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Abstract

Nowadays, large amounts of data are being created daily through fingertips
with the emergence of abundant social media. With the exponential growth
of the Internet over the past decades, there has been a surge of interest in the
capability to extract useful data, trends and structures on these social plat-
forms as they act as a gateway for online commercialization and information
propagation.

Heterogeneous networks model different types of objects and relationships
among them. Compared to homogeneous networks, heterogeneous networks
can fuse information from multiple data sources and social platforms. There-
fore, it is natural to model complex objects and their relationships in big social
media data with heterogeneous networks.

Despite decades of technique development for various data mining tasks,
few of them target heterogeneous networks. Heterogeneity is a key element
in contemporary social networks which provides diversified perception of net-
works. Therefore, heterogeneous network analysis has become an important
topic in data mining in recent years that has been attracting increasing atten-
tion from both industry and academia, as they provide more comprehensive
and interesting analysis results than their projected homogeneous networks.

Motivated by these considerations, this thesis presents a series of new tech-
niques for knowledge discovery in heterogeneous networks. In particular, the
methods proposed in this thesis have been applied to a wide range of ap-
plications including community discovery, ranking and information retrieval.
For dynamic heterogeneous networks, our research presents a more effective
network embedding technique when compared to the existing state-of-the-art
methods. Throughout this thesis, we highlight how our methodologies were
able to identify more tightly coupled communities in heterogeneous networks,
more accurately rank top performing social actors and having the capability

to view heterogeneous networks in a dynamic construct.
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Introduction

“Sometimes it is the people no one imagines anything of who do the

things that no one can imagine.”

- Alan Turing
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The quote by Alan Turning above hints of the potential of people. Nowadays,
with the enormous amount of data generated every second on social networks,
potential also exists in that mass of data. As a result, the fast-growing field
of social network analysis emerges, focusing on using machines and algorithms
to automatically search for useful patterns representing knowledge from data
captured in social networks [152].

Social network analysis is the study of social structures and relationship
mappings between individuals and groups of social actors within a social net-
work. With the exponential growth of the Internet, and development and
growth of social network platforms over the past decades, there has been a
shift in traditional social network studies from social and behavioural sciences
in fields such as marketing and economics [147] to the study of modern on-
line social media and platforms [96]. Due to this, there has been an explosive
growth and interest in this field of study due to the broad range of applica-
tions and relevancy in numerous domains including the identification of social
influencers [173], viral marketing [35] and criminology [24].

Along with the research vectors comes new challenges, including data in-
tegrity, privacy and paradoxes [77], time and computational complexity with
the increasing size of data sets and the constant changes and evolution of
networks [80]. Hence, a large proportion of modern social network research
is aimed at increasing the accuracy and efficiency of methods to allow users
to extract meaningful and valuable knowledge and information from complex
modern social network data.

Another shift in social network analysis is the underlying data being used.
Traditionally, most research has been performed on homogeneous social net-
works. However in most practical real life scenarios, social networks are het-
erogeneous in nature with a variety of objects and relationships interacting
through social actions. A rising challenge is to provide the capability of min-

ing and extracting information from these complex networks.

1.1 Heterogeneous Network Mining and Anal-
ysis

In the past decades, social network analysis has been a hot topic due to its
wide application in economics and marketing campaigns, as well as social and
behavioural sciences [147, 34]. Sample application domains of social network

analysis are customer value evaluation [36], customer relationship manage-



Chapter 1. Introduction 3

ment [151], and viral marketing [113]. The majority of the current research
has modeled social networks as homogeneous networks where only one type of
object (node) and relationship (edge) exist. Therefore, traditional algorithms
and techniques have focused on finding useful information from homogeneous
social networks, using various techniques such as community detection, classi-

fication, clustering, ranking and outlier detection.

In this thesis, we argue that most social networks should be modeled as
heterogeneous networks, which include more than one type of object (node)
and relationship (edge). Despite a long history of structural social network and
user behaviour analysis, little research has addressed heterogeneous social net-
work mining and analysis. Traditionally, researchers focused on the analysis of
homogeneous social networks. However, social networks in practice are hetero-
geneous due to the fact that social actors can be connected via various types
of social actions. Most traditional data mining methods, which are structural
and homogeneous approaches, are not capable of handling such heterogeneous
social networks, which is the primary concern of this thesis. The multiple types
of social actions hold valuable information about development of social actors
and interests. Therefore, mining heterogeneous social networks to interpret

and understand real world social networks is an important research direction.

Mining useful information is not an easy task. There is existing research
that has focused on mining useful information that is accurate and precise, and
also mining it efficiently and effectively. The former emphasizes minimal in-
correct results of algorithms. To this end various measures have been proposed
such as the NMI (Normalized Mutual Information) [129] and ARI (Adjusted
Rand Index) [140] scores, which are widely used to compare the similarity be-
tween the identified results and the ground truth. The latter focuses on the
execution efficiency of the techniques, where low run time and memory cost are
the goal by adopting a faster processing mechanism or implementing a more

efficient data structure.

In the situations where high accuracy and efficiency cannot be achieved
simultaneously, a good balance between the two becomes the goal. With the
abundance of multi-dimensional data embedded in heterogeneous networks, we
target to optimize the balance when performing various data mining tasks in
this kind of network.
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1.2 Motivation

Heterogeneous networks model different types of objects and relationships
between them. As compared to homogeneous networks, heterogeneous net-
works can fuse information from multiple data sources and social platforms.
Nowadays, different types of objects are interconnected with the emergence
of abundant social media. Particularly, with the rapid increase of social net-
work content online, big data analysis becomes an important task to study.
A heterogeneous information network can model complex objects and their
relationships in big data effectively [127].

Heterogeneous networks exist in scenarios such as community-based ques-
tion answering sites, multimedia networks and knowledge graphs [22]. The en-
tities and relationships in these scenarios are usually of different types. Hence,
the scenario can be viewed as an instance of a heterogeneous graph. Figure 1.1
gives an example heterogeneous network, which contains three types of objects
(i.e., researcher, publication and department) and three types of relationships

(i.e., collaboration, published and employment).

~—
i

Publitions Publications
Figure 1.1: Example of a heterogeneous network

Department

A variety of data mining tasks can be conducted in heterogeneous networks,
e.g., community detection, ranking and network embedding. Because of the
unique characteristics (e.g., fusion of more information and rich semantics)
of heterogeneous networks, there is a potential to discover more interesting
mining results in heterogeneous networks than their projected homogeneous
networks. For instance, the questions that we are able to answer with the

heterogeneous network in Figure 1.1 are:
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1. Which researchers, publications and departments are connected more
closely with each other than with others? A vice chancellor may want to
segment a university into different groups to study the high-level organ-

isational structure instead of examining each individual object.

2. What are the three most important objects considering the given rela-
tionships? Answers to this question are top-ranked researchers, depart-
ments and research topics (derived from titles of the publications), which

could be useful information for making funding decisions.

3. Comparing with the network from five years ago, what objects and re-
lationships have changed and how have they changed? This question
can provide reference information to board members of a university for

examining outcomes from their most recent five year strategic plan.

The above questions cannot be answered using a homogeneous network that is
projected from the heterogeneous information network with significant infor-
mation loss, e.g., the researcher collaboration homogeneous network in Figure
1.2.

Our main contribution in Chapter 4 is community discovery in heteroge-
neous networks, which corresponds to the first question above. Chapter 5
focuses on ranking of different types of objects in heterogeneous networks and
corresponds to the second question. Chapter 6 studies object representation
learning in dynamic heterogeneous networks and the proposed technique can
be used for modeling changes in such networks as illustrated in the last ques-
tion. Applying our contributions in Chapters 4, 5 and 6 to a static or dynamic
heterogeneous network, we are able to answer different combinations of the
questions in a more informative manner as compared to a projected homoge-
neous network (e.g. Figure 1.2).

Overall, the main research question is “Does heterogeneous information
improve the results of network analysis?”. To answer this research question, the
thesis focuses on three network analysis tasks, community detection, ranking
and network embedding.

The significance of the research question is:

1. Network analysis has been studied widely in homogeneous networks (e.g.,
network shown in Figure 1.2) while most of real world networks are
heterogeneous (e.g., network shown in Figure 1.1) . There has been little

research in heterogeneous network analysis.
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°
w Researcher

Figure 1.2: An homogeneous projection of Figure 1.1

2. Because of the unique characteristics (e.g., fusion of more information
and richer semantics) of heterogeneous networks, there is potential to
discover more interesting mining results in heterogeneous networks than
their projected homogeneous networks. This is proven by the example
questions that can be answered given the heterogeneous network in Fig-
ure 1.1, which cannot be answered comprehensively given the projected

homogeneous network in Figure 1.2.

3. The three tasks that the thesis focuses on are important network analysis
tasks, which can help us to understand the structure and evolution of
networks. The analysed structure and evolution of networks can be useful
information in a wide range of applications, such as university strategic

plan review, influenza-like illness control and forecasting [3].

1.3 Problem Statement

In this thesis we focus on mining and analyzing different kinds of heterogeneous
networks. In the first part we look at community discovery in both academic
and social heterogeneous networks. The questions that we are interested in

are:

1. Can we find heterogeneous communities with dense internal connections

and loose external connections?

2. Can our proposed approach achieve good efficiency while maintaining

high quality of identified heterogeneous communities?
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In the second part we generate a ranking list of heterogeneous objects based
on their connections and importance in a heterogeneous network. We focus on

the questions:

3. How do we evaluate our heterogeneous ranking list properly?
4. Based on the evaluation metrics, how good is our ranking list?

5. Can the quality of the ranking list be improved by taking community

memberships of objects into consideration?

In the last part, the problem of network embedding and change modeling

in dynamic heterogeneous networks is studied and we look at the questions:

6. In a dynamic heterogeneous network, how can we produce accurate em-

bedding vectors of objects?

7. Can structural changes in dynamic heterogeneous networks be identified

in an effective and efficient manner?

1.4 Scope

In this thesis, we present a variety of methods for analyzing heterogeneous
social networks, which contain multiple types of objects and relationships.
Some special cases of heterogeneous networks are not in our research scope,
e.g., multidimensional /mode networks [119] and composite networks [142, 141].
The multidimensional/mode network concept was proposed by Tang et al.,
[128] and has only one type of object and more than one kind of relationship
between objects. Qiang Yang et al. introduced the composite network concept,
where social actors in networks have various relationships, exhibit different
behaviours in each individual network or sub-network, and share some common
latent interests across networks at the same time [118].

In the first and second parts of this thesis we focus on developing novel
techniques for analyzing heterogeneous networks in correlation schemas, where
objects can be classified as either source type or attribute type.

Throughout the thesis, we constrain our research scope to capture only
one type of relationship between objects. For example, our work considers
only one relationship between an author and a paper like ‘authorship’ where
the relationship between an author and a paper could be ‘authored by’, ‘co-

authored by’, ‘edited by’, ‘recommended’ or ‘does not recommend’.
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1.5 Objectives

In fact, social heterogeneity is a key element in contemporary online social
networks that enables diversified perceptions of actors. Motivated by this con-
sideration, this thesis seeks to improve traditional homogeneous social network
analysis by taking the heterogeneity characteristic of networks into consid-
eration, which can help unlock new potential that will allow our models to
generalize across various types of social networks. To this end, our research

objectives are:

1. To develop a novel algorithm that allows us to efficiently identify heterge-
neous communities with strong internal connectivity and loose external

connections.

2. To develop a framework that produces ranking lists of heterogeneous ob-
jects through community memberships and demonstrate that the frame-

work outperforms existing benchmark techniques.

3. To create a heuristic that accurately embeds vectors of objects and mod-

els their changes in a dynamic heterogeneous network.

1.6 Contributions

Our contributions in social network and heterogeneous network analysis are
listed below:

e Recent social network analysis seeks to leverage heterogeneous user be-
havior and diversified information resources. Our extensive reviews of
social network analysis show that the vast majority of current techniques
were proposed for homogeneous networks. Therefore, this thesis focuses
on the development of a set of methods that take the heterogeneity char-

acteristics of networks into consideration.

e We perform a comprehensive survey on modern social network analy-
sis techniques and have highlighted the research gaps in heterogeneous

network analysis.

e We show how metrics for measuring quality of homogeneous communities
can be used for calculating internal and external connectivity of hetero-
geneous communities. We develop a novel heuristic that identifies tightly
coupled communities and compare the quality of communities produced

against benchmark techniques.
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e We formulate a novel heterogeneous community detection and ranking
technique and propose a model to rank multiple types of objects in a
heterogeneous network while accounting for their importance within their

respective communities.

e We propose a method to generate accurate embedding vectors of objects
by modeling dynamic and heterogeneity features of networks. We then
present this as a framework and evaluate dynamic heterogeneous net-
works and show that it can efficiently identify structural changes in the

network.

e We apply our developed methods to real world heterogeneous social net-

works and compare them against state-of-the-art approaches.

1.7 Structure of Thesis

The primary focus of this thesis is to discover useful information and knowledge
that the users can gain from different types of heterogeneous networks via
a variety of techniques. An overall structure and overview of the methods
developed in this thesis are shown in Figure 1.3. The mining tasks in all
three chapters take a heterogeneous network as an input, process the network
and output analyzed information. In addition, the heterogeneous communities
identified in Chapter 4 are taken as input by Chapter 5 for community-based

ranking of objects.

Mining Task:
Community Discovery

Chapter 4

Input Mining Task: Output
Heterogeneous Community-based Ranking of Objects Analysis
Network Chapters Knowledge

Mining Task:
Network Embedding and Change Modelling

Chapter 6

Figure 1.3: Overview of mining and analysis techniques proposed in this thesis

The remainder of this thesis is structured into the following chapters:
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e Chapter 2: Literature Survey
We provide an overview of relevant research in heterogeneous mining
and analysis. In particular, we detail seminal research and review the
overall state of the current research on community discovery, ranking
and network embedding. Furthermore, we review methods for other im-
portant data mining tasks in heterogeneous networks such as clustering,

classification and recommendation.

We look at both existing homogeneous and heterogeneous techniques
developed for the three network analysis tasks focused in the thesis:
community detection, ranking and network embedding. To answer our
research question and find out whether using heterogeneous information
improves the results of network analysis, we adopt some of the homo-
geneous methods reviewed in this chapter as benchmark techniques in
Chapters 4, 5, and 6.

e Chapter 3: Identifying Top-k Nodes in Social Networks: A Survey
We provide a comprehensive survey on social network analysis with a
focus on top-k nodes identification. We present a novel classification
method of reviewing existing literature and discuss application domains

and future research directions in the area.

We conduct a more detailed literature review on one specific network
analysis task, which identifies a research shortage in ranking in hetero-
geneous networks. This chapter serves as one motivation behind our

research question and foundation work for Chapter 5.

e Chapter 4: Uncovering Querlapping Heterogeneous Communities
We present our novel OHC algorithm, which is developed to discover
overlapping heterogeneous communities in heterogeneous correlation net-
works. We show the advantages of OHC with extensive experimental

results and analyze the results qualitatively in a case study.

We explore whether using heterogeneous information improves the result
of community detection in static heterogeneous correlation networks. To
achieve the goal, two state-of-the-art homogeneous community discovery

techniques are compared against the OHC algorithm.

o Chapter 5: Community Based Ranking of Objects
We present our novel ComRank algorithm, which is developed to rank
objects of different types in heterogeneous correlation networks by con-

sidering the object community memberships. We show the merits of
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ComRank by comparing its performance in identifying top-ranked ob-

jects against three state-of-the-art baselines.

We explore whether using heterogeneous information improves the result
of ranking in static heterogeneous correlation networks. To achieve the
goal, a homogeneous ranking technique is compared against the Com-

Rank algorithm.

o Chapter 6: Network Embedding and Change Modeling in Dynamic Het-
erogeneous Networks
We present our novel change2vec algorithm, which is developed for net-
work embedding and change modeling in dynamic heterogeneous net-
works. Experimental results show that change2vec outperforms two

state-of-the-art methods in terms of efficiency and clustering accuracy.

We explore whether using heterogeneous information improves the result
of network embedding in dynamic heterogeneous networks. To achieve
the goal, a state-of-the-art homogeneous network embedding technique

is compared against the change2vec algorithm.

e Chapter 7: Conclusions
We summarize the findings of this thesis, discuss limitations, and provide

an outlook into the future.
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Literature Survey

The growth of heterogeneous network mining and analysis is a research topic
that has been flourishing for the past decade. Due to the complexity and
broad range of sub-categories of this field of research, we narrow the scope of
our review to the three core topics, community detection, ranking and network
embedding. In this section, we review the most recent and relevant literature
in each of these topics and draw comparisons between each proposed heuristic.
Additionally, we analyse emerging techniques for staple data mining tasks in
heterogeneous networks which include clustering, classification and recommen-
dation. We then conclude this section with a discussion on gaps and weaknesses

in existing research and the work described in this thesis addresses them.

To explore whether using the heterogeneous information improves the re-
sults of network analysis, we examine both homogeneous and heterogeneous
techniques developed for the three core topics, community detection, ranking
and network embedding. Some of the homogeneous techniques reviewed in

this section are used as benchmark techniques in Chapters 4, 5 and 6.

13
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2.1 Community Detection in Homogeneous and

Heterogeneous Networks

Community Detection can be defined as the act of grouping sets of nodes
that all nodes within the group are strongly and densely connected. In this
section, we present existing community detection methodologies adopted for
homogeneous and heterogeneous networks respectively. In addition, we draw
comparisons between detection techniques of different homogeneity and high-

light the additional complexities in heterogeneous network mining.

2.1.1 Community Detection Methods in Homogeneous
Networks

In recent years, community detection in homogeneous networks has been re-
searched widely from various perspectives. Some methods focus on identify-
ing disjoint communities while others focus on overlapping communities [154].
Newman and Girvan [100] proposed that modularity can be used as a measure
to divide the homogeneous network into a set of graph partitions. This idea
has been influential in later community detection techniques, such as [13].
Speaker-listener Label Propagation Algorithm (SLPA) [154] has been shown
empirically to be one of the best performing algorithms for both overlapping
and disjoint homogeneous communities [155, 55]. The algorithm propagates all
labels in each iteration to identify community membership between nodes of
a given network. Louvain [13] is a popular homogeneous community detection
algorithm based on modularity-optimization. This parameter-free algorithm

is able to analyze a network with millions of nodes within seconds.

2.1.2 Homogeneous Community Scoring Functions

A homogeneous community scoring function assesses a group of nodes’ con-
nectivity level for representing a network community structure [157]. Triangle
Participation Ratio (TPR) is a scoring function based on internal connectivity,
which measures the fraction of nodes in a community that belong to a triad
[148, 157, 88]. The value range of TPR is [0,1], where a higher ratio represents
better internal connectivity and a value of 1 indicates a highly interconnected
community. TPR has been widely recognized as a useful metric for measuring
community density and cohesion. Furthermore, Yang and Leskovec’s [157] ex-
periments with 230 large real world networks highlighted TPR’s high accuracy

in measuring and identifying ground truth homogeneous communities.
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Fraction Over Median Degree (FOMD) is another community scoring func-
tion based on internal connectivity [157]. This metric calculates the proportion
of nodes in a community that have internal degree greater than the median
degree of all nodes in the network. FlakeODF is a community scoring function
that combines internal and external connectivity [41, 157] by calculating the
fraction of nodes in a community that have fewer edges pointing inside than
outside the community. Definition 1 presents the preliminary concepts for the

three scoring functions.

Definition 1. Given the set of nodes S, we consider a scoring function f(5)
that categorizes the community quality of S. Let G = (V, E) be a graph with
n = |V| nodes and m = |E| edges. Let S be the set of nodes, where n; is the
number of nodes in S, n, = |S|. In addition, we define d(u) to be the degree

of node u and d,,, as the median degree value of d(u) in V' [157].
Based on the definition, the formula [157] for calculating TPR score is:

_ Hu:ue S {(v,w):v,weS (u,v) €E,(u,w) e E,(v,w) € B} # I}

f(9)

Mg

The formula for calculating FOMD score [157] is:

£(8) = |{u:u€S,|{(u,Z):v € SH > dn}

The formula for calculating FlakeODF score [157, 41] is:

Hu:uesS {(u,v) € E:veS}H <d(u)/2}

N

f(5) =

2.1.3 Community Detection Methods in Heterogeneous
Networks

The existing techniques for detecting communities in heterogeneous networks
were developed for multi-relation with single-typed object schema [162], bi-
partite schema [93] or star schema [131]. Many of these techniques find com-
munities that contain only a single type of object with one or more types of
relationships. None of the existing techniques produce heterogeneous commu-
nities that contain multiple-typed objects and relationships.

In-depth studies has also been done on community identification in mul-
tiplex networks, which are complex heterogeneous networks with multiple di-
mensions or layers. Kuncheva and Monatana [81] proposed the detection tech-

nique, LART, to identify communities that are overlapping multiple layers of
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the network. Based on random walk, the heuristic is able to determine the
inter-layer weightings between nodes while applying node dissimilarity mea-
sures to determine if they can transition between each layer. Approaching the
problem from a different perspective, Hmimida and Kanawati [58] proposes
a method of identifying communities in a multiplex network through a seed-
centric approach. Their heuristic starts by identifying the initial set of seed (or
leader) nodes, the remaining nodes in the network then rank the set of seeds
node by a preference membership function in which it will join the top-scoring
community.

Social networks are usually a popular target for community detection tech-
niques due to the real world applications and value that they provide, hence
there has recently been an increasing popularity focused sorely on analysing
complex, heterogeneous, social network data. The SONAR algorithm pro-
posed by Guy et al. [52] demonstrates ranking based clustering and formation
of communities by analysing social networks from multiple sources and formed
communities based on the weighted combination of each information source to
provide end users with more complete and useful information.

Tang et al. [135] aimed to integrating different network dimensions and
types of network interactions to produce different integration schemes. Each of
the four integration scheme evaluates the network from a different perspective
and utilizes different methodologies. When compared with each other the au-
thors found that by studying the structural features of a multi-dimensional net-
work through feature integration, they were able to produce more favourable
NMI values which out-perform other evaluation schemes.

Sun et al. [130] attempts to detect the evolution of communities in a dy-
namic heterogeneous network. The authors adopt a Dirichlet Process Mixture
generative model to identify communities in each generation. For each iteration
and time stamp, the communities cluster based on historical and current net-
works which is evaluated by a Gibbs sampling-based inference algorithm. The
authors then studied two real world data sets and proved that their heuristic

can help detect the creation, convergence and destruction of communities.

2.2 Ranking in Heterogeneous Networks

There have been numerous ranking techniques proposed for homogeneous net-
works, including PageRank [19] and HITS [76]. In the past decade, some co-
ranking algorithms were proposed to address the heterogeneity of the network.

Zhou et al. [165] were among the first that studied the co-ranking problem in
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heterogeneous networks. The authors proposed a PageRank-paradigm method
for co-ranking authors and their publications. Their link analysis approach
uses three networks: the social network of authors, the citation network of
papers, and the authorship network which connects the previous two networks
together. Adapting the co-ranking framework [165] to the tweet recommenda-
tion task, Yan et al. [156] developed a model to rank tweets and their authors
simultaneously using three-sub networks: the network connecting the authors,
the network connecting the tweets, as well as a bipartite network that ties
the author and tweet networks together. While both co-ranking algorithms
[165, 156] were designed for heterogeneous networks with specific sub network
structures, a large proportion of research on this topic assumes the networks
follow a certain schema. For example, RankClus [129] assumes that the target
heterogeneous network is based on the bi-typed schema and NetClus [131] is
proposed to analyse a network based on the star schema.

MultiRank [101] is a co-ranking scheme designed to evaluate and rank mul-
tiple types of objects and relationships. The framework iteratively solves sets
of tensor equations to obtain stationary probability distributions that can ef-
fectively be used in ranking objects and relationships simultaneously. One
of their experiments analyzed academic data sets based on author to author
collaborations. MultiRank was shown to converge after ten iterations and the
results indicated that the top rank authors generally have higher citations and
collaborations. GPNRankClus [28] integrates clustering and ranking together
on a heterogeneous network following an arbitrary schema. The method mod-
els the ranking score of each node in each cluster as a Gamma distribution,
and the number of edges between two nodes as a Poisson distribution. Their
experiments on the DBLP data set show that GPNRankClus is able to produce

interesting and explainable co-ranking results.

2.3 Network Embedding in Heterogeneous Net-

works

In recent years, developing network embedding methods has attracted a con-
siderable amount of research interest. These methods fall into three major
categories based on the network type that the method was designed for. (1)
Network representation learning algorithms that were designed for static ho-
mogeneous networks, such as DeepWalk [109] and node2vec [48]. The word2vec

[94] framework uses the skip-gram architecture to learn the distributed repre-
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sentations of words in natural language. Both DeepWalk and node2vec were
built on word2vec and leveraged the two-layer neural network structure in
word2vec. (2) Representation learning models which were designed for static
heterogeneous networks, e.g., metapath2vec++ [37] and HNE [26]. Similar
to DeepWalk and node2vec, metapath2vec++ was also inspired by word2vec’s
skip-gram model to perform node embeddings. The algorithm captures hetero-
geneous structural correlations among multiple types of nodes from metapath-
guided random walks. (3) Unlike the first two categories, where the network
and the learned vector representations are fixed, there also exist network em-
bedding methods for dynamic homogeneous networks [167, 172]. Dynamic-
Triad [167] employs the triad closure process [59] to learn dynamic latent
representations of nodes. Chang et al. [26] proposes a multi-layered, deep
embedding function that considers both the local network content and overall
topological network structures. Their approach allows them to transfer objects

in a heterogeneous network to form unified vector representations.

2.4 Other Data Mining Tasks in Heterogeneous
Networks

2.4.1 Clustering

Similarity evaluations are conducted between heterogeneous networks to de-
termine how similar two networks and their underlying objects are to each
other. These similarity measures are often used in conjunction with clustering
heuristics to form clusters of objects that have similar attributes with each
other while being dissimilar to objects of other clusters. The work by Sun et
al. [128] highlights this as an algorithm, PathSim, which identifies clusters
according to the metapath-based similarity. Most existing similarity measures
are only applicable for homogeneous networks as each path in a heterogeneous
network could have different semantic meanings and values. The authors iso-
late this problem by identifying peer objects, which are objects with similar
attributes, properties and subtle similarity semantics.

Instead of clustering based only on topological structure of a graph from
a high level perspective, Zhou et al. [169] puts heavy emphasis on vertex
properties. Their proposed clustering algorithm, SA-Cluster, considers both
structural and attribute similarities through a unified distance measure by
splitting the network into k clusters based on node attributes. When applied

to real world academic and social networks, SA-Cluster was shown to produce
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more dense and coefficient clusters when compared to its baseline techniques.
The authors developed their heuristic further and proposed a more efficient al-
gorithm, Inc-Cluster, that incrementally updates random walk distances based
on edge weight increments [170]. This incremental process was shown to re-
duce run time significantly while achieving the same quality of clustering with
SA-Cluster.

Developed by Sun et al. [129], the RankClus heuristic studies multi-typed
heterogeneous networks and forms clusters effectively through ranking and
node membership information. They focus on networks with a star network
schema and produce an algorithm that recalculates cluster memberships for
nodes in an iterative manner. Instead of calculating each pairwise similarity
between objects, which is expensive and time-consuming, RankClus identifies
an initial set of loose net-clusters then readjusts objects iteratively by building
posterior probabilistic generative models, allowing them to determine if objects
in an cluster should change cluster assignments. Their evaluations on DBLP
academic data sets were shown to produce informative communities with more

focused attributes than baseline techniques.

2.4.2 Classification

Ji et al. [65] identified the problem with transductive classifications in hetero-
geneous network data, where only some objects in a given network are labeled,
hence, the authors aim to predict labels for the remaining objects. Their
prediction heuristic, GNetMine, combines the structural information of the
network, network schema and number of objects and relationships to predict
the classification models of objects with non-attributed data. Their results on
academic DBLP data sets show that the quality of existing labels is an impor-
tant factor and significantly influences the classifications results and that their
heuristic out-performed existing graph-based transductive classification heuris-
tics such as LLGC [164], in terms of accuracy as they were mostly applicable
for homogeneous networks.

Building upon their previous work, Ji et al. [64] studied the effectiveness
of combining both ranking and classification of nodes when analysing hetero-
geneous networks. Their proposed algorithm, RankClass, is a ranking-based
classification framework that iteratively builds ranking models and re-adjusts
so each object is aligned with one of the pre-specified classifications and that
the inter-class rankings are also adjusted. Each sub-network from a specific
class was then extracted from the global network as they are defined and all

the specified classifications were present, the authors applied posterior prob-
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ability to each object, to determine each object’s optimal class membership,
similar to NetClus [129].

Kong et al. [78] studies the problem of multi-label classifications in hetero-
geneous networks. Real world objects represented in a heterogeneous network
usually has more than one label associated due to the nature of its complex-
ity. Additionally, label correlations are sometimes not given and could be
hard to extract from the given data. Hence, the authors proposed a multi-
label classification process which allows them to infer correlations with class
labels effectively by studying the linkage structure of networks and class la-
bels of sample data. They evaluated their heuristic based on metrics including
Micro-F1 and Hamming Loss to show that when using heterogeneous network
data, their heuristic out-performs other multi-label classification heuristics as

it takes metapath-based label correlations into consideration.

2.4.3 Recommendation

The recommendation problem in the field of data mining targets the real world
scenario of producing high quality suggestions and relevant recommendations
based on user feedback. This problem is widespread and applicable for many
domains such as streaming services, online shopping and social networks hence
there has been an increasing amount of research arising in this field due to its
demand.

As noted by Yu et al. [159], the recommendation problem mostly lies in
“attribute-rich heterogeneous networks” where each entity has multiple labels
and attributes. They propose a learning model that combines multiple vec-
tors of relationship information along with user feedback to produce a high
quality recommender system. The authors accomplish this in a two stage pro-
cess, firstly by receiving user implicit feedback and applying Bayesian ranking
optimization to highlight positive observations. The authors then extract la-
tent features of the data set and capture different recommendation factors and
semantics. When applied to real world IMDB and Yelp feedback data sets,
their proposed global recommender system, HeteRec, achieved higher mean
reciprocal rank (MRR) values than other techniques, highlighting the value
of integrating learning models with similarity semantics in the network. The
authors further extend this work by developing personalized recommendation
systems [158], where they integrate user preference diffusion process into the
metapaths of the network. With this new framework, the new recommender,
HeteRec-p, accounts for all user interactions with objects in the networks and

puts an associated weighting into the recommendations. Results on the same
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data set shows that HetecRec-p, again, outperforms baseline techniques, in-
cluding their original global recommender, HeteRec.

Shi et al. [120] highlights the weakness of existing recommenders where
they do not consider attribute values on links and propose the semantic path
based recommender, SemRec, that applies weightings to meta paths. Through
this, the authors are able to integrate personalized user weightings and prefer-
ences in the form of paths with heterogeneous information. The effectiveness
of weighted meta paths is highlighted in the experiments, as shown when ap-
plied to real world data sets, SemRec was shown to achieve lower Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) values compared to

other techniques, especially when there was little to no training data.

2.5 Summary of Literature

In this section, we have highlighted novel heuristics and literature in various
fields of heterogeneous network mining, e.g., community detection, ranking,
clustering and network embedding techniques. For each of these topics, we
study the emerging techniques that solve common problems when analysing
complex heterogeneous networks.

Community detection has been a widely researched topic on homogeneous
networks with a large variety of scoring function to qualitative evaluations
such as Triangle Participation Ratio (TPR) and Fraction Over Median Degree
(FOMD). However, techniques for heterogeneous networks are less common
due to the complexity of identifying communities when vertexes and edges
have multiple attributes, hence existing heterogeneous community detection
techniques usually focus on single types of objects with multiple types of
relationships. We have outlined several techniques such as LART [81], an
heuristic that detects communities with overlap multiple layers in a multi-
dimensional network through inter-layer weightings and node similarity mea-
sures, and SONAR, an algorithm [52] that produces ranking-based clustering
and community detection from propagating weighted information from multi-
ple sources to determine community membership of nodes.

Similar to community detection, ranking techniques have been studied ex-
tensively for homogeneous networks but rarely in networks with high hetero-
geneity due to the large amount of vectors and variances. As one of the leading
researchers in this field, Zhou et al. [165] studied the co-ranking problem in
heterogeneous networks and proposed a heuristic similar to PageRank that

enabled co-ranking and link analysis of complex heterogeneous academic net-
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works that contained author, paper citation and co-authorship information.
Similarly, Multirank [101] is an co-ranking scheme that ranks multiple types
of objects and relationships. The heuristic iteratively solves sets of tensor
equations to obtain probability distributions that is used in the evaluation of
ranking of objects and relationships. Finally, GPNRankClus [28] approaches
the problem by integrating both clustering and ranking to produce co-ranking
results.

The study of network embedding methods has grown considerably with new
techniques and evolution built upon existing frameworks such as node2vec [48]
and Deepwalk [109]. Another technique noted was DynamicTriad [167] that
uses triad closure process to learn dynamic latent representations of nodes.

Finally, we studied several other core data mining tasks in heterogeneous
networks, including clustering, classification and recommendations. We high-
lighted how tightly integrated similarity evaluations are with clustering algo-
rithms such as PathSim [128] applying this through node peerings and similar-
ity semantics. We also noted authors that choose to solve this problem from a
topological approach, with SA-Cluster [169] and Inc-Cluster [170] evaluating
the structural properties of the network. Recommendations in heterogeneous
networks is a widespread problem and is invaluable due to the real world ap-
plications. Yu et al. [159] proposes a solution of integrating user feedback with
the recommender system, their results show that by applying user preference
into the network metapaths [158], they were able to produce higher quality

recommendations.

2.6 Performance Evaluation Metrics

Based on our literature review on various network mining and analysis tasks,
we summarize the most common evaluation criteria used by researchers to mea-
sure the performance of algorithms designed for community detection, ranking
and network embedding, which are the three main tasks focused on in this

thesis.

1. Community detection: Researchers in the field of physics first proposed
community structure as sets of nodes with high density of internal edges
and low density external edges [83, 100]. The concept was later adopted
by computer science researchers [157, 88]. The majority of existing work
in the area measures internal connectivity and external connectivity of

their identified community structures [55, 58, 81]. We use these two
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common evaluation metrics in our heterogeneous communities detection

work in Chapter 4.

2. Ranking: Zhou et al. [165] were among the first that studied the co-
ranking problem in heterogeneous networks and they used domain-oriented
metrics to evaluate their ranking results. For example, citation num-
bers for academics and publications. Adapting the co-ranking frame-
work [165] to the tweet recommendation task, Yan et al. [156] developed
a model to rank tweets and their authors simultaneously and they also
used domain-oriented metrics to evaluate their ranking list. For example,
number of re-tweets of tweets, popularity and influenceability of twitters.
Most existing co-ranking work [101, 28, 129] selected domain-dependent
metrics for evaluating the performance of their algorithms and we use

this common evaluation method in Chapter 5.

3. Network embedding: Embedded vectors generated by network embed-
ding algorithms are usually used as input for data mining tasks such
as classification, clustering and recommendation [48, 109, 37]. In most
cases, the outcome is then compared with ground truth information us-
ing metrics such as NMI (Normalized Mutual Information) [129]. NMI
is a similarity measurement score and is in the value range of [0,1] with
1 indicating that the results are identical to the ground truth. In Chap-
ter 6, we also use NMI to compare clustering results generated from our

developed approach with Google Scholar’s author and venue clusters.

2.7 Research Gaps

A common factor among existing research in the study of heterogeneous net-
work mining and analysis is the use of static, predefined data. This is un-
derstandable due to the complexity of heterogeneous networks and authors
choosing to focus on analysing singular time stamps. There is, however, no
research that views and analyses networks as a stream of data. By viewing
multiple time stamps of a heterogeneous network and integrating an additional
dimension, time, to our analysis, we can find changes and trends in the net-
work that highlight the evolution of communities which can help us to make
predictions. This is invaluable in many real world scenarios and we attempt
to analyse concurrent time stamps in Chapter 6.

Existing heterogeneous network ranking techniques focus on the attributes

of individual objects and their relationships in the network before perform-
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ing ranking from a topological viewpoint. However, in these heuristics, the
communities where the objects reside are not considered. In Chapter 5, we
propose a heuristic that integrates community detection with modern rank-
ing methodologies to produce an object ranking heuristic that integrates their
global ranking of objects as well as the local ranking within their respective

communities.



Identifying Top-k Nodes in Social
Networks: A Survey

Top-k nodes are the important actors for a subjectively determined topic in a
social network. To some extent, a topic is taken as a ranking criteria for iden-
tifying top-k£ nodes. Within a viral marketing network, subjectively selected
topics can include: Who can promote a new product to the largest number
of people and who are the highest spending customers? Based on these ques-
tions, there has been a growing interest in top-k nodes research to effectively
identify key players. In this chapter, we review and classify existing literature
on top-k nodes identification into two major categories: top-k influential nodes
and top-k significant nodes. We survey both theoretical and applied work in
the field and describe promising research directions based on our review. This
research area has proven to be beneficial for data analysis on online social

networks (OSNs) as well as practical applications on real-life networks.

Top-k nodes identification is closely related to one of the three core topics
of this thesis - ranking. We focus on this to identify research gaps in hetero-

geneous network analysis with a more specific topic.
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3.1 Introduction

In this fast-paced digital age, people around the world are now more connected
with others than ever before. Of the many communication and collaboration
channels, social networks have become very popular among different commu-
nities. The general public frequently use connection social networks, such as
Twitter and Facebook, to express opinions on trending topics. Marketers con-
struct informational networks to observe consumer buying behaviors. Research
collaborations are recorded in academic networks such as DBLP, which is a

bibliographic reference on major computer science publications.

A social network can be modeled as a graph which consists of nodes and
edges. Each node represents an actor while each edge shows a connecting
relationship between two actors. Intuitively, the representation of nodes and
edges varies accordingly to interested actors and relationships in the network.
For example, in Twitter, each user can be represented as a node while an
edge is formed when there is a “following” relationship between user X and Y.
Furthermore, each Tweet (a posting message made on Twitter) can also be a
node. An edge exists between Tweet A and B, if B is a retweet A’s message (a
Tweet message forwarded by someone else). In viral marketing networks, each
consumer can be a node while an edge is formed if a consumer successfully
persuades another person to purchase a new product. In DBLP, individual
nodes represent different academics while edges indicate that the connected

researchers have published a paper together.

An important factor for an organization’s success is the ability to advertise
their products to potential customers. To do this efficiently the organization
may want to know who are the high-priority customers that should be tar-
geted? Top-k nodes identification in social networks is an extension of this
question. Identifying key nodes can be useful for increasing product adoption
rates in advertising or searching for domain experts. Research in this field has
received a lot of interest due to three benefits: (1) It brings order to search
results so that the contributing nodes can be ranked by their significance, au-
thority and/or influence [124], (2) Tt can be utilized to increase the efficiency
of marketing and advertisement campaigns [69], (3) Its ability to improve the

utility of gathered information [150].

Nowadays, with the massive amounts of data available, it is not always
practical to analyze everything in a dataset due to resource constraints. In-
stead, sometimes, it is more effective to explore the most significant or influ-

ential actors (the top-k nodes) in a network. In this survey, we review and
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classify the current work on identifying top-k nodes in social networks. As
seen from existing literature, this research area has applications to different
domains, such as advertisements in viral marketing [69], information circula-
tion [49] and domain experts search [171, 124].

Since the first algorithmic formulation of the top-k nodes identification
problem in 2001 [36], there have been a large number of publications on var-
ious kinds of algorithms and applications in this area. With over a decade
of research, it is time to perform an overview of this field and examine what
more can be done in this research area. First, we provide general descrip-
tions of concepts that are used extensively in the rest of this chapter. Please
note that more detailed descriptions of these concepts are provided later in
Subsections 3.2.6, 3.2.7 and 3.2.8.

Topic A topic is the area of user interest and can be used as a ranking criteria

for identifying top-k nodes.

Top-k nodes (7') Top-k nodes are the k important actors for a subjectively

determined topic in a social network, where k is a user-specified integer.

Top-k Influential nodes (I) Top-k influential nodes are the k actors that
are capable of generating maximum influence and widest information
spread to their connected nodes in a social network, where k is a user-
specified integer. Top-k influential nodes will sometimes be shortened to

influential nodes in this chapter.

Top-k Significant nodes (S) Given a particular topic, top-k significant nodes
are the k actors whose intrinsic attributes are most relevant to the given
topic in a social network, where k is a user-specified integer. Top-k sig-
nificant nodes will sometimes be shortened to significant nodes in this

chapter.

3.1.1 Related Surveys

In comparison with other related surveys [84, 126, 50, 111, 114}, our work has

three distinct differences:

1. We extend the focus from either influential or significant nodes to a
broader concept - the top-k nodes. As a result, our survey includes not
only research on influence maximization but also studies on identifying

the significant nodes in social networks.



Chapter 3. Identifying Top-k Nodes in Social Networks: A Survey 28

2. As opposed to some existing surveys, e.g., [114], which focuses on only
one type of social network (Twitter in this case), our work reviews related

work in a wide range of social networks, such as Amazon, DBLP and

Wiki.

3. More comprehensive and recent literature are reviewed and an extensive
coverage of the subject is provided, i.e., applied work in different ap-
plication domains, and top-k influential nodes identification in dynamic

social networks, which were not addressed in previous surveys.

3.1.2 Contributions

Our main contributions are summarized as follows. First, we define an ex-
tended concept: Top-k nodes, to provide more comprehensive coverage of the
field. Second, both theoretical and applied work of identifying the top-k nodes
are reviewed and classified in a novel way. Finally, some promising research

directions are discussed based on our survey.

3.1.3 Survey Organization

In this chapter, we conduct a high-level overview of the top-k nodes identifica-
tion algorithms, methodologies and applications. With a rich body of literature
in this area, we organize our discussions into the following four topics: (1) Top-
k influential nodes identification, (2) Top-k significant nodes identification, (3)
Applications of identifying top-k nodes in various networks, and (4) Research
directions. The remainder of the chapter is also organized in the corresponding
four sections (Sections 3.3 to 3.6). In addition, we provide some preliminary

concepts in Section 3.2, and conclude the survey study in Section 3.7.

3.2 Preliminaries

We introduce the social network related preliminary concepts, followed by tra-
ditional node centrality measures, and then different influence diffusion models
for identifying top-k influential nodes. Finally, formal definitions of influence
maximization, influential nodes and significant nodes are provided. In addi-
tion, relationships among top-k nodes, influential nodes and significant nodes

are discussed.
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3.2.1 Social Network

In our survey, social networks contain two concepts. Firstly, it is a network
of social interactions and personal relationships. This kind of social network
existed long before the likes of Facebook, Twitter and has mainly been used
to describe entity relationships. Early research on this type of network was
conducted by social scientists. It has become an important research area in
computer science in recent years. Secondly, social networks are profile sites
or virtual communities where users can share interests and ideas, or discover

friends through posting comments, messages and images.

3.2.2 Static Network versus Dynamic Network

As dynamic networks evolve, new nodes and edges will be introduced. An
example of this is shown in telecommunication networks, where transient links
are added between two participant nodes based on texts or calls between them.
These dynamic networks with transient interactions can be represented as
graph streams, however due to high computational complexity and disk storage
requirements, these graph streams typically require real-time methods. In
contrast, static networks have fixed topology, structure and information, which
can be treated as a snapshot of the dynamic network at a distinct time t.
Therefore, offline computational methodologies can be applied on these static

networks [4].

3.2.3 Social Network Graph

A social network can be modeled as a graph G = {V, E'}, where V is a set
of nodes {vy,vq,...,v;} and E is a set of edges {ej, e, ..., e;}. In the network
graph, V represents actors and FE represents social interactions and relation-
ships between the actors. For example, when an edge e; exists between nodes
v; and v,, the two corresponding actors are considered connected/related to
each other. Neighbour nodes of v; is represented as N = {ny, na, ..., n,, }, which
refers to all nodes that are directly connected to v;. Social networks will be

described occasionally as network graphs in this chapter.

3.2.4 Node Centrality Measures

In existing literature, a number of node-based centrality measures have been
proposed and defined for evaluating the importance of nodes in selected net-

work graphs. As this survey focuses on identifying top-k nodes, we introduce
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two of the measures which are relevant to this survey.

Degree Centrality

Historically first and conceptually the simplest node measure is degree cen-
trality, where a “degree of a node is the number of edges the given node has”
[147]. Degree centrality c,, of node v; is defined to be the degree of the node
(Equation 3.1):

Co, = deg(v;). (3.1)

In the academic collaboration network (Figure 3.1), the degree centrality of
Diana node is 4. From the perspective of traditional social network analysis, a

node with a larger degree centrality is normally considered as more important.

Closeness Centrality

“Closeness centrality is defined as the average length of shortest paths between
node v; and all reachable nodes of v; in the network graph” [147]. The closeness

centrality is represented in Equation 3.2 below:

Z dist(v;, vj)

v €ER\v;

[RI—1

Closeness(v;) = (3.2)

Given that R is the group of nodes which can be traversed from node v; and
that R contains the node v;, the function dist returns the length of shortest
path between node v; and node v; [137]. The shortest path indicates the
minimum number of edges connecting two nodes.

In the academic collaboration network (Figure 3.1), the shortest path be-
tween Diana and Lucy is 1 rather than 2 (Diana - Celina - Lucy). Following
Equation 3.2, we can calculate that the closeness centrality of Diana node is
1. From the perspective of traditional social network analysis, a node with a

smaller closeness centrality is normally considered more important.

3.2.5 Influence Diffusion Models

Since influential nodes are an essential component of the top-k nodes, we
introduce two influence diffusion models which are widely used for exploring
influence of nodes. When modeling the “spread of an innovation through a

social network graph G, each node v; can have either an active (an adopter
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of the innovation) or inactive (not yet an adopter) status” [69]. Two ground

settings for influence diffusion models discussed in this chapter are:

1. v; has monotonically increased tendency to become active as more of its

neighbour nodes n,, (previously defined in Section 3.2.3) become active.

2. v; can switch in only one direction: from being inactive to being active.

The influence diffusion model progresses as follows for an initially inactive
node v;: With the unfolding of this process, an increasing number of v;’s
neighbour nodes n,, become active. At certain points, this might influence v;
to become active and v;’s decision might subsequently trigger a status change
of the remaining inactive n,,. The process runs until no further triggering can
happen [69].

Linear Threshold (LT) model [47] and Independent Cascade (IC) model
[45] are two of the most basic and widely-studied influence diffusion models.
LT is receiver-centric where the core idea is to find out whether a node can
be activated given a fraction of active neighbour nodes. Whereas IC model
is sender-centric and focuses on individual node’s activation attempts on its
inactive neighbour nodes. Therefore, the two models reflect different views on

the influence diffusion process.

Linear Threshold Model

In the model, a node v; is influenced by each neighbouring node n,,, according to
a weight w,, ,,,,. For any inactive node, v;, we select a threshold 0,, between the
interval [0,1]. The value 6,, represents the weighted fraction of v;’s neighbour
nodes n,, that must be active for v; to become active, this represents the
tendencies of nodes being influenced by neighbouring active nodes, becoming

activators themselves (Equation 3.3).

> Wey o > Ou,. (3.3)

nm active neighbour of v;

Given a random set of active nodes, A, and random thresholds, 6,,, for each
inactive node, the diffusion process will begin to iterate in deterministic and
discrete steps. For each iteration, t, all nodes that were active in stepst—1 or
lower will remain active and if the total neighouring weight, n,,, for a target
node v; exceeds its threshold 0,,, v; will be activated, this process will continue

until no more activations are possible. [69, 47].
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Independent Cascade Model

Also starting with an initial set of active nodes, A, the independent cascade
model performs diffusion based on the following randomized rule. For a given
iteration, t, if a target node, v;, was activated in step ¢ — 1, it will have the
chance to activate each inactive neighbouring node, n,,, based on a history-
independent probability p,,,n,,. If v; succeeds in activating n,,, n,, will become
and remain active in steps t + 1 onwards, repeating the same process for its
neighbouring nodes and v; will no longer be able to influence the network.
(69, 45].

3.2.6 Influence Maximization Definition

Based on the influence diffusion models described in the previous subsection,

the influence maximization problem is defined as follows:

Definition 2 (Influence Maximization). “Influence maximization is an opti-
mization problem, which requires selection of a good initial set of active nodes
A. The influence of A is measured by the number of active nodes at the end
of an influence diffusion process. The influence maximization problem aims at
finding a k-node set of maximum influence” [69]. The meaning of active nodes
varies with interested topics. Possible meanings can include but is not limited
to: adoption of a new research area, purchase of a recommended product or

receiving a new piece of information.

3.2.7 Influential Nodes versus Significant Nodes

Given the influence maximization definition in Section 3.2.6 and the definition
of Topic in Section 4.1, we formally define top-k influential nodes and top-k

significant nodes.

Definition 3 (Top-k Influential Nodes). Let G = {V, E'} denote a social net-
work graph, where V' = {vy, v, ...,v;} is a set of nodes and E = {ey, eq,...,¢;}
is a set of edges in G. We define top-k influential nodes as a user-specified
number of v; which leads to maximum influence spreading to their connected

nodes in G.

Definition 4 (Top-k Significant Nodes). Let G = {V, F'} denote a social net-
work graph, where V' = {vy, v, ...,v;} is a set of nodes and E = {ey, €9, ..., ¢;}
is a set of edges in G. We define top-k significant nodes as a user-specified

number of v;, whose intrinsic attributes are most relevant to a specified topic
in G.
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3.2.8 Relationships among Top-k Nodes, Top-k Influen-
tial Nodes and Top-k Significant Nodes

A given social network can contain a wide array of topics, such as “who are the
influential users?” and “who are the subject experts?”. From the perspective
of viewing the network under the context of a single topic as opposed to the
set of all possible topics, we illustrate the relationships between Top-k nodes
(T'), Top-k Influential nodes (I) and Top-k Significant nodes (S). When we
consider only a single topic for a given social network, if the topic is more
relevant to influence maximization of k£ number of nodes to their connected
nodes, then the set of top-k nodes will be the same for both top-k influential
and top-k significant nodes, we define this as the Top-k£ Influential Nodes
Scenario. However, if we view the topic based on intrinsic attributes (such
as authority or representativeness) of k number of nodes rather than their
influence on neighbouring nodes, then the top-k nodes will be the same as the
set of top-k significant nodes, which we define as the Top-k Significant Nodes
Scenario. From the perspective of all possible topics in a social network, top-k
influential nodes is a subset of top-k significant nodes, denoted as I C S.

In a viral marketing network, each existing or potential customer is a node
(actor) while an edge is formed between two customers if they have social
connections. Topics of interest such as “Who can promote a new product
to the largest number of people?” are examples of influence maximization on
groups of customers and can be considered as examples of Top-k Influential
Nodes Scenario. Whereas topics that are focused on non-influential properties
of the nodes such as “Who are the highest spending customers?” are examples
of the Top-k Significant Nodes Scenario.

To further illustrate differences between the Top-k Influential Nodes Sce-
nario and the Top-k Significant Nodes Scenario, we employ an academic col-
laboration network graph (Figure 3.1). In the graph, each node represents an
individual academic. An edge between two nodes exists if there is a research
collaboration between the two corresponding academics. Red and green rect-
angles indicate two separate research communities A and B in the network.
The table in Figure 3.1 shows information derived from the academic col-
laboration network: the number of collaborators each academic has and the
research community that a particular academic belongs to. Based on Fig-
ure 3.1, we provide examples of the Top-2 Influential Nodes Scenario and the

Top-2 Significant Nodes Scenario below:

Top-2 Influential Nodes Scenario Topic of interest: Who are the two most
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influential academics in the network? By having the largest numbers of
collaborators, Diana and Celina will have a higher chance of promoting
new research ideas to co-workers than others. In this case, Diana and
Celina are the top-2 nodes, the top-2 influential nodes and the top-2

significant nodes.

Top-2 Significant Nodes Scenario Topic of interest: Who are the two aca-
demics that represent all existing research communities in the network?
In this case, Jack and Diana are the top-2 nodes as well as the top-2
significant nodes. Despite being an isolated researcher, Jack will still be
selected as one of the top (significant) nodes due to his unique repre-
sentativeness of the research community B. While the most-connected
node, Diana, in research community A is the top (significant) node in

her community:.

2 CommunityA

N
ele

Academic Number of Collaborators Research Community

Diana 4 A
Celina 3 A
Lucy 2 A
John 2 A
Simon 1 A
Jack 0 B

Figure 3.1: Academic collaboration network
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Table 3.1: List of some approaches for top-%k influential nodes identification

Category of Approach Related Research

Greedy Kempe et al.[69] Kimura et al.[75]
Leskovec et al.[87] Chen et al.[32]

Centrality Measure Ilyas and Radha[61] Chen et al.[27]
Kim and Yoneki[72] Wei et al.[149]

Topic Tang et al.[133] Liu et al.[90] Barbieri

et al.[11] Aslay et al.[9]
Network Content(or Topology) Wang et al.[146] Subbian et al.[125]
Zhou et al.[166] Chen and He[29]
Dynamic Network Subbian et al.[122] Zhuang et al.[174]
Subbian et al.[123, 124]

In the academic collaboration network (Figure 3.1), when the topic of in-
terest is more relevant to maximum influence (promoting new research ideas
to collaborative academics), Diana and Celina are the top-2 influential and
significant nodes. However, when the topic of interest is shifted to find the
total number of communities in the network, the concept of influential nodes
is no longer applicable and Jack and Diana become the top-2 significant nodes

in the network.

3.3 Top-k Influential Nodes Identification

As we progress further into the digital age, there has been a steady increase
in the importance and influence of social media and networks. The ability
for users to share their thoughts, statuses and activities in these social medi-
ums has established a new level of connectivity between different groups and
niches of people, such that a single user can influence millions of their follow-
ers. Hence, it would be of interest for companies to select these influential
individuals as their initial user group in order to produce the greatest level of
coverage when advertising their products.

We start our survey with approaches for identifying influential nodes. Dif-
ferent kinds of approaches for identifying influential nodes are reviewed in
Sections 3.3.1 to 3.3.4. In addition, Section 3.3.5 discusses a relatively new
research area: Identifying Top-k influential nodes in dynamic social networks.

Table 3.1 provides an overview of research work covered in this section.
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3.3.1 Greedy based Approaches and Improvements

One important category of approaches for identifying influential nodes is based
on greedy algorithms. “The core idea of the algorithm is to calculate the
influence of each individual, and take turns to choose the node maximizing
the marginal influence value until £ number of influential nodes are selected”
[146]. Figure 3.2 illustrates this core idea in a procedural way: the process
of influential nodes identification begins with analysing the nodes’ influence
and then it iteratively maximizes the influence of an initial set of nodes. The
final goal is to obtain a group of initial nodes with maximum influence, which
are the influential nodes. To describe the process of information propagation,
the majority of work reviewed in this section use influence diffusion models
[69, 87, 31], such as the Linear Threshold [47] or the Independent Cascade
model [45] (previously described in Section 3.2.5).

\ Influence \ Influential Nodes
Influence Analysis

Maximization Identification

(method) / (method) j (final goal)

Figure 3.2: Core idea of greedy algorithms for identifying influential nodes

In 2001, Domingos and Richardson [36] were the first to explore infor-
mation and influence propagation as a computational problem. With their
proposed probabilistic solution, they designed viral marketing strategies and
analyzed diffusion processes using a data mining approach. Two years later,
Kempe, Kleinberg, and Tardos [69] categorized the problem of finding the
most influential individuals as an optimization problem. Additionally, Kempe
et al. provided the first provable approximation guarantees for the influence
maximization problem, where the influence propagation process is modeled to
reflect the effects of “word of mouth” for the “promotion of new products”
[69]. When identifying top-k influential nodes, we are interested in finding the
most influential “mouths” which can generate the largest possible influence
cascade. The problem statement contains two sub-problems: “The most in-
fluential mouths” describes the problem of finding the top-k influential nodes.
Whereas “generate largest possible influence cascade” corresponds to the in-
fluence analysis and maximization problem. These two sub-problems are both
incorporated into Section 3.3.

Kempe et al. define influence maximization as “a problem of identifying
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a small set of seed nodes in a social network that maximizes the spread of
influence under certain influence diffusion model” [69]. Although there are
various models for influence propagation in network graphs, the authors [69]
choose the Linear Threshold [47] and Independent Cascade [45] models (pre-
viously described in Section 3.2.5) in their research. On the basis of sub-
modular functions, the proposed analysis framework demonstrated that the
natural hill-climbing greedy algorithm that achieves “a solution that is prov-
ably within 63% of optimal” [69]. In conjunction to the provable guarantees,
experiments were also conducted to show that their approximation algorithm
significantly out-performs node-selection heuristics based on degree and close-
ness centrality (previously described in Section 3.2.4). One of their major
findings observed that focusing only on clustered centrality-based nodes may
not generate maximum influence. On the contrary, targeting nodes with most
possible additional marginal gain results in superior performance over the two

centrality-based heuristics.

Following their research on influence maximization through a social net-
work [69], Kempe, Kleinberg, and Tardos [70] define a natural and general
model for the influence propagation process, termed the decreasing cascade
model. The model begins with a set of “active” nodes that spreads influence
in a cascading way depending on a probabilistic rule. Their problem statement
focuses on choosing a target set of individuals for initial activation so that the
cascade process is able to result in a largest possible active set. Kempe et al.
provide provable approximation guarantees for selecting a target set of size k
using a simple greedy algorithm in the proposed decreasing cascade model.
A research direction described is to investigate which are the most general
influence diffusion models, and what provable performance guarantees can be
achieved for those models. Kimura and Saito [74] proposed two natural special
models (SPM, SP1M) of the Independent Cascade (IC) model [45] such that
they can effectively compute the number of influenced nodes given an initial
set of influential nodes. Similar to Kempe et al. [70], the authors also pro-
vided provable performance guarantees for the simple greedy algorithm in the
proposed models. Their experiments with large-scale social networks demon-
strated that when using the proposed two models for identifying influential
nodes: (1) They can provide close approximation to the IC model if the prop-
agation probabilities between links are small, (2) They can be scalable and
much faster than the IC model.

Leskovec et al. [87] developed a “lazy-forward” optimization method for

choosing a group of nodes to detect out-break, i.e., the spread of virus, as early
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as possible. Their proposed algorithm, CELF (Cost-Effective Lazy Forward),
greatly reduces the number of calculations on the node influence propagation,
which gains up to 700 times more efficiency over the simple greedy algorithm.
Chen, Wang and Yang [32] attempted to further improve the efficiency of
identifying influential nodes from the following two directions: (1) Develop
new algorithms (NewGreedy and MixedGreedy) on top of the simple greedy
algorithm. However, this resulted in unremarkable efficiency improvements, (2)
Designed a new heuristic algorithm: DegreeDiscount, which is more efficient
and scalable than the greedy strategy. However, the DegreeDiscount heuristic
is a derivation of the Uniform Independent Cascade model where propagation

probabilities of all edges are identical.

DegreeDiscount’s limitation is later addressed in a study by Chen, Wang
and Wang [31] with a new heuristic which accommodates the general Indepen-
dent Cascade (IC) model [45]. The authors underline two critical weaknesses
with existing influential node discovery techniques: (1) Existing algorithms
have poor scalability, thus will perform poorly with large-sized graphs, i.e.,
Kempe et al. [69] and Leskovec et al. [87]; (2) These algorithms have ei-
ther low scalability or have un-influential initial nodes and therefore have low

influence spread.

To resolve these two issues, Chen et al. adopted a simple tune-able param-
eter for users to control “the balance between efficiency (in terms of running
time) and effectiveness (in terms of influence spread) of the algorithm” [31].
Their solution results in a more efficient greedy algorithm when selecting nodes
in each iteration. When comparing the performance of their algorithm with
existing techniques such as simple greedy [69], their results were shown to
be: (1) More scalable with linear growth in running time beyond million-sized
graphs while others are exponential and (2) Faster execution time and spread

of influence for both real-world and synthetic datasets.

Chen, Yuan and Zhang [30] closed an open question left by Kempe, Klein-
berg, and Tardos [69] by proving that influence computation in the Linear
Threshold (LT) model [47] is NP-hard. In addition, the authors showed that
“computing influence in directed acyclic graphs (DAGs) can be done in lin-
ear time” [30]. Based on the fast computation in DAGs, Chen, Yuan and
Zhang proposed a “scalable influence maximization algorithm tailored for the
LT model” [30].

Narayanam and Narahari [98] developed a novel way of discovering influ-
ential nodes in social networks with the Shapley value concept [117], which is

commonly used in cooperative game theory. The Shapley value-based Influ-
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Table 3.2: Comparisons of some greedy based approaches for identifying influ-
ential nodes

Approach Heuristic Approach Performance Guarantees Scalable
Simple Greedy|[69] No Yes No
Improved Greedy[75] Yes No Yes
CELF[87] No Yes No
NewGreedy[32] No Yes No
MixedGreedy[32] No Yes No
DegreeDiscount[32] Yes No Yes

ential Nodes (SPIN) maps the information diffusion process to “the formation
of coalitions in a cooperative game” [98]. For computing the network values
of each node, Shapley values are used to determine the marginal contribu-
tions each node makes to the influence propagation process. The experiments
with both synthetic and real-world datasets showed that SPIN works compar-
atively well as the simple greedy strategy [69] for maximizing influence yet by
consuming much less running time.

Liu et al. [91] provided a bounded linear approach for identifying influen-
tial nodes in large-scale social networks. A quantitative metric, termed Group-
PageRank, which can be computed in near constant time, is also proposed to
address the scalability issue of the influence maximization problem. The au-
thors developed two “lazy-forward” greedy algorithms based on the bounded
linear approach and the Group-PageRank, respectively. The evaluation results
showed that the two greedy algorithms can effectively and efficiently identify
influential nodes with both of them being scalable for large-scale social net-
works.

We compare some greedy based approaches for identifying influential nodes
in Table 3.2. The simple greedy algorithm [69] provides the first ever provable
performance guarantees for the influence maximization problem. However,
it is computationally expensive and not applicable for large-scale social net-
works and later approaches address the efficiency and scalability limitations.
The improved greedy algorithm proposed by Kimura et al. [75] achieves a
large reduction in computational cost by removing edges that do not con-
tribute to information diffusion and does the propagation on a subgraph. The
CELF algorithm optimizes the simple greedy algorithm using the “submod-
ularity property of the influence maximization objective” [87] to reduce the
number of calculations on the node influence propagation. Chen et al. [32]
proposed three different algorithms: NewGreedy, MixedGreedy and DegreeD-
iscount. The key idea behind NewGreedy is to eliminate the edges that will

not contribute to influence propagation from the original graph to get a smaller
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graph and performs the influence diffusion on the smaller graph. The first iter-
ation of MixedGreedy employs the NewGreedy algorithm while the remaining
iterations use CELF algorithm. DegreeDiscount assumes that influence spread
of a node is increased with the increase in degree centrality of the node. The
authors suggested that DegreeDiscount should be adopted when efficiency is
essential while MixedGreedy can be used for identifying influential nodes when
maximum influence spread is a priority. [146]. An interesting fact shown in
Table 3.2 is that scalable greedy based approaches lacks provable performance
guarantees. This interesting fact is also described as “algorithms applies vari-

ous heuristics without provable approximation guarantee” [121].

3.3.2 Centrality Measure based Approaches

In terms of influence maximization, some research in Subsection 3.3.1 exper-
imentally demonstrated that their greedy based approaches out-perform tra-
ditional centrality measures, such as the degree and closeness centrality [147]
(previously described in Subsection 3.2.4). However, there are existing ap-
proaches for identifying influential nodes using centrality measures. In this
subsection, we review new centrality measures that have been shown to be
more effective than traditional measures for maximizing influence.

Ilyas and Radha define centrality as “a measure to assess the criticality of
a node’s position” [61]. The ability to find influential nodes is shown in many
existing methodologies, such as Eigenvalue Centrality (EVC) [14]. However,
these techniques often target a single set of influential nodes and cluster them
within one neighbourhood of nodes. This does not reflect the properties of so-
cial network graphs, where there could be multiple influential neighbourhoods.
The approach proposed by Ilyas and Radha [61] uses Principal Component
Centrality (PCC) to form social hubs, groups of nodes in a network, whose
centrality scores are higher than their neighbours. While EVC forms a single
cluster of nodes with the highest centrality scores, PCC considers additional
factors, such as the weighting of eigenvectors, when computing centrality of
nodes. The authors applied both EVC and PCC to real-world datasets (i.e.,
Facebook and Orkut) and found a significant increase in the number of influ-
ential neighbourhoods discovered.

Chen et al. [27] underlined the issues with using traditional centrality
measures for influential node identification. Degree centrality methods are
simple but irrelevant while closeness centrality methodologies are inapplicable
for large-scale networks due to the computational complexity and running

time. The authors then proposed a semi-local centrality measure to balance
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between both centrality measures. Their results on four real-world networks
showed much faster computational efficiency while providing more effective
results than degree centrality methodologies. However, this methodology was

not compared with greedy-based approaches for mining influential nodes.

Kim and Yoneki [72] studied the problem of maximizing influence diffusion
through social networks. The authors underlined the weaknesses of existing
techniques that use arbitrary node propagation and proposed the Influential
Neighbors Selection (INS) scenario to select the most effective group of neigh-
bouring nodes to propagate. Four selection strategies were proposed and the
results showed that highest degree selection had favorable results for short-
term diffusions but random selection performed better in long-term scenarios.
Highest weight and volume selections showed similar results to highest degree

selection but the additional communication costs meant they were less favor-
able.

Based on the Dempster-Shafer evidence theory [33, 116], Wei et al. [149]
proposed a new evidential centrality measure for identifying influential nodes
in weighted networks. Their approach considers not only degree and weight of
nodes but also status of the nodes in a weighted network. By experimentally
comparing with other measures such as the degree and closeness centrality, the
proposed measure showed comparative performance for identifying influential
nodes. Again, the evidential centrality was not compared with any greedy
based approaches for top-k influential nodes identification. This common trait
of centrality measure based approaches attracts our attention to the issue.
Future methodologies in this category need to compare performances with
greedy based approaches to be more convincing on effectiveness and efficiency

of their proposed measures.

The techniques presented in this subsection showed many similarities. Both
Ilyas and Radha [61] and Wei et al. [149] evaluate centrality measures while us-
ing Susceptible-Infected related models to evaluate the performances of their
proposed models. The evaluation of traditional centrality measures (degree
centrality, betweeness centrality and closeness centrality) was also a common
theme in the work by Chen et al. [27] and Wei et al. [149] and both studies
present heuristics that outperform these centrality measures in terms of in-
fluence diffusion while maintaining lower computational complexity. Kim and
Yoneki [72] adopt the Independent Cascade (IC) model to select the most in-
fluential neighbours of a node. Experimental results on two evaluation metrics
were presented. The first metric was Pearson correlation coefficient between

closeness centrality and the proposed four selection strategies. For the second
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Table 3.3: Comparisons of various centrality measure based approaches

Approach Identify Influential Identify Influential
Node Neighbourhoods Nodes

PCC[61] Yes Yes

Semi-local Centrality Measure[27]  No Yes

Four Selection Strategies|[72] Yes Yes

Evidential Centrality Measure[149] No Yes

metric, those selection methods were compared against each other by comput-
ing the ratio of the number of activated nodes to the total number of nodes in
the network. The similarities and differences of these approaches are summa-

rized in Table 3.3.

3.3.3 Topic based Approaches

In a viral marketing network, top-k influential nodes are those when convinced
to adopt a product, shall influence others in the network and lead to a largest
possible number of new adoptions. Although real world product purchasers
have different degrees of interest on various topics, e.g., some customers are
only interested in latest smart-phones while others tend to pay more attention
to new computer models, however, both the greedy and centrality measure
based approaches are topic-blind. In this aspect, the two kinds of approaches
treat all possible topics in a network as if they were the same, and focus only on
general inherent attributes of nodes (such as marginal influence gain or central-
ity measure value) regardless of any particular topic or context. This problem
is addressed in [133, 90, 11, 9] and we review these topic based approaches in
this subsection.

The Topical Affinity Propagation heuristic proposed by Tang, Sun, Wang
and Yang [133] describes the topic-aware influences in large-scale social net-
works. This tool allows users to perform meaningful and valuable influence
analysis on real-world datasets by: (1) Finding the influential nodes on a given
topic and (2) Identifying the social influences of the neighbouring nodes for
a particular node. The authors accomplish this by integrating learning algo-
rithms into their Topical Factor Graph (TFG) model. The features of the TFG
model allow users to find both the local information of nodes (such as topic-
level influences and next most probable propagation) and global information
(connectivity between any two nodes). In conjunction to these components,

the authors adopted distributed learning techniques to train the TFG model
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due to the size and complexity of large networks. The programming model,
Map-Reduce, partitions large social networks into subgraphs so multiple ma-
chines can process and collect values associated with nodes in both internal and
external subgraphs. When adopting the TFG model with real-world datasets,
their results showed that the distributed learning approach has good scala-
bility performance and topic-level influences can improve the performance of

influential nodes finding.

Liu et al. [90] focused on investigating how to mine topic-level influence in
heterogeneous networks. The authors solve the problem in two steps: (1) They
proposed a model which combines the “heterogeneous link” [90] information
with the text associated with nodes in the network to determine topic-aware
direct influence; (2) From the direct influence that was validated, a topic-aware
algorithm was proposed to determine indirect influence between nodes. Their
experiments with Twitter, Digg, and citation networks showed that the pro-

posed approach can unveil useful influence patterns in heterogeneous networks.

Barbieri et al. [11] extended the traditional Independent Cascade (IC)
model [45] to a Topic-aware Independent Cascade (TIC) model. Their exper-
iment results showed that TIC model can describe real-world influence driven

propagations more accurately than the state-of-the-art topic-blind models.

As a first step towards enabling social-influence online analytics in support
of viral marketing decision making, Aslay et al. [9] proposed an efficient index
for a general type of topic-aware viral marketing queries. Given the compu-
tational challenges related to the enormous number of potential queries and
some other aspects, the authors employed a tree-based index, INFLEX, to
obtain a solution for a limited number of possible queries. Their experiment
results showed that with the index, the targeted queries can be answered in
milliseconds instead of several days compared to existing offline computation
methodologies.

Zhou et al. [166] explored topic or preference-based top-k influential nodes
identification in social networks. The proposed mining algorithm, GAUP, finds
influential nodes on a given topic in two stages: Firstly, computing user pref-
erences and projecting them into a “reduced latent space and a VSM-based
model” [166]. In the second stage, GAUP utilizes the greedy based approaches,
e.g., CELF [87] to find influential nodes for a particular topic. When evaluated
with an academic network, GAUP was shown to maximize influence spread for
a given topic.

Although identifying topical influential nodes in social networks is an in-

teresting research direction, there hasn’t been significant research performed
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Table 3.4: Inputs, outputs and characteristics of various topic based ap-
proaches
Work Inputs Outputs Characteristics
TFG[133] e a social network topic-wise user-to-user e works for large-scale

e a prior topic distri-
bution for each node
(inferred input)

influence strength

networks

e ability to find both
the local and global
information of nodes

Topic-level

a heterogeneous social

topic distribution and

a probabilistic model

Influence network with nodes user-to-user influence for the joint inference
Mining in which are users and of the topic distri-
Hetero- documents bution and topic-wise
geneous user-to-user influence
Networks[90]
TIC[11] e a log of past propa- more accurate de- proposed Topic-aware
gations scriptions of influence Independent Cascade
e model parameters driven propagations (TIC) model by ex-
tending Independent
Cascade (IC) model
INFLEX[9] a  directed social a set of users that e answer queries on-
graph where the edges should be targeted in line within few mil-
are associated with a viral marketing cam- liseconds
a topic-dependent paign for a given topic e based on the TIC
user-to-user social model

influence strength

in this area. From three different aspects, Table 3.4 compares four topic based

approaches reviewed in this subsection.

3.3.4 Network Content or Topology based Approaches

With the increasing quantity of content in social networks, it is possible to
conduct content-centric mining of influencers. In this subsection, we review
network information (or network structure) based approaches for identifying
top-k influential nodes, which provides a different perspective from the topic
based approaches.

Community-based Greedy Algorithm (CGA) [146] takes the community
property of mobile social network (MSN) into consideration. Two major com-
ponents of the CGA are: An algorithm for community detection and a dynamic
programming model for choosing communities to identify influential nodes.
Wang et al. extended the Independent Cascade model [45] to account for the
edge weight of MSNs and provide provable performance guarantees for CGA.

In terms of efficiency and approximation error rate, CGA is proven to out-
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perform some state-of-the-art greedy based approaches for identifying top-k
influential nodes. Similar to Wang et al. [146], Bozorgi et al. [18] also utilized
the network community structure in their research. A community-based algo-
rithm, INCIM, was proposed for identifying influential nodes under the Linear
Threshold model [47]. To summarize, the network community structure is used
to find the influential communities while a node’s influence is determined by a
combination of its local and global influences. Their evaluation results demon-
strated that INCIM outperforms other approaches, such as the simple greedy
algorithm, in the quality of the identified influential nodes while maintaining

a reasonably low running time and memory consumption for large graphs.

PageRank (PR) [20] and Topic-sensitive PageRank (TSPR) [56] were orig-
inally proposed for the purpose of ranking webpages. However, in recent
decades, a number of research on identifying influential nodes adopt, extend
and integrate PR or TSPR into their own methodologies [29, 150]. Some ex-
isting research utilize PR and (or) TSPR in their experimental comparison
analysis [115, 150]. Therefore, we briefly introduce the core ideas of these two
algorithms: PageRank applies academic citation literature and orders web-
pages by calculating the number of citations and backlinks. Detailed descrip-
tions of the PageRank algorithm can be found in [106]. PageRank has been
often adopted in research for identifying influential nodes due to numerous
reasons: Firstly, in a graph composed of tens of millions of webpages, each
webpage can be represented as an individual node; Secondly, Brin and Page
[20] state that “a page can have a high PageRank if there are many pages that
point to it, or if there are some pages that point to it and have a high PageR-
ank”. As correspondingly for top-k influential nodes, a node can have a high
influence if there are many nodes that directly connect to it, or if there are
some nodes that directly connect to it and have a high influence. In 2002,
Haveliwala [56] proposed the Topic-sensitive PageRank by computing multiple
PageRank vectors, biased using various topics, to capture more accurately the

notion of importance regarding each particular topic.

Romero et al. [115] acknowledged the importance of user passivity when
finding influential nodes in social media. The proposed general model for
influence analysis uses the concept of passivity in a social network, and develops
an algorithm for quantifying the influence of all the nodes in the network.
Their method utilizes the network structural properties as well as the diffusion
behaviors among users. The influence of a user is determined by both the
size of the influenced audience and their passivity. It is claimed that the

model outperforms other measures of influence, i.e., PageRank [20] and degree
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centrality. The authors stated that high popularity does not necessarily imply
high influence. Similar opinion is also expressed in the greedy based approaches
such as [69].

Subbian et al. [125] questions the lack of actual social value of network col-
laborations in influence diffusion models, and defined individual social captial
as social value generated through collaborations with peers of high influence.
Through their proposed algorithm, SoCap, they were able to find influencers
based on the hypothesis that people with high social capital indicates high
influence within a network. Due to this, SoCap differentiates itself from other
measures of influence, e.g., degree centrality and PageRank, as it finds high
social value nodes through multiple collaborations. Unlike the greedy based
approaches, SoCap does not use any underlying influence diffusion models.
A value-allocation model is also developed to compute the social capital and
allocate the fair share of this capital to each individual involved in the collab-

oration.

A Context-Aware and Trust-Oriented influencer-finding method [171], named
CT-Influence, incorporates social contexts, such as the preferences of partic-
ipants with the social relationship and trust between participants. The ex-
periments with two real-world datasets showed that CT-Influence greatly out-
performs SoCap [125] in terms of effectiveness and efficiency for identifying

influential nodes.

Chen and He [29] take hostile relations in Online Social Networks (OSNs)
into consideration when integrating the PageRank algorithm [20] on signed
OSNs. The authors used the integrated PageRank to discover influential nodes
in OSNs with both friend and hostile relations, which correspond respectively
to positive and negative edges on signed networks. Their experiment results
for selecting top-k influential nodes on real-world datasets indicated that the
proposed method performs better than some algorithms, such as the original
PageRank [20].

In this subsection, we reviewed network topology or content based ap-
proaches for identifying top-k£ influential nodes. The network topology ori-
ented methods focus on exploiting the community structure property of social
networks. The content based techniques tend to extract various aspects of
information from a given social network, such as friend and hostile relations,
user passivity, social value of collaborations, the preferences of participants,
the content or topic of tweets etc. For the presented techniques, we notice
that PageRank was a popular comparison technique and a Twitter dataset

was frequently analyzed. We provide comparisons of techniques discussed in
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Table 3.5: Comparisons of various network content or topology based ap-
proaches

Approach Network Network Key Characteristics
Topology Content
based based
Approach  Approach

CGA[146] Yes No e community detection

e dynamically select com-
munities to find influential
nodes

INCIM[18] Yes No e influential community de-
tection
e the influence of each node
is determined by its local
and global influences

IPR[29] No Yes e signed social networks
e friend and hostile re-
lations are represented as
positive and negative edges
on signed networks respec-
tively

TwitterRank[150] No Yes the topical similarity be-
tween users and the link
structure are both taken
into account

IP[115] No Yes determines the influence
and passivity of users
based on their information
forwarding activity

SoCap[125] No Yes captures the individual so-
cial capital
CT-Influence[171] No Yes considers the social trust

and relationships between
participants and the prefer-
ences of participants

this subsection in Table 3.5.

3.3.5 Identifying Top-k Influential Nodes in Dynamic

Social Networks

In the previous four subsections, we have addressed literature on top-£ influen-

tial nodes identification in static social networks. This subsection discusses the
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existing work on identifying influential nodes in dynamic graphs, which is a rel-
atively new research area. The associated computational challenge is a major
difference in the two network settings of static and dynamic networks. Static
social network can be considered as a snapshot of dynamic network, which can-
not fully represent some characteristics of real-world social networks, such as
continuous network topology change, high-speed data transmission, large pop-
ulation of participants and uncertain information diffusion processes. More
computational resources are potentially demanded due to these distinct char-

acteristics of dynamic social networks.

Aggarwal et al. [5] are among the first who study influential nodes identi-
fication in dynamic social networks. A stochastic approach is designed by the
authors to identify the information flow authorities with two types of meth-
ods: a globally optimized forward trace approach, and a locally optimized
backward approach. In addition, methods for determining the approximately
optimal release points for a given pattern of information spread are also pro-
posed. The performance of proposed methods was evaluated on both DBLP

and ArnetMiner citation datasets.

Zhuang et al. [174] underlined the influence maximization problem in dy-
namic networks as probing nodes in an unobserved network. Maximum Gap
Probing (MaxG) algorithm was proposed to provide an approximate optimal
solution to probe a subset of nodes which can best unravel the actual influence
diffusion process in the network. The authors claimed that MaxG is a general
method and can be directly used to guide online marketing decisions in social
networks. Experiment datasets used for evaluating the performance of MaxG
were constructed from Twitter and the coauthor network of ArnetMiner. Un-
like in Max@G, which focuses on probing a subset of nodes in a dynamic network,
Han et al. [54] adopt a divide-and-conquer strategy to capture the global evo-
lution of a dynamic network by only probing the most active communities.
Extensive experiments were conducted by the authors on Epinions, Slashdot,

Twitter and Inventor networks.

A content and network-based flow mining approach for dynamic influence
analysis is proposed by Subbian et al. [122]. In their research, sequential pat-
terns were dynamically mined from a combination of the keywords and the
dynamic network in the social stream. These were then used to discover the
most influential nodes in a dynamic and evolving network. Three years later,
the authors develop an algorithm, InFlowMine, [123] to determine flow pat-
terns through content propagation on the dynamic network structure. The

identified patterns were utilized for determining topic- or network-specific in-



Chapter 3. Identifying Top-k Nodes in Social Networks: A Survey 49

fluential users, or their combinations. Unfortunately, not all Online Social
Networks (OSNs) can provide sufficient context for discovering information
flow patterns. Hence, this streaming method can not be generalized for find-
ing social influencers across OSNs. Three datasets were used in their evaluation

experiments, which are Twitter, DBLP and US patent datasets.

Vadoodparast and Taghiyareh [139] focus on maximizing product adoption
in dynamic networks by proposing a multiagent framework named MAFIM.
The framework contains two kinds of agents: modeling agents and solution
provider agents. A dynamic network is viewed as consecutive static snapshots
by these agents and according to a selected budget assignment policy, each
snapshot obtains its share from the budget defined by the sales manager. Their
experiment results on real-world dataset, such as Slashdot, demonstrate that
it is more effective to launch many short-lived campaigns rather than few long-

lived ones.

Subbian et al. [124] proposed the first general keyword-based influence
query and tracking model for streaming scenarios. With the constant evolution
of topics over time, which potentially results in different identified influencers,
the authors developed a method to maintain real-time influence scores of users
in a social stream based on topic and time-sensitive information. The core
idea of the method is to track information flow patterns in a tree-like data
structure across various paths of the network in a context and time-sensitive
fashion. The data structure facilitates one pass computation of influencers for

different contexts.

A Dynamic Independent Cascade (DIC) model and the concept of adaptive
seeding strategy were proposed by Tong et al. [136]. Using a simple greedy
algorithm, the authors provided a provable performance guarantee for their
solution based on the DIC model. Additionally, an efficient heuristic algorithm
with better scalability was also introduced. The superiority of the adaptive
seeding strategies was demonstrated by empirically comparing with the state-
of-art non-adaptive seeding approach [69] and random strategy. Two kinds of
real-world social networks used in their experiments were Hep and Wiki. Hep
contains academic collaboration data of co-authorships in physics while Wiki

includes the Wikipedia voting data [86] from the inception of Wikipedia.
Song et al. [121] designed an algorithm, called UBI, to solve the influen-

tial node tracking on dynamic social network problem. The core idea of their
approach is to start from the influential seed set which was identified previ-
ously and implement node replacement to maximize the influence coverage.

Three datasets evaluated in their experiments are: mobile, HepPh and HepTh
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networks. A very recent technique proposed by Wang et al. [145] adopts the
concept of sliding window to maintain “a set of k seeds with the largest in-
fluence value over the most recent social actions”. The authors collected two
real-world datasets: Reddit and Twitter for their experiments.

Since many social networks, such as Twitter, are often available only in
the form of social streams of user activity, there is a surge of recent research
on social streams. However, our survey indicates that a very limited amount
of work has been done on identifying top-k influential nodes in dynamic social
networks. Among those works, a minority of them provide provable perfor-
mance guarantees [136, 145, 54] or empirically compare their proposed methods
with dynamic network oriented approaches [145, 54]. Three major categories of
techniques presented in this subsection are: 1) overall structure and informa-
tion diffusion of the dynamic network focused approaches [5, 136]; 2) network
content or content flow patterns based approaches [122, 123, 124]; 3) identify-
ing influential nodes in dynamic networks by modelling a subset of the network
with the subset being a set of nodes or communities [174, 139, 121, 145, 54].
We conclude Subsection 3.3.5 by presenting two facts that exist among these

works:

1. Model Change: Traditional influence diffusion models (such as IC [45],
LT [47]) have a static network structure and edge propagation probabil-
ities. Although they are widely used in the greedy based approaches for
identifying influential nodes, they are not adopted in dynamic network
settings. Instead, more flexible models are proposed to accommodate

dynamic network structure and edge propagation probabilities.

2. Content-Centric Method: Network content, such as information flows,
topic or time-sensitive data are well incorporated and utilized in ap-

proaches for identifying influential nodes in streaming social networks.

3.3.6 Section Summary

Since the first formalization of finding the influential actors problem by Kempe
et al. [69], there has been an increasing amount of research and development in
the area. An interesting phenomenon observed is that the focus of this research
area has been shifted from efficiency and scalability to dynamic networks in
recent years. With various features provided by a wide variety of algorithms,
applications will be required to select suitable algorithms to accommodate for

its specific problem domain when mining top-k influential nodes.
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Node and edge attributes have also been an underlying theme for top-k
influential node identification. The research by Chen and He [29] was based on
friend and hostile attributes between nodes in the network, creating positive
and negative edges on signed networks. Zu et al. [171] incorporates social
contexts into the network analysis, integrating humanistic factors into the

properties of participating nodes.

3.4 Top-k Significant Nodes Identification

In this section, we focus on literature relevant to significant nodes identifica-
tion. By reviewing recent work, we hope to shed some light on this research

area.

3.4.1 Effector-based Identification and Bridge Nodes

When we find nodes in a social network in a particular activation state, such as
when a certain topic is popular, we can often observe the subset of root nodes
that propagate the information and activate the neighbouring nodes in the
network, known as effectors. Unlike influential nodes which focus on centrality
measures, effector nodes are key connectors in a network due to their property
as bridges between peripheral nodes and groups even when they might not
have a high degree of neighbouring nodes themselves and therefore, if removed,
usually cause networks to be fractured and disjoint.

Given a social network graph GG and an activation vector a, Lappas et al.
[85] defined k-effectors to be the set of nodes, once activated, that cause an
activation pattern which is as similar as possible to the activation procedure
observed at a. The authors proved that the k-effectors problem can be solved in
polynomial time for social networks represented as a tree. This is accomplished
through a dynamic programming approach by specifying the maximum k-
effectors of sub-trees under one of the two following approaches: The root
of the sub-tree is included in the set of effectors for the next recursion and
then recurses on children with (k-1) budget. The second approach does not
include the root and the children are recursed with &£ budget. With the method
described, the authors were able to extract the most probable active tree that
spans all the active nodes of the network. Using this, they could identify the
optimal set of effectors in the social network tree and in return, they were able
to extract interesting observations on the network and interactions between

significant nodes.
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The research by Li et al. [89] attempts to identify sets of star nodes (which
are also the significant nodes in this case) based on the scale of connectivity
loss if the nodes were removed from the network. The authors account for
typical immunization methodologies, such as acquaintance immunization, and
performed analysis on two generic social networks. The authors discovered that
certain immunization strategies, such as selected immunization, cause entire
networks to be disjoint if the targeted star nodes were removed, while random
and acquaintance immunization provides less destructive results with better
running times. This methodology separates itself from previous work, such as
those by Lappas et al. [85] as it views effectors from a different perspective.
Immunization strategies are more generally adopted to prevent outbreaks and
in this case, to identify the loss of connectivity in the network if the top-k
significant nodes are removed.

Borgatti [16] underlines the weaknesses of top-k node identification using
centrality-based approaches, where they do not account for key players’ role in
a network’s cohesiveness. The author proposed a model that ranks significant
nodes by both their centrality measures (KPP-Pos) and loss of graph cohesion
if removed (KPP-Neg).

Borgatti’s [16] research incorporates concepts from Lappas et al. [85] by
valuing a significant node’s centrality while also weighting the consequences if
the node was breached. Similar to Li et al. [89], this research underlines the
importance of the top-k effectors from a loss of network connectivity perspec-
tive. This concept has also been described by researchers such as Musial and
Juszezyszyn [97] as bridge nodes. In their research, Musial and Juszczyszyn
describe bridge nodes as anchoring nodes that connect peripheral nodes with
the rest of the network and if lost, can cause diffusion loss between nodes in
the network. The authors conducted an experiment on the Thurman office
social network in an attempt to identify and extract bridge nodes and their
properties. From their results, they have established that the bridge nodes
were usually nodes with the highest social position and can be categorized

based on their neighbouring connections with peripheral nodes or cliques.

3.4.2 Authoritative-based Identification

With the significant growth of the Internet, the ability to find sources of in-
formation with high levels of quality and authority has become increasingly
difficult. With many Online Question and Answer portals facing this problem,
there has been an emergence of research aimed to distinguish the top-k set of

significant nodes (or authoritative users in this context). Farahat et al. [39]
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analyses documents scattered in the World Wide Web and determines the reli-
ability and authoritativeness of these documents based on textual, non-topical
cues. In their research, the authors discovered that when querying certain sub-
jects, documents found by PageRank [20] were sometimes uninformative and
even controversial. To estimate the authority of documents more accurately,
the authors combined the analysis of textual content of documents with its
linguistic features and found that this approach was often able to rank au-
thoritative documents produced by professionals and subject-matter experts
higher than PageRank.

Zhang et al. [161] attempts to identify a set of users with high expertise
on a Java Forum. In their research, they evaluated several network-based
ranking algorithms such as HITS Authority [76] and separated users into five
expertise ratings. From their results, they found several behavioral patterns
among users of different expertise levels, such as newbies making few posts
and experts answering other users’ questions while asking very few themselves.
These asker-helper interactions overlap with several properties of effector-based
identification where information from a single source (which in this case, is
knowledge of the answer to a specific question) is able to activate downstream

lower level users.

Jurczyk and Agichtein [67] present authoritative node identification in a
more controlled environment. The authors crawled through almost half a mil-
lion questions on Yahoo! Answers portal with three million corresponding
answers in the attempt to estimate the authority of users while using the
HITS algorithm [76] as a baseline. For each question, the authors extracted
the number of answers, the sum of the answers’ voted values and the average
number of stars of the best answer’s author and drew comparisons between
each of these categories based on the Pearson correlation coefficient. What
they found was that authority was easier to identify in particular subject do-
mains and using votes and stars produced results based on the popularity and
quality of the feedback respectively. Unlike the research by Farahat et al. [39],
Jurczyk and Agichtein’s dataset contains several properties which the authors

leveraged.

Unlike scattered documents in the World Wide Web, the datasets from
Zhang et al. [161] and Jurczyk and Agichtein [67] separated questions into
distinct subjects and domains which reduces the possibility of irrelevant nodes
or answers being found for a particular query. Secondly, with each question,
there exists a set of user-defined properties (such as the Voting and Star system

in Yahoo! Answers) which exposes a new layer to evaluate the quality and
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authority of a particular node, underlining the value of useful node attributes
to users and researchers. All of the research presented attempts to identify
top-k significant nodes from various angles but the effectiveness and accuracy

of the algorithms are heavily influenced by the dataset and its attributes.

3.4.3 Academic Datasets

In terms of identifying top-k significant nodes, there are some other studies
investigating the significance of researchers in academic co-author networks.
Nascimento et al. [99] investigated the co-authorship graph obtained from
all papers published at SIGMOD between 1975 and 2002. They utilized the
evolution of minimum closeness centrality scores as the ranking criteria to
evaluate the significance of authors. Moreover, Liu et al. [92] built a weighted
directional model to represent the co-authorship network, for which they de-
fined AuthorRank as an indicator for the prestige of an individual author in
the network. Under the assumption that program committee members can be
regarded as prestigious actors in the field, their results are validated against

conference program committee members in the same time period.

The evaluation results showed that the use of AuthorRank has clear ad-
vantages over traditional centrality measures, e.g., degree and closeness met-
rics. Zhou et al. [165] acknowledge the remarkable success demonstrated by
graph-theoretic approaches for ranking networked entities. However, they also
pointed out that the majority of the methodologies can only be utilized on
homogeneous networks, such as the citation network. To rank significant au-
thors and documents, Zhou et al. proposed a framework for co-ranking entities
of two different types in heterogeneous networks. Their method couples two
random walks into a combined one to co-rank authors and their publications
using information retrieved from several networks: the social network connect-
ing the authors, the citation network connecting the publications, as well as
the authorship network that ties the previous two together. Their results sug-
gest that the rankings of authors and documents depend on each other. Zaiane
et al. [160] used an iterative random walk algorithm to evaluate the relevance
between significant authors for the purpose of discovering research communi-
ties. Their core idea is to use a random walk on the bipartite or tripartite
model of DBLP data and generate a relevance score to measure the closeness
between two entities. The relevance score is then used to rank entities based

on importance of a given relationship.
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3.4.4 Other Work

Among the numerous existing top-k significant node heuristics, PageRank [20]
and the HITS [76] algorithms are the most popular and considered as base-
lines for many later techniques. As described previously in Subsection 3.3.4,
PageRank is a top-k heuristic that determines the quality and relevance of a
webpage based on the search topic, which behaves like our definition of signif-
icant node identification. The HITS algorithm queries the World Wide Web
in two steps: (1) A sampling stage that constructs a collection of webpages
which are likely to be relevant authorities. (2) A weight propagation step
which iteratively estimates a hub and authority score for each webpage and
returns the highest scoring authorities of each topic. HITS has led to a number
of future works such as work by Joel et al. [95] which enhances the original
HITS algorithm with exponential inputs and the work by Wu et al. [153]
which integrates collaborative tagging to support community detection, user
and document recommendations.

Tseng and Chen [137] proposed a novel node ranking methodology for gen-
eral real-world applications. This technique contains an unsupervised learning
algorithm which requires no training data to produce a ranking list of top-k
significant nodes. The authors implemented their methodology and experi-
mented on a co-author network of from the DBLP computer science bibliog-
raphy. The network was structured as an undirected graph where each node
represents an author, and each edge between two nodes indicates publication
collaboration between two authors. This process consists of two parameters
and major phases. The user-defined parameters are the set of desired features
and the number of significant nodes wanted. The first phase was an offline
procedure where several features are extracted from each author in the net-
work and sorted lists of author features are prepared, these lists are used as
the input of the ranking algorithm in the second phase. The primary principle
of the ranking strategy is to find top-k significant nodes with overall ranks
higher than others. The methodology was able to generate different ranking
lists when diverse sets of desired features are considered.

In addition to the ranking methodology, Tseng and Chen [137] also claimed
that the definition of significant nodes is application-dependent as it varies
with circumstances in different networks formed by diverse kinds of social con-
nections. In order to accommodate different application characteristics, the
proposed methodology requires a set of desired features as one user-specified
parameter. While this technique provides a wide range of features to meet

a variety of service demands, it has the trade-off of requiring more feature-
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related data and lowering efficiency for processing the two separate phases.
The preparation of sorted author lists demands large volumes of input data
on various features to be processed offline, which might not always be realistic
for real-world applications. Additionally, adequate data might not be read-
ily available and the application could require streaming data to be processed
online rather than offline. The degree and closeness centrality measures are
the two of four desired features in the experiment evaluation, where Tseng
et al. avoid giving a specific weight on each desired feature for the purpose
of providing a more objective assessment. It is highly likely that the result-
ing weighting-free ranking algorithm is not suitable for applications requiring

subjective assessment.

3.4.5 Section Summary

From the categories described in Section 3.3, we found that processes for iden-
tifying top-k influential nodes were mostly greedy based approaches. Whereas
for top-k significant nodes, we find a wider array of different methodologies
adopted. Section 3.4.1 describes the characteristics of effectors, star nodes and
bridge nodes in social networks. While in Section 3.4.2, methodologies for
identifying authoritative nodes are presented.

Additionally, we emphasized the importance of node attributes and network
properties, on how they can affect the methodology and process for identifying
significant nodes and studying the network. The study by Zhang et al. [161]
and Jurczyk and Agichtein [67] both contained datasets with very specific
node and edge properties which influenced the direction of their research and
heuristics.

In addition, there is a paper by Lappas et al. [84], where more details on
topics such as algorithms and systems for expert location in social networks

are discussed.

3.5 Applications of Identifying Top-k Nodes in

Various Networks

With the tremendous increase of usage in Online Social Networks (OSNs), re-
search in the identification of top users of OSNs such as Facebook, Twitter
and LinkedIn has increased over the last decade. In this section, we review nu-
merous applications of identifying top-k nodes and some of these applications

showed how the use of content can enhance the identification process. It is evi-
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Table 3.6: List of key applications of top-k nodes identification

Domain Related Research

Twitter Cha et al.[25] Weng et al.[150] Bakshy et al.[10]
Drakopoulos et al.[38]

Facebook Heidemann et al.[57] Kim and Han[71]

Blogosphere Gruhl et al.[49] Java et al.[63] Java et al.[7] Huang et
al.[60]

Misinformation Control Budak et al.[21] Nguyen et al.[102]

Community Question Answering Opsahl et al.[105] Zhang et al.[161] Guo et al.[51] Pal

and Konstan[108]
Networks with Complex Topologies Opsahl et al.[105] Wei et al.[149] Zhou et al.[165]
Miscellaneous Applications Ghosh and Lerman[43] Aral and Walker[§]

dent from the discussion of this section that top-k nodes identification is useful
for a wide variety of inter-disciplinary domains such as Twitter, or Blogosphere.
Due to the limitation of length, we focus on only a small number of successful
applications: (1) Twitter (Sect. 3.5.1), (2) Facebook (Sect. 3.5.2), (3) Blo-
gosphere (Sect. 3.5.3), (4) Misinformation Control (Sect. 3.5.4), (5) Commu-
nity Question Answering (Sect. 3.5.5), (6) Networks with complex topologies
(Sect. 3.5.6) and (7) Miscellaneous Applications (Sect. 3.5.7). An overview of
the key applications are summarized in Table 3.6.

Networks with Complex Topologies Miscellaneous Applications

3.5.1 Twitter

With the rising popularity and usage of online social networking mediums in
the past decade, knowledge on how information is shared and distributed to
users on these mediums has become increasingly valuable to many corporations
that seek to advertise their products and services. Among these networking
services, one of the most common is Twitter.

The social infrastructure of one of the most notable micro-blogging services,
Twitter, is composed of twitterers, users that publish/provide tweets (with a
limit of 140 characters) or content, to all of their connected followers. The
information distributed by a few core and influential twitterers (or tweets)
could have a much greater impact and distribution of information than a large
group of random ones. Hence, there has been an increasing interest in finding
these core and influential twitterers (or tweets) from various perspectives, i.e.,
[150], [10].

Weng et al. [150] presented an approach of identifying influential twit-
ters by employing an extension of the PageRank algorithm [20] (previously
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described in Subsection 3.3.4). The proposed algorithm, TwitterRank, con-
siders “both the topical similarity between users and the link structure” [150].
In contrast to many other existing research on Twitter datasets, the authors
pointed out that the number of followers alone may not accurately represent
the influence due to “reciprocity”, where users follow their followers as an act
of social courtesy as opposed to “homophily”, where users follow due to mutual
topic interests. To establish if “homophily” exists in the Twitter community,

the authors proposed two underlying questions:

1. Are twitterers with “following” relationships more similar than those

without according to the topics they are interested in?

2. Are twitterers with “reciprocal following” relationships more similar than

those without according to the topics they are interested in?

To answer these questions, Weng et al. analyzed large volumes of unlabeled
tweets (content) to automatically distill topics and determine if the relationship
between influential twitterers and followers is due to topic sensitive influence.
Their experiment results showed that: Firstly, “homophily” does exist in the
context of Twitter and the authors claim that they are the first to report this.
Their observation justifies that there are some twitterers who in-fact “follow”
someone due to common topical interests instead of just playing a “number
game”. Secondly, their proposed approach outperforms the benchmark tech-
nique that is currently used by Twitter and other related algorithms, e.g.,
in-degree (i.e., the number of followers) and the original PageRank [20].

In addition to TwitterRank [150], three other Twitter-specific ranking algo-
rithms are TunkRank [138], inDegreeRanking [82] and TARank [23]. TunkRank
adapts PageRank [20] and defines influence as the attention a user is able to
give to the tweets he receives, combined with the attention that his followers
can give to him. Kwak et al. [82] proposed to rank users based on the number
of followers (in-degree), and found the produced ranking was similar to PageR-
ank. Unfortunately, a high in-degree could be made up by simply creating fake
usernames that follow a user whose ranking is to be increased, making it an
easy loophole for spammers. The key characteristic of [ARank is its ability to
rank users on Twitter in near real-time. The basis of [ARank is information
amplification potential of a user, which is evaluated by the capacity of the
user to increase the audience of a tweet or another twitter that they would
find interesting, by retweeting or mentioning.

TunkRank [138] converges to the final ranking in an iterative way. The con-

vergence time is determined by the number of users considered in the ranking
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process. As opposed to TARank [23], TunkRank is not capable of producing a
ranking list in real time. TwitterRank [150] focuses on topical-oriented influ-
ential twitters mining by distilling available topics and it is also not amenable

to be calculated in real time.

Cha et al. [25] compares three different measures of influence in Twitter:
Number of followers, number of retweets, number of mentions and finds that
the most followed users do not necessarily score highest on the other two mea-
sures. Number of followers (in-degree) represents a user’s popularity, however,
it is not directly correlated to other important perspectives of influence such as
engaging audience. Retweets are driven by the content value of a tweet, while
mentions are driven by the name value of the user. Such subtle differences lead
to dissimilar groups of the top influential Twitter users. Focusing on retweets
and mentions, the authors investigate the dynamics of user influence across

topics and time using a large amount of data collected from Twitter.

The research by Bakshy et al. [10] studies the information propagation
of influential sources when compared to “ordinary influential users”. One
of the key functionalities of Twitter is the ability for a user to “retweet” or
repost the contents of another twitterer. However, due to the 140 character
limit of tweets, a common strategy adopted by twitterers is to attach content
to shortened URLs (e.g., bit.ly) to effectively condense content in an easily
distinguishable form. Additionally, because of these unique tokens, it is easy
for the authors to identify the depth or level of cascade a tweet is propagated
from a single influential source. Therefore, the authors study the URLs that
twitterers add to their tweets and the overall cost-effectiveness of marketing
through a small group of key influential twitterers as opposed to a large group
of average or under-performing ones. The focus of the Bakshy et al.’s [10]
study is explicitly on the overall influence of a post rather than the traditional
qualitative measure of user influence, hence, their methodologies are based on
the “influence score” of URL posts and the diffusion level of URL reposts from
the original “seed” until termination of the cascade. Their results showed that
while the majority of posted URLs do not spread (with an average cascade
size of 1.14), some distinct ones are able to spread as far as nine generations of
repost. Using these results, the authors were able to compare the effectiveness
of “seed” influencers with word-of-mouth campaigns and find that using a
quantitative approach of influence of a post has similar results to the qualitative
study of influential users. Both methodologies showed that since the majority
of posts from a single source do not spread at all, targeting certain “seeds” with

high rates of diffusion as opposed to multiple low performing ones generates
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the most coverage.

Pal and Counts [107] discovered topical authorities in Twitter. There are
three steps in their approach: Firstly, characterize Twitter users with social
media-specific features including both nodal and topical metrics. Secondly,
cluster the users over feature space. Lastly, produce a list of the important
authors for a specific topic utilizing a within-cluster ranking procedure.

In 2016, Drakopoulos et al. [38] studied five Twitter-specific metrics for
ranking Twitter influence. Based on concepts from system theory, a methodol-
ogy for evaluating influence metrics is also proposed. In addition, the authors
implemented the five metrics in Java over Neo4j, which is a graph database

that provides production grade front or back-end social graph storage.

3.5.2 Facebook

Being the largest social network, Facebook has more than 400 million active
users with the average of 130 friends [2]. Facebook data set has been utilized
in various top-k nodes identification research.

Heidemann et al. [57] proposed an adapted PageRank algorithm to identify
influential users in a social network according to activity links. The approach
was evaluated on a Facebook data set and found that more active users that
are retained can be identified when drawing on users’ prior communication ac-
tivities or centrality measures e.g., degree centrality. Kim and Han [71] identify
influential users in a network graph by first calculating degree centrality based
on social links and then estimating an activity index. The proposed method
was evaluated by observing the influence diffusion of a Facebook game. Their
experiment results show that by targeting the identified influential users, game
growth rates and number of new game adopters can be increased.

Although Facebook has been frequently used as experiment data for identi-
fying top-k nodes, our literature research shows that so far only few Facebook-
oriented algorithms exist. This phenomenon differs significantly from the Twit-
ter domain as a number of top-k nodes identification approaches have been
designed specifically for Twitter, such as TunkRank [138], TwitterRank [150]
and IARank [23].

3.5.3 Blogosphere

With an increasing amount of blog posters and readers, Blogospheres (a net-
work of blogs) are an effective and inexpensive medium for companies to evalu-

ate their advertising campaigns. Hence, it is interesting to observe the emerg-
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Table 3.7: Comparisons of various techniques for identifying top-k£ nodes in
blogosphere

Technique Identify Identify Utilize Blog Contents  Analyze
Influential  Influential Influence
Bloggers Blogs Diffusion

Models

Gruhl et al.[49]  Yes No Yes No

Java et al.[63] Yes No No Yes

Java et al.[7] No Yes Yes No

Huang et al.[60]  Yes No Yes No

ing research that has begun identifying top-k nodes in the weblog domain.

Gruhl et al. [49] model the diffusion of topics between blogs, determined
by the textual content of the weblog. The authors managed to characterize
information propagation from two perspectives: Topics and individuals. The
proposed model makes it possible to “identify particular individuals who are

highly effective at contributing to the spread of infectious topics” [49].

Java et al. [63] presented an analysis of influence models, i.e., Linear
Threshold model [47], Independent Cascade model [45], on a large-scale and
real-world blog graph. Their evaluation results suggest PageRank [20] is an
inexpensive approximation to the simple greedy algorithm [69] for selecting
an influential set of bloggers, which maximizes the spread of information on
the blogosphere. In order to recommend feeds and identify influential blogs
automatically, the same authors [7] found that “blog feeds that matter” for a

specific topic using folder names and subscriber counts.

Huang et al. [60] presented a framework which contains a heuristic quan-
tification model for ranking key microbloggers. The two major parts in the
framework were: (1) Based on content of posts, a classifying approach with
sliding-window to specify interested domains of microbloggers, (2) A method
for quantifying key microbloggers by taking both the influence and user activ-

ity into consideration.

Overall, in the blogosphere domain, it is observed that a number of research,
e.g., [49], [7], [60], utilize the contents of blogs in order to identify top-k nodes
in the weblog networks. We further compare the techniques discussed in this

subsection in Table 3.7.
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3.5.4 Misinformation Control

Despite the benefits of interconnectivity provided by online social networks,
there are existing threats such as spread of misinformation that can cause
undesirable effects such as widespread panic to the general public. Budak et
al. [21] described the misinformation control problem as “identifying a subset
of individuals that need to be convinced to adopt the good campaign so as to
minimize the number of people that adopt the bad campaign” [21]. In addition,
they formulated their description as an optimization problem, proved that it
was NP-hard, and then provided performance guarantees for a greedy strategy.

From a different aspect of controlling misinformation, Nguyen et al. [102]
focused on how to limit rumor spread in Online Social Networks (OSNs) by
finding the smallest set of influential nodes, whose decontamination with good
information helps to control the viral propagation of misinformation. Their
solution includes a greedy-based algorithm, Greedy Viral Stopper (GVS) and
a community-based heuristic method. GVS greedily adds nodes with the best
influence gain to the current solution, and shows that the algorithm selects a
small fraction of the total nodes from the optimal solution. The community-
based method returns a selection of nodes to decontaminate in a timely man-
ner. The authors verified their approaches on real-world OSNs such as Face-
book.

There are two major differences in the two aforementioned research by
Budak et al. [21] and Nguyen et al. [102]: (1) The approach by Budak et al.
was limited by a k-nodes budget where k is a constraint imposed by the user.
This was not presented in Nguyen et al.’s approach. (2) The heuristic proposed
by Budak et al. assumes a high level of propagation, where the probability
for good information spread is either one or zero. In contrast, Nguyen et al.

accounts for arbitrary probabilities.

3.5.5 Community Question Answering

Top-k nodes identification has also been researched widely in the Community
Question Answering (CQA) domain with a number of models proposed. Users
can often find detailed information from subject-matter experts on Q&A por-
tals such as “Stack Overflow” and “Yahoo! Answers”. However, the quality
of information can range from detailed solutions to unconstructive criticism.
Additionally, if the feedback for a topic is sparse, it can be difficult to differ-
entiate the different quality of answers. Hence, the ability for users to identify

the members that provide reliable and accurate answers is critical for the CQA
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domain.

Fisher et al. [40] detects key authors (“answer people”) in Usenet news-
groups. Their heuristic network analysis methodology uses nodal features to
find “answer people” with high out-degree and low in-degree. Zhang et al.
[161] models CQA as an expertise graph, and evaluates a number of ranking
measures and algorithms for identifying users with high expertise in differ-
ently structured networks. Extended from Zhang’s approach [161], Guo et
al. [51] proposed topic-based models to identify appropriate users to answer a
specific question. Jurczyk and Agichtein [66] presented an analysis of the link
structure of a general-purpose Q&A community to identify authoritative users.
Agichtein et al. [6] uses data from a web-scale community question answer-
ing portal and extracts graph-based features, e.g., the degree distribution of
users and their PageRank, hubs scores to determine individual user’s relative
importance. A model to identify authoritative actors based on the number of
best answers provided by users is presented in [17], whereas Pal et al. [108]

discriminates experts on top of their preference in answering position.

3.5.6 Networks with Complex Topologies

The majority of research described up until now performs analysis on un-
weighted networks with very basic properties and node-to-node relationships.
However, these simple network structures will often obfuscate many impor-
tant properties of a relationship such as intensity, duration, human emotional
factors and therefore, are unable to characterize the complexity of real-world
networks and relationships. Barrat et al. [12] describe weighted networks as
graphs that go beyond the topological point and underline the capacity and
intensity of connections between complex entities.

Opsahl et al. [105] presents an approach on evaluating node centrality in
weighted networks. In this research, the authors proposed a generalized de-
gree centrality measure that incorporates both the number of edges and their
weights on Freeman’s Electronic Information Exchange System (EIES) net-
work [42]. As it is difficult to non-subjectively define a weight for each of these
properties, the authors’ analysis contains a proposed threshold value, a, that
alters the weighting of each attribute. The non-deterministic and complex na-
ture of weighted networks can also be seen in a similar research by Wei et al.
[149]. Also using Freeman’s EIES dataset, the authors performed centrality
measures based on Dempster—Shafer’s theory of evidence [33, 116], using the
degree and strength of the node. To evaluate the effects of different weight-
ings of an edge, the authors also applied small thresholds to their centrality
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measures.

Another complex network topology that we are underlining is the homo-
geneity of social networks for top-k node identification. A homogeneous net-
work has a singular type of object and relationship, which are represented as
nodes and edges, respectively. Whereas, heterogeneous networks are networks
with multiple types of nodes and node-to-node relationships. The vast ma-
jority of the research in this survey has predominately been on homogeneous
networks, such as [69, 146, 150], this is likely due to homogeneous network
data being more readily available and easier to analyze. On the other hand,
there is very little existing research in identifying top-k£ nodes in heterogeneous
networks. One example presented in this survey is the research by Zhou et al
[165]. The requirement to co-rank two different types of entities significantly
increases the complexity of their heuristic, which involves coupling two ran-
dom walks in order to rank authors with their respective publications in the

heterogeneous network.

3.5.7 Miscellaneous Applications

Ghosh and Lerman [43] are among the few researchers who study the prob-
lem of predicting influential users in online social networks. They classified
influence diffusion process as non-conservative if it depends not only on the
network structure, but also on details of the dynamic processes occurring on it.
The authors experimented with the social news aggregator, Digg, which allows
users to post and vote for news stories. In their scenario, influence was defined
as the dynamic number of in-network votes a user’s post generates, which rep-
resents non-conservative information flow. A number of influence models were
compared and their experiment results showed that non-conservative models
which capture the actual details of the dynamic process are better at predict-
ing influential users on Digg. In addition, Ghoah and Lerman’s experiments
also found that the normalized a-centrality metric is one of the best predictors
of influential users.

Aral and Walker [8] conducted a randomized experiment, which identifies
influence and susceptibility to influence in the product adoption decisions of
a representative sample of 1.3 million Facebook users. The experiment in-
cludes “a random manipulation of influence-mediating messages sent from a
commercial Facebook application” [8], which allows users to share informa-
tion about various products. Their methodology avoids the biases inherent in
traditional estimates of social contagion by randomly manipulating who re-

ceives the influence-mediating messages. Some interesting findings from their
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experiments are: (1) Younger users tend to be more susceptible to influence
than older users, (2) Influential users are less susceptible to influence than non-
influential ones and they cluster in the network while susceptible users do not,
(3) Unlike some previous research, which claim that an individual’s influence
is determined only by his or her personal attributes, Aral and Walker’s exper-
iment results showed that the combination of influence, susceptibility, and the
likelihood of spontaneous adoption contributes to an individual’s importance

to the diffusion of behaviors.

3.5.8 Section Summary

This section presents examples of real-world applications integrating top-k
node detection techniques. Several techniques that analyze OSNs such as Face-
book and Twitter have been reviewed including those targeting social dynamics
such as misinformation control. We have also reflected on work that targets
weighted and heterogeneous networks and underlined the increased complex-
ity of identifying top-k nodes in these kinds of networks when compared to
traditional networks.

Emphasis on node and edge attributes can be seen throughout the research
in this section. (1) Research on Twitter including [138, 150], all contain node
attributes, such as the number of followers and retweets. (2) Community
Question Answering datasets [40, 6] contain integrated user voting and scoring
systems. (3) Networks with complex heterogeneous structures [165] contain
multiple types of nodes and edges resulting in multi-layered analysis of different

node and edge types.

3.6 Research Directions

With the abundant amount of literature published in research into identifying
top-k nodes, one may wonder whether we have solved most of the critical
problems related to top-k nodes identification such that the solutions provided
are refined enough for most of the social network analysis tasks. However,
in our view, there are still several critical research problems that need to
be solved before top-k nodes identification can become a sufficient tool for
analyzing social networks.

Exploration of factors that create the top k-nodes  So far, very little liter-
ature has focused on the exploration of factors that establish the top k-nodes

being the most significant and/or influential and this can be an interesting
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research area. In a situation where a social network comes with some known
top-k nodes, the question is what are the factors that distinguish those top
nodes from others. Understanding these factors is essential to improve inter-

pretation and usability of top-k£ nodes mining.

Devotion of more systematic research effort on top-k significant nodes
In general, more progress has been made on the top-k influential nodes as
compared to the top-k significant nodes. In-depth research can be conducted
in the future to investigate the top-k significant nodes in various domains.
With the proliferation of social networks, i.e., email communication network,
user interactive question answering network, organization hierarchy, OSNs etc.,
more intelligent and practical solutions can be applied to the top-k significant
nodes, e.g., maximizing the quality of identified top-k significant nodes by
capturing and utilizing individuals’ skill sets and their social interactions as

well as user influence.

Identification of top-k nodes in dynamic social networks In Section 3.3.5,
we pointed out that identifying top-k nodes in dynamic social network is a
relatively new area. Since many social networks, such as Twitter, are only
available in the form of social streams of user activities, there is an increasing

value of research in identifying top-k£ nodes in dynamic social networks.

Identification of top-k nodes for multiple topics  Based on our review,
there has been very little research into the problem of identifying top-k nodes
for multiple topics. The vast majority of existing literature in the field identifies
top-k nodes only for a single topic. However, it is more practical and useful to
perform top-k£ nodes mining for multiple topics, especially for companies and

organizations with heterogeneous social networks.

Enhancement of searching variety for a single topic ~ When dealing with
top-k nodes, we are interested in the subjectively determined topic. A wide
range of searching capabilities can be utilized to identify top-k nodes for a
given topic. For example, when searching for top researchers of a particular
subject in an area, it is useful if the functionality of searching on subject name

is integrated within the algorithm.

Development of more efficient, scalable and performance guaranteed algo-
rithms for top-k influential nodes  As we have categorized and summarized
in Section 3.3, abundant research has been dedicated to generic algorithm
development for top-k influential nodes. A number of these research evalu-
ated their approaches in large-scale social networks using metrics such as time
consumption, memory usage, and true positive rate. Therefore, one possible

future direction is to focus on efficiency, scalability and performance guarantee
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improvement of such generic algorithms. This direction is also described in a
literature survey [111] on finding influential users as “efficiency and validity

are crucial”.

3.7 Conclusions

In this chapter, we present an overview of the current status and future di-
rections of top-k£ nodes identification in social networks. We reviewed and
classified existing literature in this area into two major categories: top-k influ-
ential nodes and top-k significant nodes. In general, we feel that considerable
progress has been made on the top-k influential nodes as compared to top-
k significant nodes. The applications of top-k nodes identification in social
networks are quite diverse and have been discussed in detail.

This survey work aims to show that numerous research have attempted to
solve the top-k nodes identification problem by proposing various algorithms,
methodologies, frameworks. Interesting scope exists in future research tar-
geting top-k significant nodes since the work on this area is quite limited.
Furthermore, the vast majority of the work on identifying influential nodes is
designed for static networks, therefore, the research area of mining top-k nodes
in dynamic networks is still relatively new.

Based on our review of earlier literature, we constrain the scope of the

specific problems to be covered and addressed in Chapters 4, 5 and 6 as follows:

1. The heterogeneous network schema studied in Chapter 4 and Chapter 5

is a correlation schema.

2. Heterogeneous networks containing more than one type of object and

relationship are studied in the three chapters.

3. There can be only one relationship type between objects of the same

type in the three chapters.

The specific heterogeneous network mining and analysis tasks studied in the
three chapters are: overlapping heterogeneous communities discovery in static
heterogeneous correlation networks (Chapter 4); community based ranking
of objects in static heterogeneous correlation networks (Chapter 5); network
embedding and change modeling in dynamic heterogeneous networks (Chapter
6).
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Uncovering Overlapping
Heterogeneous Communities

A heterogeneous correlation network represents relationships (edges) among
source-typed and attribute-typed objects (nodes). It can be used to model
an academic collaboration network, describing connections among authors
(source-typed objects) and published papers (attribute-typed objects). To
date, there has been little research into mining communities in heterogeneous
networks. The objective of our research is to discover overlapping communities
that include node and edge of each type in a heterogeneous correlation network.
In this chapter, we describe an algorithm, OHC (Overlapping Heterogeneous
Community). Inspired by a homogeneous community scoring function, Trian-
gle Participation Ratio (TPR), OHC finds target heterogeneous communities
then expands them recursively with triangle-forming nodes. Experiments on
different real world networks demonstrate that OHC identifies heterogeneous
communities that are tightly connected internally according to two traditional
scoring functions. Additionally, analyzing the top ranking heterogeneous com-

munities in a case study, we evaluate the results qualitatively.

Overall, our main research question is “Does heterogeneous information im-
prove the results of network analysis?”. To answer this research question, the

thesis focuses on three network analysis tasks: community detection, ranking

69
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and network embedding. In this chapter, we focus on our first network analy-
sis task, which is community detection in static heterogeneous correlation net-
works. In doing so, we compare the performance of the OHC algorithm against
two state-of-the-art homogeneous community discovery techniques. Specifi-
cally, we compare internal and external connectivity of communities identified
by the different algorithms and quantitatively evaluate the top ranking het-

erogeneous communities identified.

4.1 Introduction

A homogeneous network represents relationships between one object type. A
wide variety of methods for detecting communities in homogeneous networks
have been proposed [100, 13, 154]. Researchers in the fields of Computer
Science [157, 88] and Physics [83, 100] describe such communities as sets of
nodes with high density of internal edges and low density external edges. In
contrast, a heterogeneous network represents relationships (edges) between
multiple types of interacting objects (nodes). To date, there has been limited
research that detects communities in heterogeneous networks. Existing homo-
geneous community detection techniques cannot be used to detect communities
that retain the complex characteristics of heterogeneous networks, such as in-
formation gathered from multiple sources [22]. The aim of our research is to
find a group of tightly-connected objects with their closely-interacting other
types of objects in a heterogeneous network. For example, in an academic het-
erogeneous network, we want to identify academics that collaborate frequently
together with the research papers they collaborated on. The group has dense
internal connections and loose external connections with academics that collab-
orated infrequently. Another example is social network users that co-comment
on the same topics together with their co-commented topics. Finding these
groups can help us to understand the structure of a network, so collaborations
can be encouraged or topics can be promoted among loose connections. In
the meantime, dense connections can be loosened if it is not the ideal type of
connections.

To represent the metastructure formed by multiple types of objects or rela-
tionships in heterogeneous networks, researchers have proposed different types
of network schemas, including: Multi-relation with single-typed object schema
[162] , Bipartite schema [93], Star schema [131] and Correlation schema [79].
We constrain our work to correlation schema, where objects can be categorized
as either Source Type (ST) or Attribute Type (AT). Figure 4.1 presents a bibli-
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Figure 4.1: Sample heterogeneous correlation network H;

ographic heterogeneous correlation network Hy, where authors are the source-
typed objects (nodes) and papers are the attribute-typed objects (nodes) (rep-
resented by circles and rectangles respectively). The rectangles with a striped
pattern represent papers that share a common theme, namely they are about
texture spaces. The co-authorship relationship between authors is denoted
by solid lines. The relationship weighting represents the number of papers the
pair of authors have co-published together. Relationships between authors and

papers denoted by dashed lines, indicate the authors of a paper.

Applying heterogeneous community detection techniques on H;, we can
identify communities of authors that publish together, and the papers that are
most relevant in this community. Our Overlapping Heterogeneous Community
detection algorithm, OHC, detects one heterogeneous community, denoted by
the dotted boundary in Figure 4.1: {Lawrence M. Brown, Riza Erturk, Senol
Dost, Murat Diker, Paper 1, Paper 2, Paper 3, Paper 6, Paper 7}. The au-
thors were shown to have a common interest in the field of texture spaces (as
highlighted by the papers with stripped patterns in Figure 4.1). This example
illustrates that OHC can detect communities of authors that are interested in

a particular research sub-field.

The main contributions of this chapter are: 1) We propose a novel al-
gorithm, OHC, that detects communities which contain multi-typed objects
(nodes) and relationships (edges) in heterogeneous correlation networks. Eval-
uation experiments and case studies on real world datasets validate the effec-
tiveness of the algorithm. 2) We demonstrate that traditional metrics can be

used to evaluate the quality of detected heterogeneous communities.
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4.2 Problem Formalization

In graph theory, a heterogeneous network is a graph that contains more than

one type of node with multiple kinds of node-to-node relationships.

Definition 5. Given the undirected graph G = (V,E), we define hetero-
geneous networks to be graphs that contain two or more types of object
{v1,vg,..,v,} € V and multiple types of relationships {ej, ey, ..,€,} € E. Each
object type v, has relationships to the same or other object types defined by
an edge type e,.

We define overlapping heterogeneous communities as subgraphs of a given
heterogeneous network, where each community contains nodes of all object
types and edges of all relationship types that exist in the network. The aim
of our research is to identify heterogeneous communities with dense internal
connections and loose external connections in a heterogeneous correlation net-

work.

4.3 The OHC Algorithm

In this section, we present our greedy community detection technique, OHC
(Overlapping Heterogeneous Community). Details of OHC and how it trans-
forms our example heterogeneous network shown in Figure 4.1 into a heteroge-
neous community are provided. Java source code for the OHC algorithm and

experiment datasets are available for download®.

4.3.1 Three Phases of OHC

Our proposed approach is composed of three main phases. Phase One processes
the input data and generates a set of seed communities. Inspired by Triangle
Participation Ratio (TPR) scoring function [157, 148] described in Section 2.1,
Phase Two produces a set of heterogeneous communities by adding triangle-
forming source-typed nodes with associated attribute-typed nodes to each seed
community. The output of Phase Two is fed into Phase Three, where we
remove the duplicate and subset heterogeneous communities. The pseudocode
for OHC is detailed in Algorithm 1. Figures 4.1 and 4.2 demonstrate outputs
of OHC’s third phase and the first two phases respectively. The data presented

in these figures is a subset of real-world datasets used in our experiments.

Thttp://bit.ly /2vEfOQU
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(1) Outcome of Phase One: 5 Seed Communities (2) Outcome of Phase Two: 3 Communities

Figure 4.2: Output of OHC’s first two phases (identified (seed) communities
denoted by the dotted boundaries)

4.3.2 Phase One

The heterogeneous network processed by OHC in the initial phase is composed
of a homogeneous network that contains relationships among source type (ST)
nodes and a heterogeneous network containing relationships between both ST
nodes and attribute type (AT) nodes. For example, the heterogeneous network
processed by OHC in Figure 4.1, is constructed from an author-collaboration
homogeneous network, containing co-authorship relationships between authors
and an authorship heterogeneous network, which contains the author-to-paper
relationships. This phase generates a list of heterogeneous seed communities
based on a set of distinct and interconnected source-typed nodes. Each of the
seed communities must contain more than one ST node, at least one commonly
linked node of AT, and the corresponding relationship edges. Seed communities
with solo ST nodes are eliminated due to their inability to form triangles in the
next phase. When applied to the heterogeneous network shown in Figure 4.1,
Phase One produces the set of seed communities, Cl..qs, denoted by the dotted

boundaries in Figure 4.2(1).

4.3.3 Phase Two

When expanding an individual seed community, C, seeq in Cyeeqs, OHC takes
a depth-first search approach to iterate through all pairs of ST (Source Type)
nodes (ST, ST,) in the original and expanded C_seeq, and recursively finds all
triangle-forming triads (ST, STy, ST,) in an exhaustive manner by examin-
ing all other seed heterogeneous communities generated from Phase One. The
expansion process introduces the eligible triangle-forming ST nodes, the asso-

ciated AT (Attribute Type) nodes, and the corresponding relationship edges
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that do not already exist in C, s.q. The recursive process for each pair of
ST nodes continues until no further triangle-forming ST nodes can be found.
The expansion processes for seed communities are deterministic. Additionally,
resulting communities that have fewer than three AT nodes or do not form
triangles with any ST nodes will be removed from the output of Phase Two.

To become a triangle-forming ST node, a node must have at least one
distinct edge with each member of the pair (ST, ST,). The triangle-forming
ST node, ST, with the associated AT nodes will be added to C,_sc.q if they are
not already present. In the situation where ST, is not included in the initial
set of nodes of C, seeq, ST, forms two new pairs (ST, ST,) and (ST, ST,)
with each member of the original pair. The recursive process starts on each of
the new pairs to find further triangle-forming ST nodes. While in the situation
where ST, is included in the initial set of nodes of C, secq, OHC will explore
further triangle-forming ST nodes using the pairs (ST}, ST,) and (ST}, ST,)
only when both ST, and ST, are not included in the initial set of nodes of
Ca_seed-

To better illustrate the mechanisms of this phase, we refer to the seed
community, s, {Lawrence M. Brown, Murat Diker, Paper 7} in Figure 4.2(1)
as an example, with the author pair (Lawrence M. Brown, Murat Diker) being
a pair of ST nodes. OHC detects that Senol Dost has one distinct edge with
Lawrence M. Brown (due to the associated AT nodes: Paper 1, Paper 2,
Paper 3) and another distinct edge with Murat Diker (resulting from Paper
6), therefore, Senol Dost is a triangle-forming ST node for s, which expands s
into the community {Lawrence M. Brown, Murat Diker, Paper 7, Senol Dost,
Paper 1, Paper 2, Paper 3, Paper 6}. The output of Phase Two is denoted by
the dotted boundaries in Figure 4.2(2). Algorithm 2 describes the main logic

procedure of phase two.

4.3.4 Phase Three

For the final phase, we iterate through the expanded communities from Phase
Two and remove the ones that are duplicates or subsets of other communi-
ties. These communities are removed as information contained in a subset
or duplicate community has already been replicated in their counterpart su-
perset communities. Attributes observed in the OHC-detected heterogeneous
community from our example network are: 1) Authors in a community have
strong connections with other community members. 2) Papers in the same
community tend to share common topics with one another.

In our running example, the seed community, {Lawrence M. Brown, Riza
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Erturk, Senol Dost, Paper 1, Paper 2, Paper 3} expanded to {Lawrence M.
Brown, Riza Erturk, Senol Dost, Paper 1, Paper 2, Paper 3, Murat Diker, Pa-
per 6, Paper 7}. This results in the two duplicated sub-communities removed
from OHC'’s final output. The final result is denoted by the dotted boundaries
in Figure 4.1.

Algorithm 1 OHC
Input: A given heterogeneous network: H
Output: Heterogeneous communities detected: C,,;u:

Phase One
The list of heterogeneous seed communities obtained after processing
H: Cseed

: for all ¢ in C,..4 do
m = number of ST nodes in ¢
n = number of AT nodes in ¢
if (m <2 or n <1) then
Csecq-remove(c)
end if
end for

Coutput = Phase Two(Cieeq)

Phase Three
9: for all ¢ in C,ype do

10: for all k£ in Cpuypye do

O AN v

11: if (indexOf(k) # indexOf(c) and ¢ C k) then
12: Coutput-remove(c)

13: end if

14: end for

15: end for

4.3.5 Time Complexity Analysis of OHC

To analyze the complexity of the proposed algorithm we use |z| ST nodes,
ly| AT nodes and |s| seed communities. Here we first analyze the best case
performance of OHC. Based on a set of distinct and interconnected ST nodes,
Phase One iterates through |y| AT nodes to generate qualified seed communi-
ties with O(]y|x|z|) run time. The best case for Phase Two is when only one
pair of ST nodes needs to be processed in all the seed communities and none
of them have triangle-forming ST nodes, which leads to a run time of O(|s|?).
During Phase Three, a linear execution time of O(|s|) is required when the

communities produced from the previous phase can all be merged into one su-
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Algorithm 2 Phase Two

Input: Processed C,..4 from phase one
Output: C,..; updated with triangle-forming nodes
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for all ¢ in (.4 do
cliqueFormed = false
N = set of all ST nodes in ¢ and given z,y € N
for all unique combination (z,y) in N do
S = stack with (z,y)
while S is not empty do
S.pop() — (, y)
Z = ST nodes connected to both = and y
for all z in Z do
ay, = AT nodes linked to both 2 and =z
b,. = AT nodes linked to both y and =
if a,. # b,. then
if z¢ N then
cliqueFormed = true
if 2 & ¢ then
add z to ¢
end if
if a,, &€ c then
add a,, to ¢
end if
if b,, ¢ c then
add b, to c
end if
add (z,z) and (y, z) to the top of S
else
if a,, ¢ ¢ then
cliqueFormed = true
add a,, to ¢
end if
if b,. & c then
cliqueFormed = true
add b,, to ¢
end if

if (x ¢ N and y ¢ N) then bibliographic add (z, 2)

and (y,z) to the top of S
end if
end if
end if
end for
end while
end for
1 = number of AT nodes in ¢
if (cliqueFormed == false and i <3) then
Cseca-remove(c)
end if
end for
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perset community. Combining run time of the three phases together we have
a complexity of O(|y|x|z|+|s[*+|s|). Usually, |z| and |y| are orders of magni-
tude larger than |s|, which means the best case run time of OHC reduces to
O(Jyl <[ +]s[*)-

In a rare case where all ST nodes are processed in every seed community,
Phase Two’s run time becomes O(|z|*x|s|?). Execution time of the worst case
in the third phase is (|s|*) where no duplicate or subset communities can be
eliminated. As a result, OHC’s worst case performance is O(|y|x |z|+|z|*x |s|?
+|s]*), which can be reduced to O(]z|*x|s|?).

4.3.6 Conditions of OHC

Our proposed approach works for a given heterogeneous network H, which

satisfies the following two conditions:
1. The metastructure of H is correlation schema based.

2. H is a static network.

4.4 Experiments and Results

To study the effectiveness of OHC, we conducted experiments on various pub-
licly accessible real-world heterogeneous networks. All the experiments were
performed on a computer with 3.40 GHz i7 CPU, 8 GB RAM and Windows

10 operating system.

4.4.1 Datasets

Bibliographic data is widely used in heterogeneous network experiments in the
existing literature. For our experiments, we analyzed the ACL Anthology Net-
work (AAN) dataset [112] and the following five bibliographic datasets from
ArnetMiner [134]: Data Mining database information retrieval (DM) dataset,
Software Engineering (SE) dataset, Computer Graphics Multimedia (CGM)
dataset, Artificial Intelligence (AI) dataset and Interdisciplinary Studies (IS)
dataset. Statistics of the six datasets are shown in Table 4.1. For each dataset,
we constructed an author-collaboration network and authorship network. In
the author-collaboration network, authors are represented as nodes while the
number of edges between two nodes indicates the number of papers that the
corresponding authors have co-published. For the authorship network, there

exist two types of nodes: author and paper nodes, an edge between these two
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Table 4.1: Statistics of datasets

Dataset No. of Authors No. of Papers Average Node Degree*

DM 5856 2640 3.3521
SE 8127 3923 3.8214
CGM 25961 16599 4.4163
Al 41478 27596 4.4372
IS 46097 18583 7.6488
AAN 14464 18041 8.2469

* Measured based on author-collaboration network

types of nodes represents that the author had authored the paper. We de-
fine author nodes to be our source type (ST) nodes while the paper nodes are
described as attribute type (AT) nodes.

4.4.2 Benchmark Techniques

We are unable to compare OHC with existing heterogeneous community detec-
tion techniques because they were designed for a different purpose (as described
in Section 2.1.3). Hence, we build benchmark techniques based on two state-
of-the-art homogeneous community detection algorithms: SLPA and Louvain.
For simplicity, we notate the SLPA-based method as SLPAh and the Louvain-
based method as Louvainh. SLPA is built on top of SLPA [154], where SLPA
is initially applied to the author-collaboration network to detect homogeneous
communities of the ST (author) nodes. Appropriate AT (paper) nodes that
are connected to all ST nodes in a community are then appended to each of
these detected homogeneous communities. In our experiments, the number of
iterations T" was set to 100 to guarantee SLPAh’s stable performance and the
threshold r, which affects the number of detected overlapping communities,
was varied: 0.01, 0.25 and 0.45.

The construction process of Louvainh is similar as SLPAh. We built
Louvainh on top of Louvain [13], where Louvain is applied to the author-
collaboration network first to detect homogeneous communities of the ST
nodes. Afterwards, appropriate AT nodes that are connected to all ST nodes in
a community are appended to each of the detected homogeneous communities.

Both SLPAh and Louvainh are non-deterministic, therefore, we repeated
our experiments 30 times for each technique and report their average perfor-
mance and standard deviation values. In addition, we repeated our experi-
ments 30 times for each value of SLPAh’s threshold, r.
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Table 4.2: Number of detected heterogeneous communities

Dataset OHC SLPAh Louvainh

DM 71 1411 1720
SE 237 1735 2222
CGM 1685 4863 6746
Al 2808 7562 10596
IS 3211 6359 8839
AAN 2385 1604 2434

Clustering and classification algorithms such as GenClus, RankClus and
RankClass reviewed in Sections 2.4.1 and 2.4.2 were not selected as bench-
mark techniques because they were designed for different purposes and are not
comparable with OHC. For example, Section 2.4.1 reviews algorithms devel-
oped for doing clustering in heterogeneous networks. These algorithms focus
on determining how similar underlying objects in a network are to each other
(structural and attribute similarities). Section 2.4.2 reviews algorithms de-
veloped for doing classification in heterogeneous networks. These algorithms
focus on assigning categorized labels to objects in a network. As for OHC,
we are interested in identifying communities in heterogeneous networks, where

the internal and external connections of objects are the major concern.

4.4.3 Evaluation Metrics

Without ground-truth heterogeneous communities and particular metrics for
evaluating heterogeneous communities available, we adopt the homogeneous
community scoring functions, FOMD and FlakeODF, to measure the inter
and intra connectivity of the identified communities. Details of FOMD and
FlakeODF scoring functions are provided in Section 2.1.2. Edge (relationship)
weightings are used for calculating FOMD and FlakeODF scores. The value
range of FOMD is [0,1], where a higher FOMD score represents better internal
connectivity and a value of 1 indicates a highly interconnected community. The
value range of FlakeODF is [0,1] as well. As the FlakeODF score approaches
0, this indicates that a community is highly connected internally while being
more disconnected from the rest of the network. For our evaluations, we aim
to find heterogeneous communities with high FOMD score and low FlakeODF

score.
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Table 4.3: FOMD results

Method-Dataset Min Max Median Average SD
OHC-DM 0.1933 1.0000 0.5000 0.5711 0.1723
SLPAh-DM 0.0000 1.0000  0.0000 0.1965 0.3922
Louvainh-DM 0.0000 1.0000  0.0000 0.0733  0.2544
OHC-SE 0.1811 1.0000 0.5000 0.5526 0.1583
SLPAQ-SE 0.0000 1.0000  0.0000 0.1788  0.3794
Louvainh-SE 0.0000 1.0000  0.0000 0.0882  0.2673
OHC-CGM 0.1100 1.0000 0.4000 0.4871 0.1612

SLPAh-CGM 0.0000 1.0000  0.0000  0.1385  0.3366
Louvainh-CGM  0.0000 1.0000  0.0000  0.0677  0.2293

OHC-AI 0.1222 1.0000 0.4000 0.4813 0.1611
SLPAh-AI 0.0000 1.0000  0.0000  0.1466  0.3248
Louvainh-Al 0.0000 1.0000  0.0000  0.0768  0.2457
OHC-IS 0.0000 1.0000 0.4000 0.4822 0.1913
SLPA-IS 0.0000 1.0000  0.0000  0.1233  0.2965
Louvainh-IS 0.0000 1.0000  0.0000  0.0539 0.2244
OHC-AAN 0.0900 1.0000 0.5000 0.4412 0.1522
SLPAh-AAN 0.0000 1.0000  0.0000  0.1477  0.3388

Louvainh-AAN 0.0000 1.0000  0.0000  0.0866 0.2678

4.4.4 Community Quality

In our experiments, we evaluated the performance of benchmark algorithms,
SLPAh and Louvainh, and compared them with OHC. We calculate the min-
imum, maximum, median and average values for FOMD and FlakeODF for
the six datasets and collate them in Tables 4.3 and 4.4 respectively, with the
best results highlighted for each dataset. As SLPAh and Louvainh are non-
deterministic, we present their best results from multiple runs. Additionally,
the number of heterogeneous communities detected by each technique is shown
in Table 4.2 (for SLPAh and Louvainh, number of communities are recorded
from their best runs).

Notice in Table 4.3 that SLPAh and Louvainh despite having the same
maximum value as OHC, their median FOMD value is 0. This indicates that
at least half of their communities scored very poorly resulting in an overall
lower average. On the other hand, OHC’s positive results were reinforced by
its higher median and lower standard deviation values, indicating the distribu-
tion between their communities was less volatile. The average FOMD values
for OHC communities were approximately five times higher than the other
two techniques. Table 4.4 shows that the median FlakeODF score for SLPAh
and Louvainh is either 0 or 1, indicating the communities produced by these

algorithms have FlakeODF scores at either extreme. The average FlakeODF
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score for OHC communities are considerably lower than other techniques, par-
ticularly in the AAN dataset.

Figures 4.3 to 4.8 presents the distributions of FOMD and FlakeODF value
ranges across different heterogeneous community detection heuristics. From
the results of the three datasets presented, we identify common trends that
underline the performances of OHC, SLPAh and Louvainh. From Figures 4.3
to 4.5, we see that both SLPAh and Louvainh have a larger percentage of
communities in the lowest value range (0-0.2). This indicates that most of
SLPAh and Louvainh’s resulting communities have low internal connectivity.
On the other hand, OHC’s result presents a more normal distribution curve,
with the majority of communities scoring between 0.4 and 0.6, indicating that
OHC produces communities with denser internal connectivity on average. The
FlakeODF value ranges in Figures 4.6 to 4.8 again indicate favorable results
for OHC. The results from SLPAh and Louvainh communities form clusters on
the value ranges of both extremes, indicating around half of the communities
have poor quality. Whereas the trend from OHC presents a sharp negative
slope, with the majority of communities in the 0 to 0.4 value ranges. Notice
that the described common trends were observed consistently in all of the six
datasets.

Due to SLPAh and Louvainh’s non-deterministic nature, we ran each of
them thirty times and recorded their average FOMD and FlakeODF and stan-
dard deviation values (denoted as ¢ in our tables) of average FOMD and
FlakeODF in Tables 4.5 to 4.8. There were minor variation in the average val-
ues obtained from each run, indicating both SLPAh and Louvainh had fairly

stable performance.

In SLPAh and Louvainh we appended papers which were published by all
authors within a community. However, this methodology does not include
papers that have been authored by a subset of authors within a community.
We produced two additional sets of results, firstly adding all papers that were
authored by one or more authors within a community and secondly adding all
papers that were authored by two or more authors within a community. In
both cases, OHC retains higher minimum, median and average FOMD values
across all datasets. However, the modified SLPAh and even Louvainh slightly
outperform OHC in some cases in terms of FlakeODF scores. The results
indicate that when adding papers that require at least two internal authors,

the modified SLPAh and Louvainh produce a more tightly internally bound
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Table 4.4: FlakeODF results

Method-Dataset Min Max Median Average SD
OHC-DM 0.6700 0.0000 0.1000 0.1812 0.1523
SLPAh-DM 1.0000 0.0000 0.0000 0.2667  0.4566
Louvainh-DM 1.0000 0.0000  1.0000 0.7485  0.4069
OHC-SE 0.8633 0.0000 0.2000 0.2411 0.1615
SLPAQ-SE 1.0000 0.0000 0.0000 0.3379 04777
Louvainh-SE 1.0000 0.0000  1.0000 0.7437  0.4384
OHC-CGM 0.7800 0.0000 0.1900 0.2111 0.1516
SLPAh-CGM 1.0000 0.0000 0.0000 0.4074  0.4947
Louvainh-CGM 1.0000 0.0000  1.0000 0.6997  0.4566
OHC-AI 0.8923 0.0000  0.2000 0.2233 0.1544
SLPAhQ-AI 1.0000 0.0000 0.0000 0.3925 0.4911
Louvainh-Al 1.0000 0.0000  1.0000 0.6811  0.4677
OHC-IS 0.9333 0.0000 0.3000 0.3466 0.1910
SLPAh-IS 1.0000 0.0000 0.0000 0.4211 0.4922
Louvainh-IS 1.0000 0.0000  1.0000 0.6194  0.4888
OHC-AAN 0.8900 0.0000 0.1000 0.2214 0.1422
SLPAh-AAN 1.0000 0.0000  1.0000 0.5188  0.4986
Louvainh-AAN 1.0000 0.0000  1.0000 0.5934 0.4744

Table 4.5: Average and standard deviation of FOMD across thirty runs for
each threshold r of SLPAh

Dataset r=0.01 o(r=0.01) r=0.25 o(r=0.25) r=0.45 o(r=0.45)
DM 0.1912 0.0026  0.1900 0.0021  0.1873 0.0031
SE 0.1701 0.0025 0.1733 0.0023  0.1700 0.0041
CGM 0.1233 0.0046 0.1322 0.0032 0.1321 0.0052
Al 0.1242 0.0043 0.1311 0.0041 0.1311 0.0061
IS 0.0910 0.0033 0.1013 0.0023 0.1133 0.0035
AAN 0.1311 0.0051 0.1322 0.0062 0.1313 0.0056

community and more loosely externally connected community as compared to

adding papers of each author, likely due to the decrease in loosely connected

papers.

4.4.5 Case Study

The purpose of the case study is to evaluate our results qualitatively. For each

dataset, we examined the top five heterogeneous communities with the highest
FOMD and lowest FlakeODF scores generated by OHC, SLPAh and Louvainh

and found: 1) By analyzing common keywords across the paper titles of a

community, OHC was often able to identify additional information such as the

research sub-field that the community focuses on, 2) OHC clusters authors
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Table 4.6: Average and standard deviation of FOMD across thirty runs for

Louvainh

Dataset Louvainh o(Louvainh)
DM 0.0683 0.0007
SE 0.0803 0.0021
CGM 0.0611 0.0006
Al 0.0683 0.0004
IS 0.0512 0.0004
AAN 0.0815 0.0011

Table 4.7: Average and standard deviation of FlakeODF across thirty runs for
each threshold r of SLPAh

Dataset r=0.01 o(r=0.01) r=0.25 o(r=0.25) r=0.45 o(r=0.45)
DM 0.2883 0.0021 0.2932 0.0011 0.2911 0.0030
SE 0.3410 0.0053 0.3466 0.0048 0.3526 0.0072
CGM 0.4211 0.0071 0.4166 0.0052 0.4133 0.0065
Al 0.4580 0.0161 0.4011 0.0143 0.4422 0.0175
IS 0.4393 0.0202 0.4533 0.0200 0.4462 0.0201
AAN 0.5311 0.0116 0.5233 0.0112 0.5277 0.0122

Table 4.8: Average and standard deviation of FlakeODF across thirty runs for

Louvainh
Dataset Louvainh o(Louvainh)
DM 0.7911 0.0021
SE 0.7521 0.0023
CGM 0.7032 0.0024
Al 0.6942 0.0007
IS 0.6222 0.0011
AAN 0.6013 0.0032
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Figure 4.3: AAN FOMD
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Figure 4.6: AAN FlakeODF

that frequently publish in the same field of research despite there being no co-

publication between all of these authors, 3) Regardless of the paper appending

methodology used, the vast majority of the top five scoring communities iden-

tified by SLPAh and Louvainh do not have these two properties.
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We illustrate our findings further by analyzing the Top-1 AAN heteroge-
neous community detected by OHC which achieved a FOMD score of 1 and
a FlakeODF score of 0. The common keyword across the five paper titles in
this Top-1 community is “metaphor”. In addition, by examining the AAN
dataset, we found that the authors in this community had not published any
papers together and only partial co-authorship exists among them. To reduce
bias, we evaluated SLPAh and Louvainh communities that contain one or more
nodes in the Top-1 OHC community and found that the same property was

not demonstrated in these communities.

To present our findings in a systematic way, we analyze the top five AAN
communities detected by each of OHC, SLPAh and Louvainh. Each of the
top five OHC communities have common keywords across their paper titles.
In contrast, for both SLPAh and Louvainh, only one of the top communities
had common keywords. Additionally, for all of the SLPAh and Louvainh top

five communities, there are only authors that have published the same papers
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together, which differs substantially from OHC. Overall, based on our analysis
of the top scoring communities, OHC clusters authors with papers for a specific

research sub-field despite the authors not being fully interconnected.

4.4.6 Run Time

Table 4.9 shows the execution time of each technique across various datasets.
As expected, OHC consumed more time than both SLPAh and Louvainh. The
difference increased with the growth of dataset size. As an example, OHC
executed for 12860 seconds (3.5 hours) to detect heterogeneous communities
in the AAN dataset, which we suspect was caused by high overlapping density
and high overlapping diversity of the dataset. Notice that we show the average
execution time and standard deviation of average execution time across thirty
runs for both SLPAh and Louvainh in Table 4.9.

Table 4.9: Run time of algorithms in seconds

Dataset OHC SLPAh ¢(SLPAhL) Louvainh o¢(Louvainh)

DM 11 7 1 2 1
SE 26 9 2 3 1
CGM 492 62 1 23 1
Al 535 200 1 58 1
IS 658 254 2 69 1
AAN 12860 20 2 9 1

4.4.7 Recursion Depth

To identify possible improvements to the run time of OHC, we attempted to
reduce the complexity of our algorithm by applying thresholds to the depth of
recursions. We have accomplished this by setting a maximum depth threshold
for our recursion process, which limits the number of pairs of ST nodes that
can form cliques. This threshold therefore reduces the run time of OHC signif-
icantly, as we always stop at a constant depth, although it also sacrifices some
community quality as we are no longer using a greedy approach.

Table 4.10 presents the results when limiting the recursion depth for our
longest run time dataset, AAN. Our original run time without setting a re-
cursion threshold results in a run time of 12860 seconds (3.5 hours), however,
by setting a threshold of 3, we see an significant decrease in run time to only

198 seconds, which is approximately 1.5% of the original run time. As noted
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Table 4.10: Recursion depth (AAN dataset)

Depth  Time(seconds) No. of Communities FOMD o¢(FOMD) FlakeODF o(FlakeODF)

Not Set 12860 2385  0.4412 0.1522 0.2214 0.1422
3 198 2696  0.4322 0.1610 0.2866 0.1311
5 206 2667 0.4342 0.1678 0.2773 0.1328
10 268 2658  0.4388 0.1546 0.2762 0.1389

before, we see a minor decrease in community quality as the average FOMD
value decreased by 0.0090 and average FlakeODF value increased by 0.0652,
which accounts for the few outlier communities that recurse deeply. To view
balancing effects of speed against quality, we tested higher thresholds and have
found very minor differences in run time and community quality, indicating
that when a threshold is not set, there could be a few expansive communi-
ties that contain deep recursions that encapsulate a large proportion of the
heterogeneous network, causing the run time of OHC to spike.

Setting an appropriate threshold for the recursion depth can be a challeng-
ing task and it is also dependent on specific dataset characteristics. In addition,
the threshold should be specified at a level where the balance between run time

and community quality will be maintained.

4.5 Conclusions and Future Work

In this chapter, we identify heterogeneous communities by integrating and uti-
lizing multiple node-to-node relationships that exist in heterogeneous correla-
tion networks. The proposed OHC algorithm uncovers overlapping heteroge-
neous communities and has been shown to outperform benchmark techniques
through higher FOMD values. In addition, by analyzing the top scoring com-
munities in our case study, OHC clustered authors for specific research topics
with indirect authorships more effectively. Future work will include improv-
ing OHC’s efficiency by limiting depth of the recursive process in Phase Two,
adapting OHC to find an evolution of communities in dynamic heterogeneous
networks.

In this chapter, we find a positive answer to our main research question,
which is heterogeneous information can improve the results of network analysis.
We reach our conclusion by looking at one specific network analysis task, com-
munity detection. We compare the performance of our developed algorithm
against two state-of-the-art homogeneous community detection methods. Un-

like the homogeneous community detection methods, which can only generate
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communities of a single type of object, our algorithm processes relationships
among multiple types of objects for identifying communities that contain more
than one type of objects. Our experiment results show that our algorithm iden-
tifies communities with denser internal connectivity as compared to the two

homogeneous methods.



Community Based Ranking of
Objects

Ranking of objects in homogeneous networks has been studied extensively.
However, real world networks are usually heterogeneous, containing multiple
types of objects and relationships. To date, there has very limited amount of
studies at analysing the ranking of objects in heterogeneous networks [165, 156]
and to the best of our knowledge, none of these works consider inherent com-
munity structures. In this chapter, we propose a community-based approach,
ComRank, for ranking different types of objects in a heterogeneous correlation
network. ComRank determines the overall importance of objects by analyzing
their connections and community memberships in the network. Therefore, the
importance of an object is not only measured by the direct links it has with its
one-hop neighbours, but also measured by the non-direct links the object has
with its peers which reside in the same communities as the object. To eval-
uate the merits of our method, we compare it against PageRank, MultiRank
and GPNRankClus in experiments on four real world datasets. According to
external measurements, ComRank outperforms the three baseline techniques

for identifying top rank objects.

Overall, our main research question is “Does heterogeneous information im-

prove the results of network analysis?”. To answer this research question, the

89
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thesis focuses on three network analysis tasks: community detection, ranking
and network embedding. In this chapter, we focus on our second network anal-
ysis task, which is to co-rank different types of objects in static heterogeneous
correlation networks. In doing so, we compare the performance of the Com-
Rank algorithm against a homogeneous ranking technique. Specifically, based
on domain-dependent evaluation metrics, we compare quality of top objects

ranked by the different algorithms.

5.1 Introduction

There have been a variety of ranking algorithms developed for homogeneous
networks [19, 76, 104, 15] but few for heterogeneous networks, which contain
more than one type of object (node) and relationship (edge). Ranking of
objects of different types in heterogeneous networks has many useful real world
applications, for example, recommending top rank (top-k) publications and
authors [165] to researchers or journal editors.

A heterogeneous correlation network [79] categorizes objects as either Source
Type (ST) or Attribute Type (AT) and describes relationships among the two
types of objects. A heterogeneous correlation network can be used to specify
a unique dependency constraint on the relationships among multiple types of
objects. ST objects act as the hub objects and are connected to different AT
objects, whereas AT objects determine the relationships among their linked ST
objects. Figure 5.1 provides an example of an academic correlation network.
In this example, we choose to represent authors and papers as ST objects and
AT objects respectively. The number of authorships between two authors is
determined by the number of their co-published papers. Two heterogeneous
communities are highlighted by dotted lines, where one community contains
Authors A, B and Papers 1, 2 while the other community contains Authors
B, C and Paper 3. The two communities share one common object (Author
B), therefore they overlap with each other. Author B is the only object in the
network that belongs to more than one heterogeneous communities.

We propose the ComRank (Community-based Ranking) algorithm to co-
rank objects of different types in heterogeneous correlation networks. Our
approach calculates the importance of an object by analyzing connections and
community memberships of the object in a network. To the best of our knowl-
edge, ComRank is the first co-ranking scheme that takes the community struc-
tures into account.

The novelty of our approach lies in three aspects: (1) ComRank determines
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Figure 5.1: Example of an academic heterogeneous correlation network

the importance of each object according to direct and indirect relationships
between the object and its peers within the communities in which the ob-
ject resides, which is unlike the existing ranking techniques that measure the
importance of an object solely based on connections it has with its one-hop
neighbour nodes; (2) In contrast to homogeneous networks, ComRank uses
information of multiple sources in a heterogeneous correlation network to cal-
culate the object importance; (3) ComRank normalizes the importance of each
community in the network and calculates the importance of an object in all
the communities in which the object resides.

To evaluate the effectiveness of our method, we compare top objects ranked
by ComRank against three other benchmark techniques, PageRank [19], Mul-
tiRank [101] and GPNRankClus [28] with both academic and social network
data. External validation metrics for measuring influence or popularity of the

top objects are used in our evaluations.

5.2 Preliminaries

We introduce two algorithms that are adopted in our community-based co-
ranking scheme in this section. PageRank [19] is a link analysis algorithm
used by Google’s search engine. The algorithm was originally designed for
the webgraph, treating all World Wide Web pages as nodes and hyperlinks
as edges. The PageRank value of a particular webpage, p, represents the
page’s importance. The value of p is calculated recursively and determined by
the number and PageRank values of all pages that are connected to p. The
underlying assumption of the PageRank algorithm is that more important

websites tend to have more links from other important sites, therefore, a page
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that is connected to many pages with high PageRank values will also receive

a high PageRank. A simplified PageRank algorithm can be expressed as:

PR = 30 65.)

where PR(p) is the PageRank value for p, that is dependant on the PageRank

qeCyp

value of each page ¢ in the set C, (the set containing all pages connected to
the page p), divided by L(q) (the number of outbound links from page q).
The OHC (Overlapping Heterogeneous Communities) algorithm was pro-
posed in Chapter 4 to identify communities in heterogeneous correlation net-
works. The algorithm is comprised of three main phases. During the initial
phase, heterogeneous seed communities are identified based on a distinct set of
interconnected Source Type (ST) nodes. Phase Two recursively expands each
seed community with triangle-forming ST nodes and associated Attribute Type
(AT) nodes. In general, ST nodes work as anchoring objects for structuring
triangles and appending tightly-connected AT nodes. The last phase removes
duplicate and subset heterogeneous communities generated from Phase Two.
The OHC algorithm has been experimentally shown to uncover overlapping
heterogeneous communities with denser internal and looser external connectiv-
ity as compared to the baseline techniques. For example, the interrelationships
of objects within the OHC-detected communities are more cohesive than ob-
jects within communities identified by the benchmark techniques. In addition,
the degree of independence to objects in other OHC-detected communities is

higher than their counterparts identified by the baselines.

5.3 The ComRank Algorithm

Our proposed algorithm, ComRank, produces a ranked list for objects of dif-
ferent types in a heterogeneous correlation network with five main steps. In
the first step, the PageRank value of each node in the network is calculated
and used to represent the global importance of the node. The second step
calculates the importance of all OHC-detected heterogeneous communities. In
step three, the importance of a node for a particular community that the node
resides in is calculated first, and then by aggregating importance of the node in
all communities to which the node belongs, we generate the local importance
of the node. Step four outputs the overall importance of a node by combining
its global importance and local importance. In the final step, ComRank ranks

all objects in the given heterogeneous correlation network according to their
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overall importance.

Definition 6. A Heterogeneous Correlation Network is an undirected
and weighted graph G = (V, E,T) in which each node v and each edge e is
associated with their mapping functions ¢(v) : V. — Ty and ¢(e) : E — Tg
respectively. Ty and Ty represent the sets of object and relationship types,
where [Ty |+|Tg| > 2. In addition, T} can be categorized as either source type

or attribute type.

In a heterogeneous network, an object tends to connect to a certain group
of objects with particular characteristics, therefore, objects form communi-
ties within the network [28]. The importance of an object is dependent on
the number and importance of the object’s connections, the community mem-
berships of the object and the role that the object plays in the communities
that it belongs to. In general, ComRank awards a high overall importance
score to an object, that is linked with many other high-scoring objects (high
global importance) and is a key member of important communities (high local
importance). We now describe details of the algorithm step by step with a

running example.

Step 1: Calculate global importance of node

ComRank first applies PageRank on a heterogeneous correlation network to
obtain each object’s global importance, as represented in Equation 5.2 where
GI(i) and PR(i) are global importance and PageRank value of an object, i,
respectively. Global importance of the object is calculated recursively and
dependent on the number and global importance values of all objects that

connected to the object in the network.

GI(i) = PR(i) (5.2)

While it was initially designed for directed networks, PageRank has also been
applied to undirected networks [143, 110]. In our first step, PageRank is ap-
plied on an undirected heterogeneous network, where the out-degree of a node
is equal to the in-degree of the node. In this step, PageRank takes all objects
existing in the network as nodes and relationships between objects as edges.
All objects existing in the given network are treated as the same type when
applying PageRank on the network. Figure 5.2 shows an example undirected
heterogeneous correlation network, where circles and rectangles represent two
different types of objects. While solid lines and dashed lines represent two
different types of relationships. The example network is a weighted graph, the
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Figure 5.2: Example of a heterogeneous correlation network

Table 5.1: Rank of nodes for global importance

Rank Nodes Global Importance
#1 A, B 0.1787
#2 C,D, E 0.0943
#3 2,3,4,5,6,7 0.0515
#4 1 0.0505

probability of following an edge out of the object, ¢, is equal to the weight of
the edge over the sum of weights of all edges of i. Calculated global importance

of nodes in the example network is ranked and presented in Table 5.1.

Step 2: Calculate importance of heterogeneous community

Being a community-based co-ranking technique, ComRank measures the im-
portance of an OHC-detected heterogeneous community, ¢, by aggregating the

global importance of each object, i, in ¢ (Equation 5.3).

L(d) =Y _GI(i) (5.3)

iec!

As denoted by the dotted lines in Figure 5.2, there exists only one heteroge-
neous community in the example network. The importance of the community
is calculated by combining the global importance of its members, which are A,
B, C, 1,2 and 3.

Step 3: Calculate local importance of node

ComRank determines the local importance LI(i) of an object, ¢, using Equa-
tions 5.4 and 5.5. Equation 5.4 calculates the importance of the object, 7, for

a particular community, ¢/, which ¢ resides in. The contribution that i makes
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in ¢ is measured by the fraction of i’s global importance over the importance
of the community, ¢, (I.(¢')). To normalize the importance of ¢ in the het-
erogeneous network, we first utilize the maximum function, Mazx, to return
the highest community importance score in the network (note that I.(C') gives
us the importance of all heterogeneous communities, C, in the network). The
importance of ¢ is then divided by the value returned from the Max function
to obtain the normalized importance of ¢’. The final step of Equation 5.4 is to
calculate i’s importance in ¢ by multiplying the contribution that i makes in

¢ with the normalized importance of ¢’ in the network.

GI(i) Le(c)

L(ied)= L&) " Maz(1.(0))

(5.4)

LI(i) =) I.(i€d) (5.5)

e,
Since it is possible for an object, 7, in a heterogeneous correlation network to
reside in more than one community, to obtain the local importance of i, we use
Equation 5.5 to aggregate the importance of ¢ across all communities, C;, that i
resides in. Since our example network in Figure 5.2 has only one heterogeneous
community, the local importance for each object in the community is calculated
using Equation 5.4.

One of PageRank’s main weaknesses is that it disregards new objects as
they do not have many connections. ComRank mitigates this issue by consid-
ering the community memberships of newcomers, where the overall importance
of new objects that reside in important communities can be increased by their

high local importance scores.

Step 4: Calculate overall importance of node

The algorithm derives the overall importance of an object, 7, by aggregating
its global and local importance. The roles played by the global and local
importance in determining the object’s overall importance is considered as
equivalent by ComRank, hence balanced weights are given to them during
the aggregation process. Equation 5.6 reflects this object importance, where

O1I,(i) represents the overall importance of 7.

OL,(i) = GI(i) + LI(i) (5.6)

Calculated overall importance of nodes in our example network is ranked and

presented in Table 5.2. Compared with their scores in Table 5.1, only objects
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Table 5.2: Rank of nodes for overall importance

Rank Nodes Overall Importance
#1 A B 0.4740
#2 C 0.2500
#3 2,3 0.1367
#4 1 0.1339
#5 D, E 0.0943
#6 4,5,6,7 0.0515

included in the OHC-detected community have changed scores.

Step 5: Rank nodes by their overall importance

Lastly, ComRank produces a heterogeneous ranking list according to the over-
all importance of nodes presented in a descending order. It is obvious that the
rank of nodes in Table 5.2 have changed from Table 5.1. For example, node
C mno longer shares the same rank with nodes D and F, despite having the
same number of connections as D and E (two connections with each type of
object), by residing in the same community as the other two important nodes
(A and B), node C' is ranked higher than D and E by ComRank after taking
(C’s community membership into consideration.

Algorithm 3 describes the main ideas of our proposed approach. The im-
portance of all OHC-detected communities is calculated from line 1 to 6. Af-
terwards, from line 7 to 13, ComRank loops through all objects in the network
and their community memberships to calculate the local importance of them.
The last piece (lines 14 to 17) of the algorithm outputs the overall impor-
tance of an object by aggregating its global and local importance. Algorithm
3 shows two characteristics of ComRank: 1) Source Type (ST) and Attribute
Type (AT) objects are not differentiated in their global, local and overall im-
portance computation, the two types of nodes are only differentiated in the
community detection process; 2) The overall importance (or rank) of an object
is positively correlated with the number of communities in which the object
resides.

The novelty of ComRank lies in three main aspects: 1) Unlike probability
distribution based co-ranking methods [101, 28], which focus only on direct
relationships between the objects, ComRank considers community structures
to leverage implicit relationships between the community members; 2) Unlike
PageRank [19] which treats multiple types of objects as the same type, differ-

ent types of objects are differentiated in ComRank’s adopted heterogeneous
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community construction process; 3) The importance of OHC-detected commu-
nities is normalized by the maximum community importance in the network.

The performance of ComRank partially depends on the OHC algorithm
because ComRank determines the overall importance of nodes by analysing
their community memberships as well as their connections (represented by their
PageRank values). ComRank can adopt other community detection algorithms
to calculate heterogeneous community importance and node local importance

in Step 2 and 3 respectively, which may result in a different final rank list.

Algorithm 3 ComRank

Input: OHC-detected communities: C'
PageRank value of each object i: PR(i)
Output: Object ranking list: R

1: for all ¢ in C do

2: for all 7 in ¢ do

3: GI(i) = PR(7)

4: I.(c) += GI(i)

5: end for

6: end for

7: for all 7 in I do

8: for all cin C do

9: if i C ¢ then

10: LI(i) += (GI() / I.(c)) * (I.(c) / max(I.(c)))
11: end if

12: end for

13: end for

14: for all 7 in [ do

15: OI,(i) = GI(i) + LI(7)
16:  R.add(0OI1,(7))

17: end for

18: SORT(R. DESCENDING)

5.3.1 Time Complexity Analysis of ComRank

The time complexity of ComRank is determined by the number of objects and
OHC-detected communities, which are denoted as n and m respectively. The
execution time for calculating the importance of all heterogeneous communities
is m. ComRank iterates through all objects and communities to calculate the
local importance of each object, resulting in an execution time of (n * m). In

addition, calculating the overall importance of all objects and sorting them
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into descending order requires a maximum execution time function of (n+n?).
Finally, with all parts summarized, the time complexity of ComRank is O(n

m + n?).

5.4 Experimental Evaluation

To evaluate the performance of ComRank, we apply the algorithm on various
real world datasets and compare the results against PageRank [19], Multi-
Rank [101] and GPNRankClus [28]. The damping factor of PageRank in our
experiments is consistently set as 0.85. A mixed ranking list of different types
of objects is generated by each technique. Objects of different types cannot
be compared directly, therefore we extract a ranking list for each individual
type and evaluate them separately. All the experiments were performed on a
standard desktop PC with 3.40 GHz i7 CPU, 8 GB RAM and Windows 10
operating system. A Java implementation of ComRank and datasets used in

our experiments are available for download®.

Unlike the majority of the existing work, which evaluate their algorithms
only on academic heterogeneous networks, we include social network datasets
to understand ComRank’s co-ranking capability in different domains. The
three academic datasets used in our evaluations are the ACL Anthology Net-
work (AAN) [112] dataset?, Interdisciplinary Studies (IS) and Computer
Graphics Multimedia (CGM) bibliographic datasets®. For the social network
dataset, we analyze the Digg dataset? retrieved from ArnetMiner [134].

To compare the performance of each ranking method, we adopt an external
validation technique which evaluates the importance of top ranked objects with
domain-dependent metrics. For academic datasets, we use the metrics: citation
count and h-index value for authors, and citation count for papers. For the
Digg dataset, we use the number of friends as the metric for Digg users and
the number of likes for stories. These domain-dependent metrics were selected
as our evaluation measures as they represent desired characteristics of the top

ranked objects.

Thttps://github.com/comrank /ComRank.git
Zhttp://clair.eecs.umich.edu/aan/index.php
3https://www.aminer.cn/citation
4https://aminer.org/heterinf
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Table 5.3: Properties of academic datasets

Dataset No. of Authors No. of Papers No. of Collaborations No. of Authorships

AAN 18968 17653 62925 42236
IS 50996 18583 176134 77165
CGM 29359 16599 57251 48422

Table 5.4: Average citation count for top-k papers (IS)

@ Top 10 @ Top 20 @ Top 30 @ Top 40 @ Top 50

ComRank 331 195 142 166 159
PageRank 246 166 129 109 92
MultiRank 245 176 137 118 105
GPNRankClus 97 76 63 159 136

5.4.1 Academic Datasets

For each academic dataset, we construct a heterogeneous correlation network,
containing two types of objects: authors and papers. Figure 5.1 shows an
example structure of our input network. The edge between two authors indi-
cates the number of papers that the corresponding authors have co-published
(R1: denoted by the solid line in Figure 5.1). An unweighted and undirected
edge existing between an author and a paper represents the author-to-paper
relationship (R2: denoted by the dashed line in Figure 5.1). The properties of
each academic dataset is presented in Table 5.3.

As shown in Table 5.4, for the IS dataset, the top papers identified by Com-
Rank have a higher average citation count compared to the other ranking al-
gorithms. We evaluate the average paper citation count for every 10th interval
of top papers and find that ComRank consistently outperforms other bench-
mark techniques, with more than double the average citations when measured
against GPNRankClus for the top 30 papers. From these results, we show
that ComRank is able to rank papers more successfully based on their sphere
of influence and their importance in the network.

This trend is also exhibited for the IS author ranking results, as shown
in Tables 5.5 and 5.6, where the top authors identified by ComRank have
higher average citation counts and h-indexes. We find two exceptions where
MultiRank and PageRank produce better results for h-index at the top 10 and
top 50 mark respectively. However, these differences are minor and could be
influenced by the benchmark techniques identifying outlier authors with high
h-index values but relatively lower citation counts.

For the other two academic datasets, we observed similar trends. We list
the top 10 ranked papers for AAN and the top 10 ranked authors for CGM.
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Table 5.5: Average citation count for top-k authors (IS)

@ Top 10 @ Top 20 @ Top 30 @ Top 40 @ Top 50

ComRank 32939 34931 29052 25992 22729
PageRank 26973 25657 23291 21064 20399
MultiRank 27233 28095 23266 20427 20101

GPNRankClus 13459 11608 11228 11339 11478

Table 5.6: Average h-index for top-k authors (IS)

@ Top 10 @ Top 20 @ Top 30 @ Top 40 @ Top 50

ComRank 63 66 60 57 53
PageRank 62 59 55 55 55
MultiRank 64 62 57 55 54
GPNRankClus 49 49 46 46 46

Table 5.7: Top 10 papers identified for AAN

ComRank PageRank MultiRank GPNRankClus

Paper ID ¢ * | Paper ID ¢ | Paper ID ¢ | Paper ID c
W09-1201 202 | L08-1355 5 | W09-1201 202 | W99-0304 O
P02-1056 76 | E09-1054 3 | LO8-1467 20 | LO8-1609 0
W11-2101 48 | LO8-1084 2 | HO1-1038 7 | LO8-1373 5
H93-1042 39 | W11-0903 15 | W99-0304 10 | W08-1506 6
P07-2045 4206 | W09-3006 4 | W10-1108 12 | H93-1042 39
H91-1060 581 | L08-1609 0| W10-1829 15 | E03-1012 1
C96-2120 65 | W10-1844 10 | H05-2013 2 | E03-2001 1
LO8-1581 4 | P08-2046 2 | NO7-4012 7 | LO8-1084 2
C94-1072 62 | W11-2157 9 | LO8-1355 o | W05-1106 78
W09-2411 63 | LO8-1058 3 | P10-4009 4 | W04-2507 12

* ¢ = Citation Number

Table 5.7 presents the top 10 papers identified by each ranking algorithm
when evaluating the AAN dataset. From these results, we find that in most
cases ComRank detects top papers with higher citation counts, in particu-
lar, it identifies the top 8 papers with the highest citation counts in our list.
These characteristics reflect ComRank’s ability to accurately identify highly

influential publications and rank them accordingly.

When ranking authors, ComRank also produces more favorable results
when compared to the benchmark techniques. Table 5.8 presents the top 10
authors identified by each ranking technique for the CGM dataset and from
these results, we find that in general, ComRank is able to identify authors with
higher citation counts and h-index values. Although each technique would of-

ten identify a common set of influential authors (e.g. M. Sharir), ComRank
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Table 5.8: Top 10 authors identified for CGM

ComRank PageRank MultiRank GPNRankClus
Name h*  ¢* ] Name h ¢ [ Name h ¢ [ Name h c
M.Sharir 53 11547 | M.Sharir 53 11547 | M.Sharir 53 11547 | R.T.Farouki 29 2951
D.Tao 82 21801 | A.Katsaggelos 53 12180 | A.Katsaggelos 47 9446 | M.Moonen 48 8927
S.Yan 66 22179 | R.Chellappa 72 27211 | G.Elber 25 2360 | I.Song 15 828
H. E. 53 12462 | G.Elber 28 2909 | M.Unser 59 17983 | P.Stoica 67 19657
L.J.Guibas 71 20936 | M.Unser 71 24344 | H.P.Seidel 69 18974 | S.C.Pei 53 10904
J.Pach 31 4810 | N.Thalmann 45 7120 | N.Thalmann 43 6394 | G.Bi 21 1771
S.M.Hu 38 6464 | H.P.Seidel 69 18858 | X.Wu 37 7454 | R.Scopigno 37 4878
W.Gao 57 16731 | L.Pitas 56 12227 | R.Chellappa 63 20506 | A.Farina 44 7053
B.Aronov 26 1894 | B.Jiittler 26 2951 | B.Jiittler 25 2742 | LDjurovic 25 2720
T.S.Huang 97 50022 | X.Wu 37 7573 | IL.Pitas 53 10810 | Z.Bao 45 8724

* h = H-Index, ¢ = Citation Number

is shown to detect strong influencers that are different from other algorithms

(such as T.S. Huang and S. Yan), which contributes towards its positive results.

5.4.2 Spearman Rank Correlation

Since each algorithm produces a list of authors and papers with rankings, we
can apply Spearman rank correlation [62] to compare the results of ComRank
and the other algorithms to determine the degree of rank correlations between
them. Table 5.9 presents the Spearman rank correlation for ranked authors and
papers between ComRank and the benchmark techniques in the IS dataset.

PageRank exhibits the strongest author rank correlation with a high score
of 0.7357 (with 1 indicating two ranking lists are identical), this is to be ex-
pected as ComRank utilizes the PageRank algorithm to obtain global impor-
tance of nodes. However, with a paper rank correlation score of 0.1512, the
level of similarity between how ComRank and PageRank rank papers is shown
to be low.

MultiRank is shown to have a moderate author rank correlation score of
0.5215, indicating some similarities in how both algorithms rank authors. How-
ever, despite only scoring 0.3774 for the paper rank correlation, MultiRank is
shown to rank papers in the closest manner to ComRank when compared to
the other two techniques. This indicates in terms of paper rankings, ComRank
is shown to have little similarity with the three other techniques and there is
weak to no association between how ComRank and the other algorithms rank
papers.

With an author rank correlation score of 0.0846 and paper rank correlation
score of -0.0437, GPNRankClus is shown to have almost no correlation with

ComRank in the way they rank authors and even slightly dissimilar in terms
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Table 5.9: Spearman rank correlation for the IS dataset

ComRank PageRank MultiRank GPNRankClus
Author Ranking Correlation 0.7357 0.5215 0.0846
Paper Ranking Correlation 0.1512 0.3774 -0.0437

of paper rankings. With both scores being near 0, we can state that there is
little ranking correlation between ComRank and GPNRankClus.

5.4.3 Digg Dataset

Digg [1] is a news and social platform, which specifically organizes stories on
different topics for the Internet audience such as technology, science, trending
political issues. We construct a heterogeneous correlation network, based on
Digg users and their actions (reply and comment) with respect to the stories.
Two types of objects in the constructed network are Digg users and stories.
The number of edges between two users indicates the number of stories that
the corresponding Digg users have both replied to or commented on. An
unweighted and undirected edge existing between a user and a story represents
the user-reply-to (or comment-on story) relationship. The number of Digg
users in our experiment dataset is 10293, the number of Digg stories is 12924,
the number of co-comment edges is 536248 and the number of user-comment-on
edges is 78687.

Table 5.10 shows that ComRank is able to detect top 50 users with more
friends when compared to benchmark techniques, indicating ComRank’s abil-
ity to identify more active and popular users. A similar trend is observed for
the top stories, where Comrank identifies the top 50 stories with the highest
average number of likes as shown in Table 5.11. In addition, by analysing
the topics and keywords of each top story, ComRank is shown to detect sto-
ries that were trending and more relevant for the Digg dataset’s timestamp
(January 2009). Topics such as Obama’s election and iPhone’s release in 2008
are common themes among the top 50 stories ranked by ComRank. Despite
this, we acknowledge that it is difficult to determine a qualitative ranking of
trending stories since its value and interest to individuals is subjective. Our
results for ComRank on the Digg dataset are overall positive, however, since
the dataset is a subset of data scraped from Digg in early 2009, we have to
acknowledge that the underlying data could be incomplete and imbalanced to
some degree. In addition, we only represent ‘recall’ in our experiment results

as it was difficult to evaluate the accuracy of the results of each of the exper-
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Table 5.10: Average friend number for top-k digg users

@ Top 10 @ Top 20 @ Top 30 @ Top 40 @ Top 50

ComRank 50 32 26 25 21
PageRank 31 18 16 17 14
MultiRank 30 18 21 16 14
GPNRankClus 43 22 23 20 16

Table 5.11: Average like number for top-k digg stories

@ Top 10 @ Top 20 @ Top 30 @ Top 40 @ Top 50

ComRank 49 39 40 38 41
PageRank 23 32 37 38 21
MultiRank 33 31 38 31 31
GPNRankClus 14 21 29 26 33

iments without the ground-truth information of the data sets. For example,

the h-index values of all authors and the like numbers of all digg stories in the

data sets were not available.

5.4.4 Run Time

Table 5.12 shows the execution time (in seconds) of each ranking technique

across various datasets. Overall, ComRank took more time in ranking than
the benchmark techniques in all four datasets. PageRank and GPNRankClus

were the fastest algorithms. In fact, the vast majority of time taken by Com-

Rank was spent in running the OHC algorithm to identity heterogeneous com-

munities in the datasets.

Table 5.12: Run time of algorithms in seconds

Dataset ComRank PageRank MultiRank GPNRankClus

AAN 12895 33 42 39
IS 688 26 55 29
CGM 517 24 A1 23
Digg 232 20 61 21

5.5 Conclusions and Future Work

In this chapter, we propose the algorithm, ComRank, that determines the

importance of objects of different types based on their connections and com-
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munity memberships in a heterogeneous correlation network. Experiments
on real world data show that ComRank outperforms PageRank, MultiRank
and GPNRankClus for the top ranked objects according to external validation
metrics. In addition, using Spearman rank correlation on the co-ranked lists
generated by ComRank and the benchmark techniques, we observe an obvious
discrepancy in the ways that objects are ranked by different methods. To the
best of our knowledge, ComRank is the first approach that utilizes community
structures for co-ranking. We hope our work will inspire future researchers
to consider using community memberships of objects when developing new
heterogeneous ranking methods.

In this chapter, we again find a positive answer to our main research ques-
tion, which is heterogeneous information can improve the results of network
analysis. We reach our conclusion by looking at one specific network analy-
sis task, ranking. We compare the performance of our developed algorithm
against PageRank, a popular homogeneous ranking method. Unlike PageR-
ank, which considers different types of objects in a network as one type, our
algorithm considers the network heterogeneity. Our experiment results show
that as compared to PageRank, our algorithm ranks top objects with better
quality according to domain-dependent external metrics.

Future work includes adapting ComRank to dynamic heterogeneous corre-
lation networks so the algorithm can efficiently identify top-k objects in het-
erogeneous data streams, monitoring paradigm shifts of identified top objects
in streaming heterogeneous data and explaining the causes behind the shifts.
In addition, we are also interested in implementing and experimenting with
variations of the ComRank algorithm. For example, to differentiate Source

Type and Attribute Type objects in ranking computation.



Network Embedding and Change
Modeling in Dynamic
Heterogeneous Networks

The target of network embedding is to learn the vector representations of a
given network. Most real world networks are heterogeneous and evolve over
time. Although studying network embedding would be useful in mining and
analyzing real life networks, there has been very little research in developed so
far on this topic. In this chapter, we address the problem of learning the vector
representations that capture the structural relationships among the objects at
any time step for a given dynamic heterogeneous network. We develop a novel
network embedding method, change2vec, which considers a dynamic hetero-
geneous network as snapshots of static networks with different time stamps.
Instead of processing the whole network at each time stamp, change2vec mod-
els changes between two consecutive static networks. It does this by capturing
newly-added or deleted nodes with their neighbouring nodes in addition to
newly-formed or deleted edges where there are core structural changes known
as triad closure or open processes. Change2vec leverages metapath based node
embedding and change modeling to preserve both heterogeneous and dynamic

features of a network. Experimental results show that change2vec outperforms
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two state-of-the-art methods in terms of clustering performance and efficiency.

Overall, our main research question is “Does heterogeneous information im-
prove the results of network analysis?”. To answer this research question, the
thesis focuses on three network analysis tasks: community detection, ranking
and network embedding. In this chapter, we focus on our third network anal-
ysis task, which is network embedding in dynamic heterogeneous networks. In
doing so, we compare the performance of the change2vec algorithm against a
state-of-the-art homogeneous network embedding technique. Specifically, we
compare accuracy of the embedding vectors generated by the different algo-

rithms.

6.1 Introduction

Network (graph) embedding is also known as representation learning, which
focuses on mapping a network into a low dimensional space (vectors) in which
the graph structural information and graph properties are maximally preserved
[22]. Figure 6.1 shows four different ways of converting a toy network into a 2D
space. We base this chapter on node embedding, which maps a given network
into a low dimensional space via learning object representation vectors. Node
embedding has a vital role in important data mining tasks such as object
clustering and classification [103, 144], entity retrieval and recommendation
[163].
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Figure 6.1: Converting a network into 2D space with four different perspectives
[22]

Most real world networks are heterogeneous and evolve constantly. Typical
examples of these networks are social networks and biological networks, where
multiple types of objects (nodes) and relationships (edges) exist. Recently, a
number of network embedding methods [109, 172, 168, 37, 128, 132] have been

proposed to learn low-dimensional vector representation of a node based on
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its neighbourhood relationships. To the best of our knowledge, none of these
approaches were tailored to dynamic heterogeneous networks.

Heterogeneous networks model different types of objects and relationships
among them. As compared to homogeneous networks, heterogeneous networks
can fuse information from multiple data sources and social platforms. Het-
erogeneous networks are used in scenarios such as community-based question
answering sites, multimedia networks and knowledge graphs [22]. Heteroge-
neous networks are not always static, especially in real life scenarios, e.g., social
networks in Twitter, citation networks in DBLP. Existing network embedding
mainly focuses on embedding the static homogeneous network and embedding
dynamic heterogeneous networks has been overlooked. Unlike static homoge-
neous network embedding, the techniques for dynamic heterogeneous networks
needs to be scalable and incremental to deal with the dynamic changes effi-
ciently in addition to model different types of interacting objects and their
relationships. This makes most of the existing network embedding methods,
which suffer from the low efficiency and single type oriented problems un-
suitable. How to design effective network embedding methods for dynamic
heterogeneous networks remains an open question. With the current devel-
opment of network embedding techniques, there is still significant work to be
done in scaling node and network embedding approaches to truly massive data

sets (e.g., billions of nodes and edges) [53].

6.2 Research Overview

The intuition behind our proposed method, change2vec, is to utilize triads
(i.e., a set of three nodes) to capture the structural changes of dynamic het-
erogeneous networks. A triad is a fundamental block of a network [148] and
can be open or closed. In a closed triad, there exists a relationship between
any two objects. Whereas in an open triad, there are only two edges, indi-
cating that there is no relationship between two of the nodes. To capture
formation and evolution of dynamic heterogeneous networks, we model how
an open triad transitions into a closed triad through the triad closure process
and how a closed triad becomes an open triad through the triad open process
[59]. Figure 6.2 presents a dynamic heterogeneous social network where the
circles represent users while squares denote topics of interest that users sub-
scribe to. The network contains two types of relationships: friendship between
two users represented by a solid line and subscription between a user and a

topic denoted by a dashed line. The transition from time step ¢ to t + 1 shows
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that two new edges were introduced to the network (edge epc connecting B
and C' and edge epr connecting B and T), which resulted in two triad closure
processes. As the network evolves from time step ¢t + 1 to t + 2, a triad open
process occurs due to the disappearance of the edge e ¢ between A and C.
To generate up-to-date latent vectors (vector coordinates that reflect objects’
positions in a low dimensional space) for all nodes in the network, traditional
static network embedding methods such as Node2vec [48], DeepWalk [109] and
metapath2vec++ [37] need to process the whole network at each time step,
which is unmanageable for large dynamic heterogeneous networks. Instead,
change2vec captures network structural changes by only updating vector rep-
resentations for nodes that are involved in triad closure or open processes
during two consecutive time steps. In general, it is natural for networks to
evolve and transit smoothly over time, instead of volatile restructures between
each time step [168]. This characteristic equips change2vec with advantages
over static network embedding methods which process the whole network at
each time stamp. For example, consider the network in Figure 6.2, at time
step t + 1, change2vec only updates vector representations for B, C' and T', at
time step t + 2, only vector representations for A and C' are updated, which
is more efficient than approximating latent vectors for all nodes at each time

step.

Metapath is defined in a heterogeneous network as a sequence of relation-
ships between different object types, which describes a new composite rela-
tionship between its starting type and ending type [127, 37]. The metapath
scheme provides a useful change capture mechanism by incorporating hetero-
geneous features of the network. The dynamic social network in Figure 6.2
contains two types of objects: users (U) and topics (P), which can form use-
ful metapath schemes such as “UUU” and “UPU” for modeling triad closure
and open processes. Change2vec is designed to capture, analyze and describe
changes in evolving heterogeneous networks. Dynamic vector representations
of nodes learned by change2vec can benefit various heterogeneous network min-
ing tasks. For example, the embedding vector of each node can be used as the
feature input of node clustering and similarity search, edge reconstruction and
prediction tasks. Therefore, it is a critical requirement for network embedding
methods to generate vector representations that will reflect the dynamic and

heterogeneous characteristics of nodes [37].
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Initial Node Embedder Node Embedding Updater Change Modeler Changed Node Embedder
input: snapshot of a given input: outputs of Initial Node input: snapshots of the given
dynamic heterogeneous network Embedder & Changed Node dynamic heterogeneous network input: output of Change Modeler
at the initial time stamp Embedder at time stamps t and t+1 (t > 1)
output: vector representations of output: dynamic vector output: vector representations of
all nodes representations of all nodes output: set of changed nodes the set of changed nodes

Figure 6.3: Framework of change2vec

time stamp t time stamp t+1 time stamp t+2
friend » i friend » i friend
,Subscribe ' ,“Subscribe i Subscribe

Figure 6.2: An illustrative example of a dynamic social network

Our research contributions are as follows: (1) We propose the method,
change2vec, which incorporates both dynamic and heterogeneous features of a
given network for the representation learning task; (2) When applying learned
embedding vectors of nodes, change2vec outperforms two state-of-the-art net-
work embedding methods in terms of Normalized Mutual Information (NMI)
and Adjusted Rand Index (ARI) scores; (3) Compared to a static heteroge-
neous network embedding method, change2vec is shown to be more run time

efficient for networks that are constantly evolving.

6.3 The change2vec Algorithm

Change2vec processes a dynamic heterogeneous network as snapshots of static
networks with different time stamps. Instead of reconstructing the network
in each time step, we identify certain sets of changed nodes between two con-
secutive time steps, which will be considerably more run time efficient than
processing the whole network at each step. Our framework aims to learn the
embedding vectors of nodes by modeling the dynamic and heterogeneous prop-

erties of a network.

Definition 7. A Dynamic Heterogeneous Network is a constantly evolv-
ing undirected graph G = (V, E,T) in which each node v and each edge e is
associated with their mapping functions ¢(v) : V- — Ty and ¢(e) : E — Tg
respectively. Ty and Ty represent the sets of object and relationship types,

where |Ty|+|Tg| > 2. In addition, between two consecutive time stamps ¢ and
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t+1, |V # [V or |EY| # |E™, where |V and |V*T!| denote the number
of objects at time stamps ¢ and ¢ + 1 respectively, |E'| and |E'™| represent
the number of relationships at time stamps ¢ and ¢ + 1 respectively. Ty and

Tr remain unchanged across all time stamps t.

For example, the network in Figure 6.2 can be represented with users (U),
and topics (P) as nodes, wherein edges denote the friendship (U — U), and
subscription (U — P) relationships. The number of edges changes in the net-
work between different time steps. We now formalize the vector representation

learning problem in dynamic heterogeneous networks.

Problem 1. Dynamic Heterogeneous Network Representation Learn-
ing Given a dynamic heterogeneous network G, which is represented as a se-
quence of heterogeneous network snapshots G* at different time steps ¢ (t =
1,...,z), the task is to learn the dynamic d-dimensional vector representations
Xt e RV'IXd d <« |V that capture the structural relationships among the
objects in G* at the time step t.

The result is the low-dimensional matrix X, with the v*" row being a d-
dimensional vector of node v at the time step t. Representations of different
types of nodes in GG are mapped into the same latent space. The learned em-
bedding vectors of nodes can be used as feature inputs of various heterogeneous
network mining tasks.

Figure 6.3 shows the framework of change2vec. The input of the Initial
Node Embedder component is G, which is the snapshot of a given dynamic
heterogeneous network G at the initial time stamp ¢ = 1. This component
leverages the metapath2vec+-+ algorithm [37] to use metapath based random
walks as input training data for learning vector representations of all nodes in
G

When G evolves from time step ¢ to t+1, change2vec models the differences
between the network snapshots of the two consecutive time steps, G* and G**1,
by producing a set of changed nodes Vipange. Nodes that are involved in the
following four scenarios are included in Vipgnge:

(1) added nodes and their one-hop neighbour nodes.
Vehange = {v,u s v,u € VI v ¢ V' (v,u) € B} (6.1)
(2) deleted nodes and their one-hop neighbour nodes.

‘/change = {’U,U tvuE Vt:” ¢ Vt—Ha (U,U) S Et} (62)
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(3) formed edges which caused triad closure processes.

Venange = {v,u: (v,u) ¢ E', {(v,u) € B,

(6.3)
(v,w) € B (u,w) € B} # 0}

(4) deleted edges which caused triad open processes.

Vehange = {v,u: (v,u) € E', (v,u) ¢ B,
{(v,u) € E', (v,w) € E', (u,w) € E'} # 0, (6.4)
{(v,u) € B (v,w) € B, (u,w) € B} = (0}

Notice that if a node is involved in more than one of the scenarios de-
scribed above, the node is included in V jgnge only once. An example of the
triad closure process in Figure 6.2 is when the network transits from time step
t to t + 1 and the edge (epc) between B and C' is introduced, resulting in
the closure process of the triad formed by A, B and C'. An example of the
triad open process in Figure 6.2 is when the network transits from time step
t+1 to t+2 and the edge (eac) between A and C' disappears, resulting in the
open process of the triad formed by A, B and C. After the Change Modeler
component obtains the complete set of changed nodes, the set is used as input
data by the Changed Node Embedder component. Similar to the Initial Node
Embedder component, the Changed Node Embedder component leverages the
metapath2vec++ algorithm to generate embedding vectors of nodes. The dif-
ferences between the two components are the input and output data. Instead
of processing all the nodes in the network, the Changed Node Embedder com-
ponent only works on the changed nodes and produces vector representations
of them. The main functionality of the Node Embedding Updater component
is to generate up-to-date vector representations of all nodes at each time stamp
t+1 from ¢ (t > 1). Basically, X is updated to X*™! by adding embedding
vectors of the newly-added nodes ({v : v € V'™ v ¢ V'}), removing vector
representations of the deleted nodes ({v: v € Vi v & Vit1}) replacing latent
vectors of the existing but changed nodes ({v:v € Vi,v € VI X! £ X!+1}),

Usually, the objective of network embedding methods is to maximize a
given network probability in terms of neighbourhoods of nodes [37, 94, 48, 109].
The change2vec technique inherits the common objective and maximizes the
probability of the network G = (V, E,T) at each different time stamp ¢ as

follows:
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argr@naxz Z Z log p(ciplv; 0) (6.5)

vEV tpETY cyp€NY (v)

where pr(v) represents node v’s one-hop neighbourhood with the tp'* type
of nodes at the time step ¢, p(cyp|v; 0) denotes the conditional probability of
having a context node ¢, given a node v and is commonly defined as a softmax
function [37], that is:

Xt X!
e etp v
p(ctp‘v;e) = Xt Xt (66)
UtpE‘/fj;, € "

where X! is the v'" row of X, denoting the vector representation for node v at
the time stamp ¢, Vt; is the node set of type tp in the network at ¢t. For example,
consider the social network in Figure 6.2, the neighbourhood of one user node
A can be structurally close to other users (e.g., B & C'), topics (e.g., T'). The
Initial Node Embedder and Changed Node Embedder components leverage the
same heterogeneous negative sampling [94, 37] and stochastic gradient descent
algorithms used in metapath2vec++ [37] for optimizing the derived objective
function.

Overall, change2vec preserves the heterogeneous feature of a network through
metapath based schemes for representation learning and open or closure triad
modeling. The Initial Node Embedder and Changed Node Embedder compo-
nents use metapath guided random walks as input training data to generate
vector representations of multiple types of nodes. The Change Modeler compo-
nent follows specific metapaths for modeling triad open and closure processes,
for example, in the network in Figure 6.2, triads formed by “UUU” and “U PU”

can be specified for modeling.

6.3.1 Algorithm Description

Algorithms 4 and 5 describe the main ideas of the Change Modeler component
of change2vec. In Algorithm 4, we produce the set of changed nodes, Vipange,
between two consecutive time stamps, t and ¢ + 1. Vepange is used to generate
random walks for metapath2vec++ in the Changed Node Embedder compo-
nent of change2vec. At each time stamp, all node connections are recorded in
an adjacency list for the specific time step. From the adjacency lists of ¢ and
t+ 1, we are able to identify the common nodes between the two time stamps.
Old nodes being deleted and new nodes being introduced result in changes in

sections of the network, therefore, we are also interested in the neighbouring
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Algorithm 4 Changed Nodes Generation
Input: Node adjacency lists at time step ¢t and t + 1: A?, A'*!
Output: Set of changed nodes from ¢t to ¢t + 1: Vipange

: for all Key in A’ do

if Key not in A" then
Vi += Key

else
Veommon += K@y

end if

end for

for all Key in A" do
if Key not in A’ then
Vil 4= Key
end if
: end for

© P TR P

e e
M 22

One-hop neighbours of V* at t: V10014
13: for all v in V' do
14: V;eighbourOld += At[v]
15: end for
. 1
One-hop neighbours of V'*' at ¢ 4+ 1: V5 10 vew
16: for all v in K do

t+1 _ t+1
17: VneighbourNew +_ A * [U]
18: end for

. . — t t+1
19: defference - ‘/;ommon - VneighbourOld - VneighbourNew
. . 1
20: Viiaa = TriadModeling (Vi ferences Afy A1)

— t+1
21: ‘/::hange += Vv *
. _ t
22: ‘/;hange += VneighbourOld
. _ t+1
23: ‘/;:hange += VneighbourNew

24: ‘/change += V;Sriad

nodes of old and new nodes, forming the list V' 1p,ur0a 20d VJ;’;;hbowNew.
From the lists, we can then identify common nodes between ¢ and t + 1 that
are not neighbours of old nodes or new nodes, Vy;f ference, and check if they form
open or closed triads between the two consecutive time stamps in Algorithm
5.

For each node v in Vy;fference, we initially check if its adjacency list entries
between time stamps ¢t and ¢ + 1 are the same. If the two entries differ, this
means either existing neighbour nodes were removed or new neighbour nodes
were introduced at ¢ + 1, hence we check for open and closed triad formations

for v. To identify closed triads, we examine all the new neighbour nodes of v
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Algorithm 5 Open and Closed Triad Modeling
Input: Common nodes except neighbour nodes: Vs terence
Output: Set of nodes that triggered triad open or close process:

Wriad
1: for all v in Vyifference do
2:  if A'[v] # A™1[v] then
3: Adgigs = AT v] \ A'[v]
4: for all Entry in A4y do
5: deommon = AT [Entry] N AT v]
6: if deommon > 1 then
7 Viose += v {Find nodes that triggered triad close pro-
cess}
8: end if
9: end for
Closed triads of v at t: t s
10: for all Entry in A'[v] do
11: deommon = A [Entry] N A'[v]
12: if d.ommon = 1 then
13: Lelose += d
14: end if
15: end for
16: if tose € A o] then
17: Vopen += v {Find nodes that triggered triad open process}
18: end if
19: end if
20: end for

21: ‘/triad - ‘/close + V;)pen

and for each of these nodes, we check if there are any common neighbouring
nodes between itself and v, if there are common neighbouring nodes, we add
v to the list of nodes that triggered the triad close process, V.. For open
triads, we identify all closed triads of v at time stamp t, if any of these nodes
do not exist in v’s entry of the ¢t 4+ 1 adjacency list, then we add v to the list
of nodes that caused triad open process, V,pe,. Formation of closed and open
triads indicate the formation and loss of strong inter-connectivity respectively,
hence we add both Viese and Viper, 10 Venange-

6.3.2 Time Complexity Analysis of change2vec

The time complexity of change2vec is determined by the number of nodes in
two sequential time stamps, ¢t and t + 1, which are denoted as n' and n'*!

respectively. The first stage of finding the common keys and the relative com-
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plements iterates through both adjacency lists, resulting in an execution time
function of (n* 4+ n'*1). Finding all the neighbour nodes of old nodes in the
worst case iterates through all nodes in time stamp ¢, giving us an execution
time of (n). Similarly, finding all the neighbour nodes of new nodes in the
worst, case iterates through all nodes in time stamp ¢ + 1, resulting in an ex-
ecution time of (n**1). The closed triad examination process iterates through
all new nodes and their neighbours, giving us a maximum execution time func-
tion of (n*™'log(n'*')). While the open triad examination process will in the
worst case iterate through neighbours of all nodes in ¢, producing an execu-

tion time of (n'log(n')). Finally, the final time complexity of change2vec is
O(n'log(nt) + n'Tlog(n't1)).

6.4 Experimental Evaluations

We apply change2vec to Digital Bibliographic Library Project (DBLP) data
sets to evaluate its performance and run time when compared to existing
state-of-the-art baselines. Metapath2vec++-[37] and DynamicTriad [168] were
selected as they have been empirically shown to outperform other network
embedding techniques in their respective fields. All experiments were per-
formed on virtual machines with 4 vCPUs and 16GB RAM. Our source code

is available for download®.

Table 6.1: Properties of DBLP data sets

Data Set Year Time Sequence Authors Venues Papers

2010 1st 140351 108 155117
2011 2nd 147024 110 163207
2013 3rd 185987 115 212953

For our experiments, we used three sequential time stamps of DBLP data
sets extracted from AMiner?. Similar to Dong. et al. [37], we processed each
data set and have only kept entries that matched the top 20 conferences in 8
research categories® found on Google Scholar?. These research categories are

used as ground truth information when we perform clustering tasks on venues

Thttps://github.com/Change2vec/change2vec.git

2https://aminer.org/citation

31. Computational Linguistics, 2. Computer Graphics, 3. Computer Networks & Wire-
less Communication, 4. Computer Vision & Pattern Recognition, 5. Computing Systems,
6. Databases & Information Systems, 7. Human Computer Interaction, and 8. Theoretical
Computer Science.

4https ://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng. Ac-
cessed on January, 2019.
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(V) and authors (A). At each time step, we map an author to a particular
cluster or research category if over half of the papers they publish are from
conferences of that research category. The properties of each processed data
set are presented in Table 6.1.

Like metapath2vec++-, change2vec adopts the metapath “AV A” to guide
random walks. In addition, “AAA” and “AV A” are the metapaths specified
in our experiments for modeling triad open or closure processes. For metap-
ath2vec++ and change2vec, we used the optimal parameters as proposed by
the original authors [37] with the number of clusters set to 8, number of walks
to 1000, length of walks to 100, and dimensions to 128. For DynamicTriad,
we also set the number of dimensions to 128. Due to the nondeterministic na-
ture of random walk based schemes in metapath2vec++ and change2vec, we
repeated each evaluation 30 times for both methods and present the average
and standard deviation results. DynamicTriad is a deterministic algorithm, we
run it only once to obtain its results and there is no need to give a standard
deviation.

We performed clustering on venues and authors separately as proxy tasks
to evaluate the accuracy of learned node embedding vectors, which makes more
sense than evaluating those vectors directly without applying a data mining
task. More accurate vectors should generate better clustering results. The
embedding vectors of author and venue nodes produced by each method were
used as feature inputs by the k-means clustering algorithm. From the resulting
clusters, we then evaluated performance of each method with the NMI [129]
and ARI [140] scores which show how close the resulting clusters are to the
author and venue ground truths. Both scores are in the value range of [0,1]

with 1 indicating that the results are identical to the ground truth clusters.

6.4.1 Normalized Mutual Information (INMI)

Table 6.2 presents the venue and author clustering NMI values for each method
after processing the data set with the specific time stamp. For example,
change2vec obtained a high venue clustering NMI value of 0.8073 and an au-
thor clustering value of 0.7296 for the 2013 time stamp. The best result in each
set of data is highlighted in bold. Since change2vec and metapath2vec++ both
follow the same steps for the first time stamp, we can see that the values for
them are identical (as underlined in the table). However, from 2011 onwards,
we notice a higher NMI values for venue clusters of change2vec. This demon-
strates that change2vec was able to achieve clustering results that is closer
to the ground truth while being time efficient (as shown in Table 6.4). The
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time efficiency could easily be explained as we only target nodes with change,
however the improvement in NMI could be due to the fact that change2vec
considers the state of nodes of both time stamps. Having information and
visibility of state of nodes in multiple time stamps will provide us with details
on how a node’s connections change over time. This provides the heuristic we
use in change2vec to more accurate identify which nodes to target and which
cluster they belong in. This is reflected by our results as change2vec was shown
to produce more accurate clustering scores in most scenarios.

As expected, since DynamicTriad was designed for dynamic homogeneous
networks and cannot differentiate between author and venue nodes as sepa-
rate node types, the method consistently produced low NMI values. In addi-
tion, the relatively low standard deviation values (denoted as o in our tables)
of change2vec showed more consistent and stable outcomes over benchmark

techniques.

Table 6.2: Node clustering results (NMI) of each time stamp

Method Year Sequence  Venue o (Venue) Author o (Author)
DynamicTriad 2010 1st  0.1806 N/A  0.0444 N/A
Metapath2vec++ 2010 1st  0.8023 0.0511 0.7944 0.0402
Change2vec 2010 1st  0.8023 0.0511 0.7944 0.0402
DynamicTriad 2011 2nd  0.3112 N/A  0.0727 N/A
Metapath2vec++ 2011 2nd  0.6751 0.0521 0.7138 0.0333
Change2vec 2011 2nd 0.7137 0.0334  0.7127 0.0541
DynamicTriad 2013 3rd  0.3255 N/A  0.1366 N/A
Metapath2vec++ 2013 3rd 0.7313 0.0422 0.7372 0.0501
Change2vec 2013 3rd 0.8073 0.0211  0.7296 0.0406

6.4.2 Adjusted Rand Index (ARI)

The Adjusted Rand Index [140] is another commonly adopted clustering eval-
uation metric. Table 6.3 highlights change2vec’s effectiveness as seen in 2011
and 2013 data sets where it produced considerably higher ARI values for venue
clusters and noticeable increases for author clusters. The large difference in
the ARI results between change2vec and metapath2vec++ could be due to
there being only a small number of venues in total, hence small changes and
improvements in agreement to ground truth could result in large increases in
clustering accuracy. The increase in author ARI again, could be due to the
change2vec having visibility of both time stamps and identifying which nodes
have changed, reducing noise. Similar to NMI, DynamicTriad was shown to

produce lowest cluster similarity scores due to the method being agnostic to
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node types. In addition, the relative low standard deviation values in Ta-
ble 6.3 demonstrate metapath2vec++ and change2vec’s stable clustering per-

formances.

Table 6.3: Node clustering results (ARI) of each time stamp

Method Year Sequence  Venue o (Venue) Author o (Author)
DynamicTriad 2010 Ist  0.1037 N/A  0.0314 N/A
Metapath2vec++ 2010 1st 0.6911 0.0391 0.7977 0.0242
Change2vec 2010 1st 0.6911 0.0391 0.7977 0.0242
DynamicTriad 2011 2nd  0.0251 N/A  0.0521 N/A
Metapath2vec++ 2011 2nd  0.4623 0.0215 0.6416 0.0404
Change2vec 2011 2nd 0.5587 0.0144 0.6677 0.0232
DynamicTriad 2013 3rd  0.2380 N/A  0.0227 N/A
Metapath2vec++ 2013 3rd  0.5686 0.0423  0.7421 0.0304
Change2vec 2013 3rd 0.8073 0.0346 0.7596 0.0311

Table 6.4: Run time of each time stamp

Method Year Sequence Time (mins)
DynamicTriad 2010 1st 7
Metapath2vec++ 2010 1st 20
Change2vec 2010 1st 20
DynamicTriad 2011 2nd 7
Metapath2vec++ 2011 2nd 20
Change2vec 2011 2nd 10
DynamicTriad 2013 3rd 8
Metapath2vec++ 2013 3rd 25
Change2vec 2013 3rd 18

6.4.3 Results with Introduced Open Triads

To broaden the scope of structural changes in the DBLP data sets, we have
attempted to find nodes that form open triads, where one or more edges of
a closed triad that the nodes previously formed is lost from time stamp ¢
to t + 1. With the unique characteristic of academic data sets, we cannot
expect disappearance of any edges between two consecutive time stamps since
a publication does not disappear over time, therefore we consider an edge is
lost between two authors at time stamp ¢+ 1 when the two authors have not co-
published any paper from time stamp ¢ to ¢+ 1. We then examine whether the
lost edge caused the transformation of a closed triad to an open triad between
the two consecutive time stamps. Around 2% (11482 author-to-author edges)

and 3% (24188 author-to-author edges) of the edges were removed from the
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2011 and 2013 data sets respectively to introduce the described open triads.
Tables 6.5 and 6.6 represent the NMI and ARI values for the DBLP data
sets with deliberately introduced open triads. From these tables, we can see
that there is an average increase in clustering results across all time stamps
and node types with change2vec. Our approach was also shown to slightly
outperform metapath2vec++ in the 2013 time stamp where it was not able to
in the previous experiments. This indicates that with the extra consideration
of nodes that lose the closed triad relationships, change2vec is able to get more

accurate clustering evaluations.

Table 6.5: Node clustering results (NMI) of each time stamp with open triads

Method Year Sequence  Venue o (Venue) Author o (Author)
DynamicTriad 2010 Ist  0.1806 N/A  0.0444 N/A
Metapath2vec++ 2010 1st 0.8023 0.0216 0.7944 0.0342
Change2vec 2010 1st  0.8023 0.0216 0.7944 0.0342
DynamicTriad 2011 2nd  0.3112 N/A  0.0727 N/A
Metapath2vec++ 2011 2nd  0.6751 0.0145 0.7181 0.0236
Change2vec 2011 2nd 0.7294 0.0271  0.6993 0.0175
DynamicTriad 2013 3rd  0.3255 N/A  0.1366 N/A
Metapath2vec++ 2013 3rd 0.7313 0.0311  0.7372 0.0213
Change2vec 2013 3rd 0.8154 0.0166 0.7382 0.0321

Table 6.6: Node clustering results (ARI) of each time stamp with open triads

Method Year Sequence Venue o (Venue) Author o (Author)
DynamicTriad 2010 Ist  0.1037 N/A  0.0314 N/A
Metapath2vec++ 2010 1st  0.6911 0.0211 0.7977 0.0139
Change2vec 2010 1st  0.6911 0.0211 0.7977 0.0139
DynamicTriad 2011 2nd  0.1251 N/A  0.0521 N/A
Metapath2vec++ 2011 2nd  0.4623 0.0217  0.6416 0.0222
Change2vec 2011 2nd 0.5624 0.0197 0.6695 0.0244
DynamicTriad 2013 3rd  0.2380 N/A  0.0227 N/A
Metapath2vec++ 2013 3rd  0.5686 0.0155  0.7421 0.0213
Change2vec 2013 3rd 0.8181 0.0119 0.7612 0.0344

6.4.4 Run Time

Table 6.4 and 6.7 present the time taken for each method to process the data set
with the specific time stamp. Overall, DynamicTriad was considerably faster
than change2vec and metapath2vec++. From the 2nd time sequence onwards,
we observe a consistent decrease in run time for change2vec as compared to

metapath2vec++. Comparing Table 6.7 with Table 6.4, we notice an increase
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Table 6.7: Run time of each time stamp with open triads

Method Year Sequence Time (mins)
DynamicTriad 2010 1st 7
Metapath2vec++ 2010 1st 20
Change2vec 2010 1st 20
DynamicTriad 2011 2nd 7
Metapath2vec++ 2011 2nd 20
Change2vec 2011 2nd 12
DynamicTriad 2013 3rd 8
Metapath2vec++ 2013 3rd 25
Change2vec 2013 3rd 22

in run time for change2vec due to extra validation and introduction of more

changed nodes caused by the deliberately introduced open triads.

6.4.5 Results with Deleted Edges

Table 6.8 presents the number of edges in the original DBLP data sets. To
stress test the three methods’ embedding ability with noisy data, we perform
the same clustering experiments in the data sets with randomly deleted edges.
As shown in Table 6.8, there are two types of edges in the data sets: author-to-
author edge and author-to-venue edge. To perform the stress test, we randomly
deleted 10%, 20% or 30% of the total edges in each data set (type of the edge
being deleted is also determined randomly) and apply the three methods to
the remaining data set.

Tables 6.9 and 6.10 present NMI and ARI values on different generated
data sets respectively. Notice that we repeated the experiments 30 times of
random edge deletion for each individual value in the two tables. Overall,
clustering accuracy of all three methods dropped as compared to experimenting
with the original data sets. However, change2vec outperformed the other two
baselines in most cases, showing its ability of learning more accurate embedding
vectors in networks with noise. The relatively low standard deviation values of
metapath2vec++ and change2vec demonstrate their stable performance when

dealing with noisy data.

Table 6.8: Number of edges in DBLP data sets

Data Set Year Time Sequence Author-to-Author Author-to-Venue
2010 1st 537357 424617

2011 2nd 274086 450521
2013 3rd 806263 608624
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Table 6.9: Node clustering results (NMI) of each time stamp with deleted
edges

Method Year Edges Deleted Author o (Author)  Venue o (Venue)
DynamicTriad 2010 10%  0.0880 0.0261  0.2263 0.0688
Metapath2vec++ 2010 10% 0.4606 0.1528 0.5279 0.1674
Change2vec 2010 10% 0.4606 0.1528 0.5279 0.1674
DynamicTriad 2010 20%  0.0514 0.0215  0.1495 0.0122
Metapath2vec++ 2010 20% 0.5472 0.1341 0.5026 0.0969
Change2vec 2010 20% 0.5472 0.1341 0.5026 0.0969
DynamicTriad 2010 30%  0.0384 0.0120  0.0835 0.0383
Metapath2vec++ 2010 30% 0.4294 0.1090 0.5594 0.0941
Change2vec 2010 30% 0.4294 0.1090 0.5594 0.0941
DynamicTriad 2011 10%  0.0649 0.0304  0.2041 0.0843
Metapath2vec++ 2011 10%  0.6133 0.1536  0.5335 0.0454
Change2vec 2011 10% 0.6613 0.1028 0.7303 0.0595
DynamicTriad 2011 20%  0.0745 0.0221  0.1420 0.0795
Metapath2vec++ 2011 20%  0.5290 0.1485 0.5793 0.2349
Change2vec 2011 20% 0.6738 0.0446 0.6972 0.1069
DynamicTriad 2011 30%  0.0408 0.0123  0.0756 0.0151
Metapath2vec++ 2011 30% 0.5815 0.0916  0.5107 0.1680
Change2vec 2011 30% 0.6944 0.0303 0.6995 0.0176
DynamicTriad 2013 10%  0.0379 0.0210  0.1878 0.0606
Metapath2vec++ 2013 10%  0.4716 0.1341  0.4397 0.0314
Change2vec 2013 10% 0.6892 0.1251 0.5919 0.2053
DynamicTriad 2013 20%  0.0462 0.0219  0.1120 0.0363
Metapath2vec++ 2013 20%  0.4888 0.1396  0.5466 0.1608
Change2vec 2013 20% 0.6637 0.1179 0.6189 0.2532
DynamicTriad 2013 30% 0.0272 0.0055  0.0581 0.0065
Metapath2vec++ 2013 30%  0.5449 0.1588  0.4149 0.1014
Change2vec 2013 30% 0.6114 0.1411 0.5110 0.1426

6.5 Conclusions and Future Work

In this chapter, we propose a framework, change2vec, to capture changes and
heterogeneous features in a dynamic heterogeneous network. The framework
captures structural changes between two consecutive network snapshots by
modeling the triad open or closure processes and describes such changes with
up-to-date embedding vectors of nodes. change2vec was experimentally shown
to outperform metapath2vec++ in terms of embedding accuracy and run time
efficiency on dynamic heterogeneous networks. Although being less efficient
than DynamicTriad, change2vec consumed up to three times more time in
order to gain up to 78% more accurate embedding vectors as compared to

DynamicTriad.

In this chapter, we again find a positive answer to our main research ques-
tion, which is heterogeneous information can improve the results of network

analysis. We reach our conclusion by looking at one specific network analy-
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Table 6.10: Node clustering results (ARI) of each time stamp with deleted

edges
Method Year Edges Deleted Author o (Author) Venue o (Venue)
DynamicTriad 2010 10%  0.0376 0.0143 0.0913 0.0633
Metapath2vec++ 2010 10% 0.5073 0.0654 0.6283 0.0279
Change2vec 2010 10% 0.5073 0.0654 0.6283 0.0279
DynamicTriad 2010 20%  0.0234 0.0117 0.0748 0.0420
Metapath2vec++ 2010 20% 0.5630 0.2275 0.5740 0.1164
Change2vec 2010 20% 0.5630 0.2275 0.5740 0.1164
DynamicTriad 2010 30%  0.0199 0.0059  0.0235 0.0172
Metapath2vec++ 2010 30% 0.4573 0.0653 0.5468 0.2162
Change2vec 2010 30% 0.4573 0.0653 0.5468 0.2162
DynamicTriad 2011 10%  0.0293 0.0156  0.1469 0.0304
Metapath2vec++ 2011 10% 0.5516 0.1875 0.4733 0.2089
Change2vec 2011 10%  0.5381 0.2249 0.5254 0.1642
DynamicTriad 2011 20%  0.0308 0.0040 0.1148 0.0265
Metapath2vec++ 2011 20%  0.4723 0.2567 0.5626 0.1056
Change2vec 2011 20% 0.5918 0.0727  0.5274 0.1738
DynamicTriad 2011 30%  0.0155 0.0130 0.0579 0.0122
Metapath2vec++ 2011 30% 0.6528 0.1668  0.4637 0.1896
Change2vec 2011 30% 0.6323 0.05638 0.5471 0.0013
DynamicTriad 2013 10%  0.0336 0.0063 0.0722 0.0396
Metapath2vec++ 2013 10%  0.5162 0.0236  0.5817 0.1572
Change2vec 2013 10% 0.6803 0.1439 0.6126 0.1277
DynamicTriad 2013 20%  0.0182 0.0088  0.0733 0.0420
Metapath2vec++ 2013 20%  0.6002 0.0568  0.6044 0.1218
Change2vec 2013 20% 0.6289 0.1223 0.6237 0.1166
DynamicTriad 2013 30%  0.0092 0.0071  0.0455 0.0392
Metapath2vec++ 2013 30%  0.4512 0.0548  0.4331 0.0989
Change2vec 2013 30% 0.6433 0.1330 0.6606 0.0560

sis task, network embedding. We compare the performance of our developed

algorithm against DynamicTriad, a state-of-the-art homogeneous network em-

bedding method. Unlike DynamicTriad, which considers different types of

objects in a network as one type, our algorithm considers the network het-

erogeneity. Our experiment results show that as compared to DynamicTriad,

our algorithm generates node embedding vectors that are closer to the ground

truth.

Future work includes generalizing change2vec to diverse types of dynamic

heterogeneous networks, automatically learning useful metapaths and using

learned embedding vectors in other heterogeneous network mining tasks. This

includes node similarity search and classification.



Conclusions

In most related literature, the definition of a social network is a homogeneous
graph, in which each node represents an object, and each edge denotes a re-
lationship between two objects. However, the single type of relationship in
traditional social network definitions is not enough to capture real world asso-
ciations. Very often, a variety of types of relationships exists among objects,
with different semantics associated with each relationship. Examples of het-
erogeneous types of relationships among objects are social collaborations [68],

citations [44], and annotations [46].

In addition, multiple types of objects involved in social networks are also
missing in the traditional definition of a social network. With a comprehensive
literature survey on one specific aspect of social network analysis, the notion of
network heterogeneity comes into focus, and as a result this thesis focused on
developing new knowledge discovery and data mining techniques for analyzing

heterogeneous social networks.

Chapter 4 and Chapter 5 were developed for heterogeneous networks with
correlation schemas, while Chapter 6 was developed for any type of hetero-
geneous network. Heterogeneous networks with correlation schemas were tar-
geted in Chapters 4 and 5 because the schema represents an important net-
work structure and defines a constraint relationship between source type and

attribute type objects.

123
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A series of novel methods are presented for knowledge discovery in het-
erogeneous social networks. The methods proposed in this thesis have been
applied to a wide range of applications including community discovery, rank-
ing, information retrieval, network embedding, and change modeling. In this
final chapter we summarize our findings and results presented in the thesis,

and discuss future directions for our research.

7.1 Contributions

Overall, we developed novel algorithms and applied them to a wide range of
applications including community discovery, ranking and network embedding.
To answer the main research question raised in Section 1.2: ”Does hetero-
geneous information improve the results of network analysis?”, we have em-
bedded heterogeneous information in our developed approaches and shown an
improvement in network analysis tasks over their counterpart homogeneous
heuristics. In Chapter 4, OHC was experimentally shown to detect communi-
ties with denser internal connectivity than two homogeneous community detec-
tion techniques. In Chapter 5, ComRank was experimentally shown to identify
top rank objects with better quality than PageRank. In Chapter 6, change2vec
was experimentally shown to generate more accurate embedding vectors of ob-
jects than a state-of-the-art homogeneous network embedding method. The
consistent performance shows that the results of network analysis can defi-
nitely be improved by embedding heterogeneous information, answering our
research question.

We next summarize our contributions to the areas of social network analysis

and heterogeneous network analysis by chapter:

Chapter 3

e We conducted a comprehensive literature review on social network anal-
ysis with a focus on top-k nodes identification. We then outlined a
series of applicable domains for this research topic and highlighted some

promising future directions.

e One of the conclusions drawn from the literature survey is that the vast
majority of existing techniques for social network analysis were proposed
for homogeneous social networks. Typical techniques includes commu-
nity discovery, ranking and network embedding. The survey lays a foun-

dation of our research on heterogeneous network analysis.
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Chapter 4

e We presented a novel algorithm for discovering overlapping heteroge-
neous communities and demonstrated how by integrating the TPR scor-
ing function into community evaluation, we were able to detect communi-
ties with stronger internal connectivity and looser external connectivity

than benchmark techniques.

e We empirically showed the merits of our methodology and analyzed the

performance of our proposed method qualitatively in a case study.
Chapter 5

e We presented a novel approach for ranking objects of different types
in heterogeneous networks by integrating community memberships as a
co-ranking mechanism. ComRank was shown to produce higher quality

top-k rankings of objects than benchmark techniques.

e We showed the merits of our proposed approach by comparing its per-
formance in identifying top-rank objects against three state-of-the-art

baselines.
Chapter 6

e We presented a novel model for network embedding and change modeling

in dynamic heterogeneous networks.

e We showed that by modelling concurrent time stamps and analysing the
structural changes of triads, change2vec outperforms two state-of-the-art

methods in terms of time efficiency and clustering accuracy through NMI
and ARI scores.

7.2 Limitations

This thesis has presented algorithms and approaches that contribute to per-
forming mining and analysis tasks in heterogeneous networks. Despite the
contributions, there are some limitations to the proposed algorithms and ap-
proaches.

The proposed methods in Chapters 4 and 5 were developed to analyse
heterogeneous correlation networks. The methods would need to be revis-
ited for other kinds of networks, such as heterogeneous networks with other
schema types such as star and bipartite schemas. Additionally, as stated in

our research scope (Section 1.4), our heuristics are not designed to evaluate
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composite networks [142, 141] and complex networks with non-trivial topolog-
ical features and patterns of connection between its elements that are neither
purely regular nor purely random [73, 118].

The time complexity for our algorithms was shown to be at least 0(n?).
While they performed well against the benchmark and proposed data sets, we
would not expect them to analyse larger heterogeneous networks (over 1 TiB
of data) effectively due to time and computational complexities. We aim to

address this in the future.

7.3 Future Directions

In this thesis, we have proposed heterogeneous network analysis and mining
techniques. However, this field of research is still relatively new and there are
more challenges and ideas that we have yet to examine, providing us with some
potential research directions that we can explore in the future. We will first
discuss the future work for each of the individual topics in the chapters followed
by plans for enhancing our heuristics to tackle existing heterogeneous commu-
nity mining challenges of dynamic data streams, larger and more complex data
structures and by applying our heuristics to a larger variety of heterogeneous

networks.

Uncovering Overlapping Heterogeneous Communities

We proposed the OHC algorithm to facilitate the discovery of overlapping het-
erogeneous communities in Chapter 4. Our future work in this part includes
improving OHC’s scalability and efficiency by limiting its recursion depth, au-
tomatically distinguishing between Source Type and Attribute Type objects,
adapting OHC to find an evolution of communities in dynamic heterogeneous
networks. Currently a limitation for OHC is that it can only evaluate het-
erogeneous networks with correlation schemas, investigation into expanding
OHC to perform evaluations on other heterogeneous schemas such as star or
bipartite schema would allow us to evaluate a wider range of heterogeneous

networks.

Community Based Ranking of Objects

In Chapter 5 we presented the idea of ranking objects of different types in
heterogeneous networks by taking the object community memberships into
consideration. Our proposed approach, ComRank, ranks communities based

on the authors, papers and the relationships between them. However, this
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does not account for attributes such as the ranking of the conferences in which
the papers were published or if the topic of papers in the community is similar
which could impact the integrity of the community. For future work, we want
to evolve ComRank so it can perform evaluations in a multi-dimensional way.
Along with the core data sets, we can introduce new ground truth data sets
such as conference ranking information, and paper index terms to perform
richer and more robust analysis that includes real world factors. Similar to
OHC, a limitation for ComRank is that it only evaluates networks with a cor-
relation schema, and we would like to expand this so ComRank can perform

rankings on heterogeneous networks with other schema types.

Network Embedding and Change Modeling in Dynamic Heteroge-
neous Networks

Change2vec, a framework for network embedding and change modeling in dy-
namic heterogeneous networks was presented in Chapter 6. In the future we
intend to implement change2vec into real data streams because currently we
only perform analysis on snapshots (time stamps) of dynamic heterogeneous
networks. To this end, we need to solve challenges such as handling of incom-
plete or missing data and performance optimization. Furthermore, we also
want to adapt change2vec to automatically learn useful metapaths and enable

it to evaluate composite and complex network structures.

General Directions

As most of our existing experiments have been performed on tested and proven
academic data sets or data sets proposed by authors with related work, a di-
rection that can be explored is application of our heuristics on more untested
heterogeneous networks in different domains, such as large corporate collabo-
ration data or biological data. By developing and integrating new clustering,
recommendation and classification techniques upon these data sets, there is a

large room of potential to find undiscovered results and findings.

The study of data streams is also a topic that this thesis has barely scratched
the surface of, and it is our intention to enhance our heuristics to more effec-
tively process and analyse dynamic streams of data and monitor paradigm
shifts of top objects identified in streams while providing an explanation for

what causes the shifts.

The scope of our research considers only one relationship type between
objects, for example, in Chapter 4, the relationship considered between authors

is always ‘co-authorship’ and the relationship considered between an author
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and a paper is always ‘authorship’; in Chapter 5, the relationship considered
between Digg users is always ‘co-comment’ and the relationship considered
between a Digg user and a story is always ‘user-comment-to’; in Chapter 6, the
relationship considered between an author and a venue is always ‘published at’.
Since, relationships between objects can have different meanings, an interesting
challenge would be to find the best way to extend the developed algorithms to
take different types of relationships between objects into account.

Finally, we intend to enhance the proposed methods or develop new ap-
proaches to handle heterogeneous networks with more complex network con-
struction, richer semantic information, or bigger networked data. Last but not
least, we are interested in shaping and demonstrating more potential applica-

tions of heterogeneous network mining and analysis.
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