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ABSTRACT 

Municipal storage tanks are used to balance differences in supply and demand. Tanks have 

traditionally been sized based on deterministic criteria for balancing, fire and emergency 

storage components. In this paper a stochastic analysis method is proposed to model both the 

deterministic and probabilistic components of consumer demand, fire demand and pipe 

failures in water distribution systems.  The method estimates a number of tank reliability 

criteria as functions of tank capacity, which provide a site-specific way of determining the 

required tank capacity based on user-defined reliability criteria. The method is illustrated by 

applying it to a ‘typical’ water supply system. It was found that the tank failure duration 

follows a Weibull distribution. The tank failure rate was found to be very sensitive to tank 

capacity and can be described with an exponential distribution. It is proposed that one failure 

in ten years under seasonal peak conditions is used as a design criterion for tank sizing. In 

many cases this will result in substantially smaller tanks than is currently specified by design 

guidelines. 
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INTRODUCTION 

Bulk supply to a storage tank is generally best supplied at a fixed flow rate, which allows 

capital costs to be minimized and purification plants and pumps to operate at maximum 

efficiency. Water demand, on the other hand, is highly variable and is influenced by a large 

number of factors. The main function of a municipal storage tank is to balance differences 

between supply and demand in order to provide users with a reliable water supply in the most 

economic way. 

 

A storage tank can be considered to have failed if it runs dry, and thus it is possible to 

describe the reliability (or lack thereof) of a tank through its failure behavior. Increasing tank 

capacity can reduce pumping costs and will invariably improve tank reliability, but this 

comes at an increased capital cost and longer water retention times, which can affect water 

quality negatively (Clark et al. 1996). It is thus necessary to find the optimal balance between 

these opposing objectives, both in determining the required capacity and operational policies 

of a storage tank.  

 

Tanks have traditionally been designed and analyzed according to deterministic design 

guidelines, specifying tank components for balancing, fire and emergency storage. Typical 

design parameters for low-density residential areas in the USA (Boulos et al. 2004), France 

(Brière 2000) and South Africa (CSIR 2000) are provided in Table 1.  

 

In practice water distribution systems do not display deterministic behavior, but are subjected 

to continuously varying conditions that have both deterministic and probabilistic components. 

A more realistic view of a network’s performance can thus be obtained through a stochastic 

analysis that includes both deterministic and probabilistic parameters (Aly and Wanakule 
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2004; Homwongs et al. 1994; Kretzmann and Van Zyl 2004). 

 

In this paper, a stochastic analysis method is presented for analyzing the reliability of 

municipal storage tanks. The proposed method incorporates generic unit models that describe 

both the deterministic and probabilistic components of consumer demand, fire demand and 

pipe failure events. The method is applied to a simple water supply system with ‘typical’ 

model parameters. The results of the analysis are characterized and compared to a number of 

tank design guidelines. It is illustrated how stochastic analysis can allow the designer to 

determine the required tank capacity based on reliability criteria rather than general and 

conservative design guidelines, and can thus lead to more appropriate tank sizing for site-

specific conditions.  

 

METHODOLOGY 

Introduction 

To model the behavior of a tank, it is necessary to understand the factors that can affect either 

the supply to, or demand from the tank. These factors can be classified into three groups:  

• Scheduled events including rehabilitation, testing, cleaning and maintenance of 

network elements.  

• Operational factors, including consumer demand, pipe failures and fires. 

• Disasters, such as earthquakes, tornados and terrorist attacks.  

 

Scheduled events are within the control of the municipality and can be performed at times 

when there is minimum risk to the system. It is thus reasonable to assume that the potential 

impact of scheduled events on tank reliability should be considered in the planning of these 

events, and not when sizing tanks. Disasters, on the other hand, are extreme events outside 
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the control of a municipality. It is possible that areas under threat of disasters may want to 

increase tank size requirements, but such considerations have to be part of a site-specific 

disaster response plan. Based on the above, this study specifically excluded scheduled events 

and disasters and only considered operational factors. 

 

Operational factors can be further classified as having long, medium or short term effects:  

• Long term effects cause sustained growth in demand and occur over the scale of 

several years.  

• Medium term effects occur within a year, but are significantly longer than the tank 

retention time, for instance seasonal variations in demand.   

• Short term effects occur within a day or a week, and affect the immediate behavior of 

a storage tank.  

 

How these categories are included in a stochastic model depends on the purpose of the model. 

The reliability analysis of a tank can only realistically be done for a particular time in the 

design horizon of the system. To model long term effects, different analyses are thus required 

at specific times in the design horizon. Medium term effects will cause the reliability of a 

tank to vary throughout the year and can be included in a stochastic model, but this will 

require very long simulation runs. A more practical approach is to model the behavior of a 

tank at the most critical time in a year to estimate its minimum reliability. Analyses can be 

performed at different times of the year if the seasonal variation in tank reliability is required. 

 

Stochastic Analysis 

A stochastic model generates outputs that are predictable only in a statistical sense.  Repeated 

use of a given set of model inputs produces outputs that are not the same but follow certain 
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statistical patterns (Lewis 1996). Stochastic modeling is frequently used in the analysis of 

complex systems where risk and uncertainty play important roles (Yang et al. 1996).  

 

Stochastic analysis has been applied to water distribution systems in a number of previous 

studies (Damelin et al. 1972; Wagner et al. 1988; Yang et al. 1996), although these studies 

generally focused only on link failures. Work by Nel and Haarhoff (1996) and Haarhoff and 

Van Zyl (2002) also incorporated limited stochastic models for water demand and fire events.  

 

The proposed stochastic analysis method is based on Monte Carlo simulation (Fishman 

1995), which entails the repeated calculation of the system performance, each time with a 

different combination of input parameters. The stochastic analysis method was implemented 

using the public domain software Epanet (Rossman 2000) and Ooten (Van Zyl et al. 2003), 

an object oriented programmers toolkit for Epanet.  

 

The method can be applied to any water distribution network defined in Epanet. An Epanet 

Reservoir is placed in the network where the tank reliability has to be analyzed. Epanet 

Reservoirs have fixed hydraulic heads although the user can vary the water level using a time 

pattern. The user specifies the tank sizes that need to be considered in the reliability analysis. 

These tanks are not hydraulically modeled, but the Reservoir in and outflows are used to 

adjust the volume of water in each of these ‘dummy’ tanks at each simulation time step. 

When a ‘dummy’ tank runs dry, the duration of the failure is determined and logged. 

 

At the start of each modeling day, stochastic unit models for water demand, fire demand and 

pipe failures are used to calculate the projected behavior of network components for that day. 

The calculated water and fire demands are converted to standard Epanet Demand Patterns 
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linked to the stochastic demand nodes. If pipe failures are generated in a day, the affected 

pipes are closed and opened according to their failure times using standard Epanet Controls. 

Once the parameters are set, Epanet is used to model the system for the day, typically using 

hourly time steps and intermediate time steps when required. At each simulation step, various 

performance criteria, including tank failures, are logged. This process is repeated for a user-

defined number simulation days before the logged data is statistically analyzed and the results 

presented. 

 

STOCHASTIC UNIT MODELS 

Stochastic unit models were developed for consumer demands, fire demands and pipe 

failures. In each case generic components for the unit model were identified and used to build 

the model.  

 

Consumer Demand 

Municipal water demand is a highly variable process due to the large range of possible user 

types and numerous influencing factors. Influencing factors can be categorized as socio-

economic (household size, income, stand size, social status, number of household appliances, 

social patterns, public and school holidays, tourism and water price), climatic (temperature, 

rainfall, humidity, time since last rainfall and the number of preceding hot days) and 

structural (number of users, water metering, plumbing fitting properties, pressure and 

network capacity). As a result it is impossible to predict water demand with certainty and any 

prediction model will invariably include significant errors.  

 

Aly and Wanakule (2004) classified water demand models into three categories: end-use, 

econometric and time series models, although many modelers have found it useful to 
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combine different models. Some notable examples of demand models include the Poisson 

rectangular pulse (PRP) method (Buchberger and Wu 1995), Auto Regressive Integrated 

Moving-Average (ARIMA) (Bougadis et al. 2005), state-space (Billings and Agthe 1999) 

multiple regression (Maidment et al. 1985), adaptive smoothing-filtering approach 

(Homwongs et al. 1994), pattern recognition (Shvartser et al. 1993) and artificial neural 

networks (Jain et al. 2001).  

  

Based on a review of water demand literature, it was possible to identify four generic 

components for the water demand unit model: average demand, cyclic patterns, persistence 

and randomness. The average demand is the average consumption over the period modeled. 

This value may vary, for instance the annual average demands of most areas increase from 

year to year. 

 

A number of cyclic patterns can be identified within a given year, including seasonal, day-of-

the-week and diurnal patterns. Seasonal variations in demand are slow and can be adequately 

described with weekly or monthly demand factors. 

 

Persistence describes how much the demand of a current period is affected by previous 

periods and may be observed on different temporal scales (Alvisi et al. 2003; Homwongs et 

al. 1994). Aly and Wanakule (2004) concluded that persistence is more pronounced in water 

demand than correlations with weather parameters. Persistence can be described through a 

series of autocorrelation coefficients that is defined by the number of elements in the 

autocorrelation series, and their values. In a water demand pattern, autocorrelation can be 

identified on a daily or hourly level and both levels were included in this study.  
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Random effects are common in water distribution systems due to the many influencing 

factors that cannot be predicted with certainty. After the deterministic factors have been 

identified and removed from data, it is possible to characterize the remaining white noise 

component using a statistical distribution function. In a good model the remaining white-

noise components should have a zero mean and constant variance (Homwongs et al. 1994).  

Several examples of demand models using a normal distribution are present in the literature, 

for instance see Xu and Goulter (1998) and Aly and Wanakule (2004).  

 

The demand model adopted in this study consisted of two distinct steps: the first to model 

daily and the second to model hourly water demand variations. In each step the cyclical 

patterns are modeled using a multiplicative model and the remainder as an auto-correlated 

random process. The model for daily demand is as follows: 

 

ddowaved CDD =                                                    (1) 

 

Where Dd is the average demand in day d, Dave is the average demand for the period studied, 

Cdow is the day-of-week demand factor and υd is the daily demand residual function, described 

by: 
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Were i is a lag counter, m the number of daily autocorrelation lags, i  the daily auto 

regression coefficient for lag i and lnεd a white-noise process. The notation ( )2,0IN~ln Dd   
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The hourly demand variation is modeled with a similar model: 

 

hhdh CDD =                                                     (3) 

 

Where Dh is the average demand for hour h, Dd is the average demand for the current day, Ch 

is the hourly demand factor and υh is the hourly demand residual function, described with a 

similar equation as the daily demand residuals, i.e. (2). 

 

Fire demand 

The municipal water distribution system is generally the main source of water for fire 

fighting. There generic components of fire demand were identified: occurrence, duration and 

fire flow. 

European countries often have substantially lower fire water requirements than the USA, 

mainly due to water quality concerns caused by large pipes and long retention times in the 

system (Van Zyl and Haarhoff 1997).  In the USA fire water requirements are normally 

calculated for individual buildings using the ISO method (Walski et al. 2001). This method 

yields Needed Fire Flow (NFF) that can be used for design and evaluation of water 

distribution systems. The NFF fire flow requirements vary between 32 and 757 ℓ/s, and fire 

durations between 2 hours for small fires and 4 hours for large fires. In a study on fire water 

consumption, Van Zyl and Haarhoff (1997) analyzed water used to fight large fires (requiring 

more than 5000 ℓ of water) in Johannesburg, South Africa for a period spanning 12 

consecutive years. The study found that both fire duration and fire demand follow log-normal 

distributions. 
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We assumed that the occurrence of fires events, like many other similar random events, can 

be modeled with a Poisson process. A Poisson process is characterized by a rate parameter λ 

such that the number of events in a time interval with length τ follows a Poisson distribution 

with parameter λτ. The Poisson process with counting process N(t) is described by: 
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                     (4) 

 

Where P is the probability of occurrence, t is time, N(t+τ) – N(t) describes the number of 

events in time period τ, k is the number of occurrences, and e is the base of the natural 

logarithm. The expected number of events in time interval (t, t+τ] is given by: 

 

   =−+ )()( tNtNE                                (5) 

 

For practical reasons fire events were modeled by simulating the times between successive 

fires which, for a Poisson process, follow an exponential distribution. The probability density 

function of an exponential distribution is given by: 

 

( ) 0;; = − tetf t                                        (6) 

Where Δt is the time between successive fire events. Fires at the same node that occur before 

the end of the current fire were ignored. 

Once a fire has occurred, both the fire duration and fire flow were estimated using log-normal 

distributions. The probability density function for a log-normal distribution, written in this 
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case for the fire duration, is given by: 
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                           (7) 

 

Where T is the duration of the fire event, μ the mean of the logs of the durations and σ the 

standard deviation of the logs of the durations.  

 

Supply system 

The reliability of a storage tank is affected by both the capacity and reliability of the system 

supplying it. Issues of economy and practicality often dictate that a tank is supplied at a 

constant flow rate over an extended part of the day. Assuming a known and stable demand 

pattern (i.e. no long term growth) and ignoring interruptions in the supply, it is possible to 

estimate extreme values for the combination of supply and tank capacities: if the supply 

capacity is equal to the maximum system demand there is no need for balancing storage. On 

the other hand, if the supply capacity is less than the average demand, no tank will be large 

enough to provide a sustained service. Neither of the two extremes provides a practical 

solution, and it is thus necessary to find an appropriate balance between supply and tank 

capacities.  

 

The reliability of a supply system can be defined in terms of its ability to provide a constant 

and uninterrupted supply to the tank. Emergency interruptions to the supply system can result 

from failure of any link in the chain of supply, including the water source, purification plant, 

pumps, pipes or another storage tank. In the literature on water distribution systems, pipe 

failures are most commonly dealt with and were thus used as basis for modeling supply 

failures in this study. The effects of other elements in the supply chain can be incorporated by 
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using dummy pipes to simulate their failure behaviors. 

 

Many factors influence the pipe failure rate, including the pipe properties (diameter, pipe 

material, wall thickness, protection, handling damage, jointing, bedding, age, failure history), 

environmental (soil properties, heaving soils, ground water, water temperature, external 

loads, stray currents, land development), and service conditions (pressure, water hammer, 

water quality, maintenance practices). Clark, Stafford et al. (1982) found that a minority of 

the pipes were responsible for a majority of the failures, and that the time interval between 

successive failures in a pipe became increasingly shorter. Other studies have noted 

correlations of failure rate with the number of previous failures (LeGat and Eisenbeis 2000; 

Pelletier and Townsend 1996), period installed, pipe diameter (Ciottony 1983; Kettler and 

Goulter 1985; O'Day 1983; Sullivan 1982; Walski and Pelliccia 1982) and age (Kettler and 

Goulter 1985; Walski and Pelliccia 1982). The correlation with age was not observed in all 

studies and O'Day (1983) suggested that age is a poor or even misleading indication of failure 

rate. This seems to be particularly true when studying datasets with a notable proportion of 

old pipes and observations restricted to a relatively narrow observational window. This is due 

to an infant mortality characteristic in the data, i.e. the most robust among old pipes are the 

most likely to have survived until the observational window, and the data thus reflects a 

selective survival bias that hides the effect of age. 

 

Three categories of models have been used to evaluate the structural state of water pipe 

networks (Pelletier and Townsend 1996): aggregate models, which are exponential or linear 

models of the number of failures as a function of the pipe age;  regression models, in which 

various factors that affect pipe degradation are modeled; and probabilistic models, which uses 

statistical techniques such as survival analysis. Notable recent advances have been made in 
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probabilistic modeling of pipe failures, including a mix of Weibull and exponential 

distributions (Eisenbeis 1994; Pelletier and Townsend 1996), and using a non-homogenous 

Poisson process with covariates (Røstum 2000). 

 

For the purpose of this study, four generic components of pipe failures were identified: 

occurrence, duration, clustering and severity. As with fires, a Poisson process was used to 

model the occurrence of pipe failures. This is similar to the approach followed in various 

other pipe failure studies (Guercio and Xu 1997; Mays 2004; Shinstine et al. 2002). The 

Poisson model is described by (4) to (6). Modeled failures on the same pipe that occur before 

the end of the current failure were ignored. 

 

No published data on shutdown durations for pipe repairs could be found. The duration of a 

supply system failure represents the time that the supply is interrupted and will normally 

correspond to the time that a pipe section is isolated by the repair team. Haarhoff and Van Zyl 

(2002) used a lognormal distribution and this approach was also adopted in this study.  

 

Various authors (Clark et al. 1982; Goulter and Coals 1986; Goulter et al. 1993) have 

observed that pipe failures are not independent events, but display both spatial and temporal 

clustering. For the purpose of this study, it is not important where on the supply pipeline 

failures take place and spatial clustering could thus be ignored. Also, since the stochastic 

analysis is done for a particular point in time, the failure rate will include the effects of 

temporal clustering and no additional allowance for temporal clustering is required.  

 

The severity of a failure event refers to the impact of this event on the supply flow rate. 

While closure of a single supply pipeline will completely stop the tank inflow, this is not the 
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case if more than one parallel pipe is used.  

 

APPLICATION 

The stochastic analysis methodology is illustrated through application on a simple, but 

frequently used supply system configuration. While we recognize that each water supply 

system is unique and it is impossible to generalize, an attempt was made to define a ‘typical’ 

system by selecting a layout and modeling parameters that are commonly found in real 

systems. 

 

System Description and Methodology 

The example system (Fig. 1) consists of a source feeding a tank via a single pipeline. Users 

are connected to the tank via a separate pipe. It was assumed that the tank will be analyzed 

and sized for seasonal peak conditions, and thus for the minimum rather than the annual 

average tank reliability. For this reason the seasonal pattern was not included in the stochastic 

model, but the simulation was run for a day representing the seasonal peak in the network. A 

peak demand of 80 ℓ/s and a 20 % higher supply pipe capacity (96 ℓ/s) were assumed for the 

system. Using a seasonal peak factor of 1.5, this represents an average annual demand of 4.6 

Ml/day, which is equivalent to a low density (suburban) residential area of 3 to 5 thousand 

stands. 

 

The other parameters of the demand model were based on the measured demand of three 

small residential towns located in the area of Moselle in the east of France. The data 

consisted of hourly demands measured between September 1993 and December 1996. The 

data set has a number of gaps and, after removing all days with incomplete data, 65 % of the 

above period was covered. The average daily demands were collated and analyzed first. The 
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demand displayed a typical seasonal demand pattern with minimum and maximum seasonal 

factors of 0.75 and 1.5 respectively. The seasonal pattern was removed from the data by 

dividing each day’s demand by its average weekly demand factor.  

 

The average day-of-week demand factors were then identified and the residuals analyzed to 

estimate the daily autocorrelation and white noise components. Day-of-the-week factors 

varied between 0.93 and 1.14 with weekend days displaying the highest demands. Daily 

autocorrelation were found to start with a positive coefficient at lag one, and then to be 

negative for several days. For the purpose of the base model it was decided to only use the 

lag-one autocorrelation coefficient with value 0.12. The natural logarithms of the daily white 

noise component displayed a normal distribution with a standard deviation of 0.068.  

 

Diurnal demand variations were then analyzed by first identifying and extracting the average 

hourly patterns, and then determining the hourly autocorrelation and white noise components. 

No distinction was made between the behavior of week and weekend days as these displayed 

similar diurnal patterns. The hourly factors follow a classical residential demand pattern and 

vary between 0.38 and 1.49. Significant hourly autocorrelation coefficients go back as far as 

50 hours (the limit of the analysis), but are dominated by the lag-one coefficient with a value 

of 0.70. Only this one autocorrelation coefficient was used in the analysis. The natural 

logarithms of the hourly white noise component displayed a normal distribution with a 

standard deviation 0.13.  

For a low-density residential area, it was assumed that 95 % of the fire flows and durations 

will fall within the lowest NFF values. Based on the Johannesburg fire water study (Van Zyl 

and Haarhoff 1997), it was further assumed that both fire flow and fire duration will follow 

lognormal distributions with standard deviations of  1.31 and 0.66 respectively. From this the 
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average of the natural logarithms of the fire flow and duration were calculated as 1.31 and -

0.393 respectively. This corresponds to geometric means of 3.8  ℓ/s and 0.68  h respectively 

and indicates that most fires will be small, with a scattering of large fires in between. It was 

also assumed that the fire brigade will be required to extinguish a fire once every two months, 

i.e. at a rate of 6 fires/a. 

 

What is important for the tank reliability is the number of failures that the supply pipe will 

experience. The pipe fail frequency is a function of the pipe length, which may vary from a 

few meters to tens of kilometers. For the purposes of this study, it was assumed that the 

supply pipe will experience an average of two failures per year. It was assumed that the pipe 

outage time follows a lognormal distribution with an expected duration of 5 hours and that 95 

% of repairs will be done within 12 hours. The average and standard deviation of the logs 

could then be estimated as 1.49 and 0.48 respectively. No pipe failures were modeled on the 

demand pipe. This is considered conservative since failures on the demand side will reduce or 

discontinue the demand from the tank for the duration of the failure.  

 

The number of days to simulate was determined by running the base model for different 

numbers of days, varying between 1 000 and 10 000 000 days, and observing at what 

duration the results stabilize. The repeatability of the results was also tested by running the 

simulation from ten different random seeds. It was found that the tank failure properties are 

consistently within 5 % of the ultimate values when the number of tank failures exceed 2 000. 

In this study all results were thus based on a minimum of 2 000 failure events. 

 

Results and Discussion 

The stochastic simulation calculates the failure characteristics for various user-specified tank 
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sizes and can be expressed in terms of the average number of failures per year (Fig. 2) or the 

average tank failure duration (Fig. 3). 

 

As shown in Fig. 2, it was found that the average annual number of failures can be described 

with by an exponential function of the tank size. The goodness of the fit allows the function 

to be extrapolated to estimate the behavior of large tanks that fail very infrequently. The 

results show that the average annual number of failures is very sensitive to the tank capacity. 

For instance, a tank with 13.3 hours storage will fail once a year on average. To reduce the 

failure rate to one in 10 and one in 100 years respectively, the tank capacity has to be 

increased to 17.9 and 22.6 hours. Thus, increasing the tank capacity by 35 % and 70 %, each 

increases the tank reliability by an order of magnitude.  

 

The average failure duration (Fig. 3) is at a minimum of 3.1 h for a storage capacity of 12 

hours. For smaller and larger tanks the average failure duration increases, but does not exceed 

4.2 hours. On the whole the average failure duration does not vary much and is thus not a 

suitable parameter for determining the required tank capacity.  

 

To get a better picture of the distribution of tank failure durations, 51 700 failures were 

generated for a 12 h capacity tank and statistically analyzed. A Weibull distribution was 

found to provide a good description of the failure duration distribution. The Weibull survival 

function of failure duration data T with position parameter  β0 and scale parameter σ is written 

as: 

( )   
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With t a failure duration. The distribution function is given by ( ) ,,1 0tS− and is shown in 

Fig. 4 data. The estimated values of β0 and σ were found to be 1.2163 and 0.7525 

respectively. While the average failure duration is 3.1 h, it can also be observed from Fig. 4 

that 90 % of failures will be shorter than 6.5 hours and 98 % shorter than 9.5 h. If the 

maximum failure duration of a tank is a critical design parameter, a Weibull distribution can 

be used to determine the required tank size based on an allowed exceedance probability of a 

given maximum duration. This may be expressed in terms of a return period, similar to the 

approach followed in designing hydraulic structures for storm events.  

 

The fact that the data follows a Weibull distribution can now be used to determine an 

expression for the minimum number of tank failures required to ensure reliable results. Such 

an expression will be faster and more accurate than the simulation based approach described 

earlier.  

 

Consider an exceedance probability  1,0 , and the related tα such that ( )  =;; 0tS . 

From (8): 

( )( )0lnlnexp  +−=t                                            (9) 

 

By assuming that the estimates of the Weibull parameters, and thus also of tα, are 

asymptotically normally distributed, it is possible to apply the Delta method to determine the 

variance of tα as: 

( ) ( )  ( ) ( ) ( )  ,Covlnln2VarlnlnVar)(Var 0

22

0

2 −+−+= tttt     (10) 

 

With Var and Cov indicating variance and covariance respectively. If the variance and 

covariance were estimated from a random sample of size n, and n is sufficiently large that 
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estimates are consistent, one can estimate the variance values that would have been obtained 

with a different sample size n’: 

( ) ( )nt
n

n
nt ;Var;Var 


                                           (11) 

 

This makes it possible to calculate a minimum sample size n’ to ensure that the estimate of tα 

is within the 95 % confidence interval ±ρ tα as: 
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For example, it is possible to determine the minimum number of data points required to 

calculate the median tank failure duration (i.e. α = 0.5) within 5 % of its true value (i.e. ρ = 

0.05). From the data analysis, Var(β0), Var(σ), Cov(β0, σ) were determined as 1.2131E-5, 

6.530E-6 and -2.773E-6 respectively. From (9) the median failure duration t0.50 = 2.5613 h, 

from (10) Var(t0.50) = 9.867E-5 and from (12) the minimum number of data points n’ = 1 194. 

This is lower than the 2 000 data points estimated using the earlier simulation approach, and 

thus the results satisfy this measure. 

 

Comparison to International Standards 

The tank design parameters in Table 1 were used to estimate the required tank capacities for 

the example system. The results are given in Table 2 and indicate that the USA, France and 

South Africa have sizing requirements that vary between 49 and 59 hours of annual average 

demand, or between 32 and 40 hours of seasonal peak demand for the example system.  

 

Applying these storage requirements to the results of the stochastic analysis (Fig.2) indicate 
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that under normal operational circumstances the average frequency of failures for the 

example system will be one in 45 000 years for the USA, one in 500 000 years for France, 

and one in 10 000 years for South Africa. Given that these values are based on the system 

performance at seasonal peak, the annual average return period for failures would be 

substantially more conservative.  

 

The tank reliabilities above are substantially higher than what can be considered reasonable 

for a water supply system. The most likely reason is that design guidelines have to cater for 

all types of systems and thus are inherently conservative in their approach. While design 

guidelines might determine a realistic tank sizing for a system with a very long supply 

pipeline combined with high user and fire demand requirements, the example shows that this 

will not necessary be the case for a ‘typical’ system. The power of stochastic analysis lies in 

the fact that each system can be analyzed based on local conditions and requirements. 

 

Designing for risk 

Stochastic analysis gives the designer the ability to determine the required capacity for a 

specific tank based on an acceptable risk of failure. The question is now what an acceptable 

risk of failure is for municipal storage tanks?  

 

The consequential damage associated with non-supply in a water distribution system for short 

periods is small compared to many other engineering fields. Loss of life is unlikely since little 

water is needed for sustaining life and critical industries such as hospitals and factories have 

the ability to maintain their own storages in preparation for a failure event.  

 

Kwietniewski and Roman (1997) formulated reliability requirements for water supply 
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systems. They analyzed data on people's feelings on sanitary threats, comfort and good living 

conditions to identify three reliability criteria: fail frequency, mean repair time and proportion 

of time for which water is available. Their recommendations on supply interruption 

frequency vary between 1 and 12 events per year for a maximum mean interruption time of 

24 h. In a survey of 100 families they found that 74 % of consumers considered a 24 h 

interruption to supply once per year ‘tolerable’. Only 55 % of consumers found two 12 h 

failures ‘tolerable’, indicating that users are more sensitive to the number of failures than the 

failure duration. 

 

Given the sensitivity of tank reliability to capacity and the uncertainties inherent in the input 

data, it seems risky to design the system for one or more failures per year. On the other hand 

the relatively small consequences of a tank failure do not warrant a failure return period of 

one in 100 years. In our opinion a failure rate of one failure in  10 years during the seasonal 

peak is a reasonable design value for municipal storage tanks. For the example system, the 

required tank capacity for a failure return period of 10 years is 18 hours of seasonal peak 

demand or 28 hours of annual average demand. This represents reductions of 49 %, 55 %  

and 44 % in the required tank capacities of the USA, France and South Africa for the 

example system respectively. 

 

CONCLUSIONS 

A stochastic method is proposed for analyzing the reliability of municipal storage tanks. The 

method is based on a Monte Carlo analysis and incorporates deterministic and probabilistic 

components of consumer demands, fire demands and pipe failures.  

 

The proposed method is applied to a water supply system with a common layout and typical 
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parameters values. It is shown that the average number of failures per year is an exponential 

function of the tank size. The number of failures is very sensitive to the tank size and an order 

of magnitude reduction in the number of failures can be obtained by increasing the tank 

capacity by roughly one third. 

 

The results show that the average failure duration is not greatly affected by the tank size. An 

analysis of a large number of failures generated for specific tank capacity showed that the 

failure durations follow a Weibull distribution. This distribution can be used to determine the 

tank capacity if the maximum failure duration is a critical parameter. It is also shown how the 

Weibull parameters can be used to estimate the number of tank failures that need to be 

generated to ensure reliable results.   

 

Finally, a criterion of one failure in ten years under seasonal peak conditions is proposed as 

an acceptable level of reliability for municipal storage tanks. This measure reduced the 

required tank capacity for the example system by roughly half compared to the USA, French 

and South African design guidelines. The power of the proposed method lies in its ability to 

analyze site-specific conditions to determine an appropriate tank capacity, rather than rely on 

design guidelines that have to cater for all types of systems and thus result in overly 

conservative tank sizes for most tanks. 

 



 23 

APPENDIX I. REFERENCES 

Alvisi, S., Franchini, M., and Marinelli, A. (2003). "A Stochastic Model for Representing 

Drinking Water Demand at Residential Level." Water Resources Management, 17, 

197-222. 

Aly, A. H., and Wanakule, N. (2004). "Short-term forecasting for urban water consumption." 

Journal of Water Resources Planning and Management, 130(5), 405-410. 

Billings, R. B., and Agthe, D. E. (1999). "Closure of discussion of State-space versus 

multiple regression for forecasting urban water demand." Journal of Water Resources 

Planning and Management, 125(4), 241-242. 

Bougadis, J., Adamowski, K., and Diduch, R. (2005). "Short-term municipal water demand 

forecasting." Hydrological Processes, 19, 137-148. 

Boulos, P. F., Lansey, K. E., and Karney, B. W. (2004). Comprehensive water distribution 

systems analysis handbook for engineers and planners, MWH Soft, Pasadena, Ca. 

Brière, F. G. (2000). Distribution et collecte des eaux Presses Internationales Polytechnique, 

Montréal. 

Buchberger, S., and Wu, L. (1995). "Model for instantaneous residential water demands." 

Journal of Hydraulic Engineering, 121(3), 232-256. 

Ciottony, A. (1983). "Computerized data management in determining causes of water main 

failure." Proceedings of the 12th International Symposium on Urban Hydrology, 

Hydraulics and Sediment Control, Lexington, Kentucky, 323-329. 

Clark, R., Stafford, C., and Goodrich, J. (1982). "Water distribution systems: A spatial and 

cost evaluation." Journal of Water Resources Planning and Management, 108(3), 

243-256. 



 24 

Clark, R. M., Abdesaken, F., Boulos, P. F., and Mau, R. E. (1996). "Mixing in distribution 

system storage tanks: Its effect on water quality." Journal of Environmental 

Engineering, 122(9), 814-821. 

CSIR. (2000). "Chapter 9: Water Supply (2003 revision)." Guidelines for human settlement 

planning and design, CSIR Building and Construction Technology, Pretoria. 

Damelin, E., Shamir, U., and Arad, N. (1972). "Engineering and economic evaluation of the 

reliability of water supply." Water Resources Research, 4(8), 861-877. 

Eisenbeis, P. (1994). "Modélisation statistique de la prévision des défaillances sur les 

conduites d’eau potable." Série Équipements pour l’eau et l’environnement No. 17, 

Cemagref, Bordeaux. 

Fishman, S. F. (1995). Monte Carlo. Concepts, algorithms and applications, Springer-

Verlag, New York. 

Goulter, I., and Coals, A. (1986). "Quantitative approaches to reliability assessment in pipe 

networks." Journal of Transportation Engineering, 112(3), 287-301. 

Goulter, I., Davidson, J., and Jacobs, D. (1993). "Predicting water-main breakage rates." 

Journal of Water Resources Planning and Management, 119(4), 419-436. 

Guercio, R., and Xu, Z. (1997). "Linearized optimization model for reliability-based design 

of water systems." Journal of Hydraulic Engineering, 123(11), 1020-1026. 

Haarhoff, J., and Van Zyl, J. E. (2002). "Sizing of Bulk Water Supply Systems with a 

Probabilistic Method." 985/1/02, Water Research Commission, Pretoria. 

Homwongs, C., Sastir, T., and Foster III, J. W. (1994). "Adaptive forecasting of hourly 

municipal water consumption." Journal of Water Resources Planning and 

Management, 120(6), 888-905. 



 25 

Jain, A., Varshney, A. K., and Joshi, U. C. (2001). "Short-term water demand forecast 

modelling at IIT Kanpur using artificial neural networks." Water Resources 

Management, 15, 299-321. 

Kettler, A., and Goulter, I. (1985). "An analysis of pipe breakage in urban water distribution 

networks." Canadian Journal of Civil Engineering, 12(2), 286-293. 

Kretzmann, H. A., and Van Zyl, J. E. (2004). "Stochastic Analysis Of Water Distribution 

Systems." World Water and Environmental Resources Congress, Salt Lake City, 

Utah, 1-10. 

Kwietniewski, M., and Roman, M. (1997). "Establishing performance criteria of water supply 

systems reliablility." Aqua, 46(3), 181-184. 

LeGat, Y., and Eisenbeis, P. (2000). "Using Maintenance Records to Forecast Failures in 

Water Networks." Urban Water, 3(2), 173-181. 

Lewis, E. (1996). Introduction to Reliability Engineering, John Wiley & Sons. 

Maidment, D., Miaou, S.-P., and Crawford, M. (1985). "Transfer function models for daily 

urban water use." Water Resources Research, 21(4), 425-432. 

Mays, L. W. (2004). Water Resource Systems Management Tools, McGraw-Hill, New York. 

Nel, D., and Haarhoff, J. (1996). "Sizing municipal water storage tanks with Monte Carlo 

simulation." Aqua, 45(4), 203-212. 

O'Day, D. (1983). "Analyzing infrastructure condition - A practical approach." Civil 

Engineering, 53(4), 39-42. 

Pelletier, G., and Townsend, R. D. (1996). "Optimization of the regional municipality of 

Ottawa-Carleton's water supply system operations. I. Model development." Canadian 

Journal of Civil Engineering, 23(2), 347-357. 

Rossman, L. (2000). "EPANET users manual." EPA-600/R-94/057, Environmental Protection 

Agency, Risk Reduction Engineering Laboratory, Cincinnati. 



 26 

Røstum, R. (2000). "Statistical modelling of pipe failures in water networks," Norwegian 

University of Science and Technology, Trontheim. 

Shinstine, D. S., Ahmed, I., and Lansey, E. (2002). "Reliability/Availability analysis of 

municipal water distribution networks: Case studies." Journal of Water Resources 

Planning and Management, 128(2), 140-151. 

Shvartser, L., Shamir, U., and Feldman, M. (1993). "Forecasting hourly water demands by 

pattern recognition approach." Journal of Water Resources Planning and 

Management, 119(6), 611-627. 

Sullivan, J. (1982). "Maintaining aging systems - Boston's approach." Journal AWWA, 

76(11), 554-559. 

Van Zyl, J., and Haarhoff, J. (1997). "South African fire water guidelines and their impact on 

water supply system cost." SAICE Journal, 39(1), 49-53. 

Van Zyl, J. E., Borthwick, J., and Hardy, A. (2003). "OOTEN: An Object-oriented 

Programmers Toolkit for Epanet." CCWI & WATERSAVE International Conference 

(supplementary proceedings), Imperial College London UK. 

Wagner, J., Shamir, U., and Marks, D. (1988). "Water distribution reliability: Simulation 

methods." Journal of Water Resources Planning and Management, 114(3), 276-294. 

Walski, T., and Pelliccia, A. (1982). "Economic analysis of water main breaks." Journal 

AWWA, 74(3), 140-147. 

Walski, T. M., Chase, D. V., and Savic, D. A. (2001). Water Distribution Modelling, Haestad 

Press, Waterbury, CT, USA. 

Xu, C., Goulter, I., and Tickle, K. S. (1998). "Probabilistic hydraulic models for assessing 

capacity reliability of aging water distribution infrastructure." HydraStorm '98, 

Australia, 165-170. 



 27 

Yang, S., Hsu, N., Louie, P., and Yeh, W. (1996). "Water distribution network reliability: 

connectivity analysis." Journal of Infrastructure Systems, 2(2), 54-64. 

 

 



 28 

APPENDIX II.  NOTATION 

 

The following symbols are used in this paper: 

 

Cdow  = day-of-week demand factor  

Ch  = hourly demand factor  

Dave  = average demand for the period studied 

Dd  = average demand for day d 

Dh  = average demand for hour h 

d = day counter 

E = expected value 

e  = base of the natural logarithm 

f = function 

h  = hour counter 

i  = lag counter 

k  = number of occurrences  

m  = number of daily autocorrelation lags  

n = number of points 

N(t)  = cumulative number of events at time t  

P  = probability of occurrence,  

S = survival function, 

T  = duration of an event / failure duration data 

t  = time / duration of an event 

tα = duration related to α 

α = exceedance probability 
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β0  = position parameter of a Weibull distribution  

Δt  = time between successive events 

εd  = daily random demand component  

λ  = rate parameter of a Poisson process 

 μ  = mean  

σ  = standard deviation / scale parameter of a Weibull distribution 

σD  = standard deviation of daily random demand component 

τ  = time interval,  

υd  = daily demand residual function 

υh  = hourly demand residual function 

φi   = daily auto regression coefficient for lag i  
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Table 1. Some tank design criteria for low-density residential areas 

Country Storage requirements 

Balancing (B) Fire (F) Emergency (E) 

USA  35 % of peak day 680 m3 1 peak day 

France  30 % peak day 120 m3 2 average days 

South Africa  Included in E 108 m3 2 average days 
Note: The requirements represent our interpretation of the guidelines for a typical low-density residential area. 

Where more than one option is given, the most stringent was usually selected. Where no fire duration was 

specified, a value of 2 hours was used. 
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Table 2. Typical tank sizing for low-density residential areas 

Country 

Storage elements (m3) Total storage required 

Balancing Fire Emergency (m3) (h ave 

demand) 

(h seasonal peak 

demand) 

USA 2 419 680 6 912 10 011 52 35 

France 2 074 120 9 216 11 410 59 40 

South Africa 0 108 9 216 9 324 49 32 
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Figure 1 Example network layout 

Figure 2 Annual average number of tank failures as a function of the tank capacity 

Figure 3 Average tank failure duration as a function of the tank capacity 

Figure 4 Failure duration distribution for a tank with a capacity of 12 h of seasonal peak 

demand. 
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Figure 2 Annual average number of tank failures as a function of the tank capacity 
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Figure 3 Average tank failure duration as a function of the tank capacity 
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Figure 4 Failure duration distribution for a tank with a capacity of 12 h of seasonal peak 

demand. 
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