OpenGL Shader Language) used by OpenGL 

GPGPU API 

 CUDA (Compute Unified Device Architecture) a Nvidia GPGPU language 

 OpenCL (Open Computing Language) cross platform API 

 Direct Compute, a Microsoft GPGPU language used in Windows Vista and Windows 7 

 

The OpenGL shading language was used in this study as it is very stable and has been in use 

for over 20 years, undergoing many revisions in this time. (GLSL 4.10 was released July 

2010). Thus, OpenGL and GLSL continually stay on top of latest hardware developments and 

are trusted and stable languages. Although GLSL is not a direct GPGPU language, GLSL is 

used to program real-time graphics and thus is a highly optimized API. OpenGL is also 

manufacturer independent. 

 

A typical OpenGL program consists of creating a window and rendering a scene to the 

framebuffer (Segal and Akeley 2008). OpenGL is only concerned with rendering data into 

and reading data from the framebuffer (Segal and Akeley 2008). The library does not provide 

any support for any other peripherals such as a mouse or a keyboard. However, the OpenGL 

Utility Toolkit (GLUT), a freely distributed, cross-platform windowing API used to interact 

between the operating system and OpenGL, can perform these tasks (Kilgard 1996). GLUT 

consists of a simple but useful interface and was designed for use with simple to moderately 
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complex programs, which deal mainly with OpenGL rendering (Kilgard 1996). GLUT has 

support for C, C++, FORTRAN, and Ada; and is also platform independent (Woodhouse 

2002).  

 

The extent of parallelism used on a GPU depends on the ability of the programmer to exploit 

the instruction-level parallelism which is available through the typically four element vector 

structure within the GPU and ensuring that the numerous processors on the GPU are utilized 

for the program (Harris 2005). In order to take full advantage of the GPU’s capabilities, it is 

important that shader programs are highly arithmetically intensive, i.e. has a large ratio of 

mathematical operations to memory accesses (Pharr and Fernando 2005). If it is not, the 

overheads added by the initialization will take longer and slow down the algorithm (Dokken 

et al 2005).  

 

Data parallelism is performed on the GPU by assigning a shader program to each processor 

on the graphics card. This allows each processor to perform the same set of instructions (or 

shader program) at the same time on different data streams. A data stream is made up of 

arrays of data stored in textures, and includes both the input to and output from the shader 

programs (Owens et al. 2007).  

 

A stream can be simple or complex, for instance it can consist of a stream of floating-point 

numbers or a stream of transformation matrices. A single stream can also be of any length, 

although longer streams are more efficient than shorter ones. A shader program works on an 

entire stream and cannot perform different tasks on individual elements in the stream (Owens 

et al. 2005). Therefore the elements within the stream must be independent of other elements 

within the same stream (Owens et al. 2005). This allows shader programs to be highly 

efficient if the input data and the computed data are either stored locally or through carefully 

controlled global references. The same shader program can run on different GPU processors, 

each simultaneously manipulating a different data stream. (Owens et al. 2005). 

 

APPLICATION OF STREAM PROCESSING TO HYDRAULIC NETWORK SOLVERS  

Approach 

Hydraulic modeling is an indispensible tool for the design of a water distribution system due 

to the size and complexity of many networks, and the non-linear nature of the governing 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 
 

 

hydraulic equations. The most common method used to solve the hydraulic network 

equations is known as the Global Gradient Algorithm (Todini and Pilati 1988). This method 

uses mass and energy balance to set up the network equations under the assumption of 

incompressible flow. The application of a Newton-Raphson based method yields a set of 

linearized equations that are solved simultaneously for the link flow rates, and then repeated 

until convergence is achieved.  The Jacobian matrix in the set of linear equations is 

symmetrical, positive-definite, and highly sparse, and the equations are solved with the 

Cholesky method (Rossman 2000). 

 

The Global Gradient Algorithm is implemented in the public domain software EPANET, 

developed by the US Environmental Protection Agency in the 1990s (Rossman 2000). 

EPANET has been adopted as the standard for hydraulic modeling in research and 

commercial software.  

 

Solving the set of linearized equations in the Global Gradient Algorithm is computationally 

intensive, and thus has potential for application to stream processing. However, the sequential 

Cholesky method does not calculate inverse matrix coefficients independently of each other. 

Since these internal dependences in the data stream are not allowed in stream processing, the 

sequential Cholesky method could not be used, and an alternative linear equation solver had 

to be found. 

 

The hydraulic network equations have weak convergence characteristics, and thus neither the 

Jacobi nor Gauss-Seidel methods could be used in the Global Gradient Algorithm as both 

methods require excessive numbers of iterations to converge (Todini and Pilati 1988). 

However, the Conjugate Gradient method is not affected by this weak convergence and is 

comparable to the number of operations required by both the Jacobi or Gauss-Seidel methods 

(Todini and Pilati 1988; Todini 1979). Importantly, the Conjugate Gradient method calculates 

inverse matrix coefficients independent of each other, and was thus considered a suitable 

alternative to the Cholesky method for stream processing application.  

 

While the matrix inversion is only one part of the method to solve hydraulic networks, it is 

done iteratively and is the main contributor to the computational cost of the solver. Since the 

aim of this study was to explore the implementation and potential benefits of stream 
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processing for hydraulic network solvers, only the matrix solution process was implemented 

on the GPU. The standard Conjugate Gradient method was implemented on both the CPU 

and GPU and the computational times compared. No measures, such as preconditioning, were 

implemented to optimize the efficiency of the Conjugate Gradient method, since these 

methods are likely to show similar improvements on the CPU and GPU. For the same reason, 

sparse matrix techniques were not implemented (the Jacobian matrix of a water distribution 

network is highly sparse), but the methods were applied to dense matrices representing highly 

connected networks. The implications for sparse network matrixes were interpreted from the 

results of the dense matrixes.  

 

The dense matrixes were constructed with diagonal elements that are equal to the sum of the 

absolute values of all of the off-diagonal elements in the row, making the system weakly 

diagonally dominant. This is equivalent to the coefficient matrix used in the Global Gradient 

Algorithm. The computation time of these matrices can then be used to assume the 

computational time required for a water distribution system, in which each of the pipes are 

connected to the next two pipes in the system.. The dense system consists of n
2
 elements, 

while the sparse system would have 5n elements, with n being the size of the system. It is 

understood that there are extra computation required for the sparse implementations, like 

memory handling. The size of the linear system was increased starting with a 2x2 matrix (size 

4), and increasing the numbers of rows and columns in powers of two.  

Implementation 

In this study the C++ programming language was used for the main host program and GLSL 

for the GPU shader programs. The OpenGL 2.1 library was used to link the C++ and the 

GLSL code, initialize and store the textures in the framebuffer, and initialize all the shader 

programs. GLUT was used to interact between the window system and OpenGL. The 

fragment shader programs contain the algorithms that were used to perform the Conjugate 

Gradient method. As the program loads all of the data onto the GPU memory through the use 

of textures, the CPU was not used for any of the calculations performed in the stream 

processing implementation of the Conjugate Gradient method.  

 

Computational time was first estimated from the time it took to perform a single iteration of 

the Conjugate Gradient method for the various CPU and GPU implementations on a dense 

linear system. This provided a general comparison of the algorithm on the different 
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architecture. However, since the number of iterations required to solve different networks 

vary, the total run times were also compared.  

 

The Conjugate Gradient method used in both the CPU and GPU architecture is presented 

below in Figure 3, where r
(0)

 = -bi and the values of β
(0)

 and xi
(0)

 are both equal to zero in the 

first iteration. 

 

 

Figure 3: The Conjugate Gradient method 

   

The reduction operation, used when finding a single value from a data stream, for example 

finding the minimum or maximum value or making a summation of all the elements in an 

array, is used extensively in each of the solution methods in the Conjugate Gradient method. 

The conventional, sequential reduction method is, however, inefficient in parallel on the 

GPU. The constructed parallel reduction algorithm creates a pyramid of textures which 

alternatively read-from and write-to textures, in a process referred to as “ping-pong.” This 

process is graphically shown in Figure 4, where the size of the output texture is recursively 

halved. Thus, textures of size n = 2
p
 can generally be solved in O(log n) steps, which reduce 

the texture to a scalar value in fewer operations than the sequential reduction algorithm, 

which solves in O(n) steps (Owens et al. 2005). The reduction operation is performed in the 

calculation of α, β, where a vector is reduced to a single value, and z, where a matrix is 

reduced to a vector. 
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Figure 4: Parallel reduction, used on the GPU 

 

The procedure for multiplying a matrix, A, of size [nxn] with a vector, x, of size [nx1] is 

calculated on the GPU such that it first produces a new texture z of size [nxn], such that zij = 

Aij×xj, where i denotes the column and j the row in each variable. The procedure is complete 

once all of the rows in the texture are summed using the reduction algorithm creating a 

texture of size [nx1]. 

 

The calculation of α and β were performed using three shader programs. The first program 

multiplies each of the vectors together. The second program reduces each vector to a single 

value. The final program divides these values.   

 

As an example of the GLSL code used for general computation on the GPU, the code 

required for calculating matrix z is presented in Figure 5. This shader program is executed on 

the fragment processors and has two inputs (lines 2 and 3). The inputs are defined before the 

shader program is processed and they both remain constant throughout the duration of the 

shader program. Lines 9 and 11 are used to find the value of the texture at a specific point, 

which is equivalent to finding a value within an array. As the input texture vector consists of 

one column of values, the x-axis is only required at the midpoint and all the y-axis values are 

found. The shader program is processed simultaneously by all available fragment processors 

until all data streams are processed. If there are more data streams than available processors 

on the GPU, the data streams are processed in batches until all the elements in the data stream 

are processed. Further, this shader program can be used on a square matrix texture and a 

vector texture of any size, as the shader program itself does not define the size of the input 

textures. The output (line 13 in Figure 5) is placed into a new, but predefined texture in the 

framebuffer. 
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Figure 5: The matrix-vector multiplication shader program 

 

The calculations were performed using both the stream processing model on the GPU and 

conventional programming model on the CPU. This was repeated on two different 

computers:  Computer 1 ran Windows XP (Service Pack 2). The 6.14.11.9038 driver, 

released on 14 July 2009, was installed for the graphics card in Computer 1. Computer 2 ran 

Windows 7 Enterprise 64-bit. The 8.17.12.6089 graphics driver, which was released on 10 

August 2010, was used for this GPU, an Nvidia GTX 260. The specifications of each of the 

computers are presented in Table 1. 

 

Both of the GPUs use the PCIe 2.0 x16 bus to transfer data between the GPU and the CPU, 

which run at 8 GB/s. The onboard memory transfer for each of the GPUs is presented in 

Table 1. 

 

Table 1: Specifications of the different computers 

 Computer Processor Number 
of 

Processors 

Clock 
Rate 

Shader 
Clock 
Rate 

RAM Memory 
speed 

GFLOPs 

CPU 1 Intel 
Celeron 

1 2.8 GHz - 1 GB 400 MHz  

 2 AMD Athlon 
II X2 250 

2 3.01 
GHz 

- 4 GB 1,333 MHz  

GPU 1 GeForce 
GTX 285 

240 648 
MHz 

1.476 
GHz 

1 GB 1,242 MHz 1,062.7 

2 GeForce 
GTX 260 

192 576 
MHz 

1.242 
GHz 

512 
MB 

999 MHz 715.4 

 

1  //input textures 

2  uniform sampler2D matrix; 

3  uniform sampler2D vector; 

4   

5  void main(void) { 

6      float M_value, 

7              V_value; 

8      //look up the value at the texture coordinate in the matrix texture inA 

9      M_value = texture2D(matrix,vec2(gl_TexCoord[0].x, gl_TexCoord[0].y)).x; 

10    //look up the value at the texture coordinates in the vector texture in x 

11    V_value = texture2D(vector,vec2(0.5, gl_TexCoord[0].y)).x; 

12    //output the answer to a new texture in z 

13    gl_FragColor = vec4(M_value*V_value); 

14 } 
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Findings 

The computation time results for both computers are shown in Figure 6 for a single iteration 

of the Conjugate Gradient method, and Figure 7 for full convergence of the Conjugate 

Gradient method.  

 

Figure 6 highlights the differences between the CPU and GPU architectures. Initially the 

GPUs use considerably longer computation times, but the CPU computation times increase at 

a considerably higher rate The GPUs outperform the CPUs for linear systems larger than 

1,161x1,161 on Computer 1 and 857x857 on Computer 2.  

 

The trend lines are presented in Figure 6 in order to analytically compare the Conjugate 

Gradient method on the two different architectures. The computational time of the smallest 

(smaller than 10x10) matrixes are ignored, since additional computational overheads clearly 

affected their calculation speed significantly.  

 

 

Figure 6: Performance of a single iteration of the Conjugate Gradient 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



15 
 

 

 

 Figure 7: Performance for the total convergence of the Conjugate Gradient 

 

The reasons that the CPU outperforms the GPU for the smaller linear system sizes include the 

following:  

  

 Clock rate: The clock frequency of a CPU core is significantly higher than that of the 

GPU cores. For example, the CPU in Computer 2 ran at a clock rate of 2.7 GHz while 

each of the processors on the GPU in Computer 2 ran at 1.2 GHz. This higher clock 

frequency allows the CPU to perform operations much faster on small data sets than the 

GPU can for the same small data set due to low parallelization. However, the advantage 

of the GPU is evident as the number of elements in the data stream increases as there 

are 192 processors running the shader programs in parallel on the GPU compared to 2 

processors on the CPU.   

 CPU Bound: Even though the GPU is capable of performing the same task on a data 

stream very efficiently, the rate at which the tasks are sent through to the GPU 

depended on how fast the CPU can upload shader programs to the GPU. For small 

networks, the overheads to load these tasks are the same as for large networks, but the 

relative gain in computational time of the GPU calculations are small compared to 

these overheads. 
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 Memory switching: The CPU is more efficient at transferring data to and from global 

memory than the GPU. 

 

For small data streams (less than 10) the time required to set up, handle and store the data 

becomes important and thus these points move away from the exponential trend line. Other 

data points for the analysis of the data provide good fits for experiential curves as shown. 

Memory handling becomes less pronounced as the linear system becomes larger. This is 

because the amount of arithmetic operations performed increases with an increase in system 

size.  

 

The effect of CPU bound was seen in the comparison between the performance of the GPUs. 

The GPU of Computer 2 is significantly slower than that of Computer 1, which should result 

in the GPU of Computer 1 computing faster. However, the CPU in Computer 2 was superior 

to that of Computer 1 allowing the GPU in Computer 2 to outperform that in Computer 1. 

Thus, it is evident that the results using stream processing on the GPU are dependent on the 

capabilities of the CPU. This effect has been illustrated in a test in which a CPU processor 

was overclocked to different frequencies and the performance of the GPU was recorded (VR-

Zone 2009).  

 

The implication of the results for sparse systems is that the GPU would outperform the CPU 

for sparse matrices larger than about 270,000x 270,000 on Computer 1 and 145,000 x 

145,000 on Computer 2. These represent exceptionally large water distribution models, and 

thus it is unlikely that stream processing would find practical application to hydraulic 

network solvers using current technology and the Conjugate Gradient method. However, the 

study clearly showed the potential for substantial improvements in computational efficiency 

for engineering problems that are better suited to stream processing. 

 

CONCLUSION 

GPUs have advanced drastically in recent years and have opened up the possibility of 

applying them to problems outside of the graphics field. The implementation of non-

graphical programming on the GPU through stream processing has great potential for 

speeding up certain types of engineering calculations.  
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Even though there is a strong movement in programming from conventional linear or parallel 

programming on the CPU to mass-parallel programming on the GPU. Further advances in 

GPU architecture and software are likely to introduce the GPU to a much greater extent as a 

standard technology in the scientific and engineering fields.  

 

In this study, the Conjugate Gradient method used in hydraulic network solvers was 

investigated on the GPU and the CPU. The implementation of the Conjugate Gradient 

method in the stream processing model on the GPUs proved to be both feasible and faster 

than the CPU implementations, but only for large linear systems. In large linear systems, the 

processing performance on the GPU was much greater than the CPU’s performance due to 

the ability of utilizing multiple processors at the same time. However, the sparse nature of 

hydraulic networks means that GPUs will outperform CPUs only for exceptionally large 

networks. As a result, it is unlikely that stream processing will find practical application to 

hydraulic network solvers using current technology.  However, the study clearly showed the 

potential for substantial improvements in computational efficiency for engineering problems 

that are better suited to stream processing 

 

Finally, although OpenCL could not be used in this study, the development of OpenCL could 

enable the next generation of parallel processing applications and should be considered in 

future engineering applications. It already has the support of many large corporations, such as 

Apple, AMD, Intel, Nvidia and IBM. As it bridges the gap between the different architecture 

on the computer, namely the CPU and the GPU, allowing for both multiple task 

parallelization, which is most efficient on the CPU, and multiple data parallelization, which is 

most efficient on the GPU.  
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