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Abstract. We describe a system for high-speed depth estimation of a light source

embedded in a scattering medium. A polynomial model estimates source depth from

the spatially-resolved, diffuse reflectance profile measured with a fibre optic probe on

the surface of a scattering medium. A dataset of Monte Carlo reflectance profiles

is generated over a range of typical optical properties and the model is fit to the

simulated reflectance at four detector locations. The model accounts for a source depth

up to 15 mm. Cross-validation using the Monte Carlo dataset produced a root mean

square error of 0.12 mm. Experimental reflectance data is acquired with the detector

probe, which consists of four optical fibres mounted in a black acetal plastic disk. The

optical fibres are coupled into avalanche photodiodes for high-speed acquisition of the

reflectance profile. When applied to measurements from a tissue-mimicking phantom

with an embedded light source, the polynomial model generates depth estimates within

2 mm of the true depth, up to a source depth of 15 mm.

Keywords : diffuse reflectance, turbid media, source location, tissue optics, Monte Carlo

simulation.

1. Introduction

Diffuse optical techniques for characterising the properties and internal structure of

biological tissue have been the subject of numerous research studies. Most notably, the

method of diffuse optical tomography (DOT) has been used widely to identify absorbing

or light-emitting features in a reconstructed, three-dimensional tissue volume [1, 2, 3].

DOT involves multiple diffuse light measurements with the sample illuminated from

various locations. A simplification for local characterisation, spatially-resolved diffuse

imaging (SRDI), involves tissue illuminated using a single light source. This technique

has been widely applied to the problem of determining local optical properties, which

can be used to recover the concentration of chromophores [4, 5, 6, 7]. Fewer studies have

explored SRDI for recovering the location of light sources in tissue, with one group using
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a fibre-based detector to make a spectrally dispersed measurement at 14 radial locations

and a least-squares inversion of the diffusion model to estimate depth [8]. Two other

groups have also successfully employed the diffusion model for depth estimation, on

measurements obtained from a light source embedded in mice using specialised camera

imaging systems [9, 10]. In this paper, we are particularly interested in estimating

depth at high speed using a fibre-optic based measurement device. Such a system can

be applied to large tissue volumes and is suitable for non-invasive monitoring of needle-

free injection or robotic needle steering [11, 12, 13, 14]. This work describes a fibre-based

probe for diffuse reflectance measurement, and an empirical inverse model for estimating

source depth at high speed.

Fibre optic probes are widely used for diffuse reflectance measurements, particularly

for local optical property estimation [15, 16, 17]. Probes typically consist of a single

illumination fibre and several detector fibres with source-detector separations between

2 mm and 20 mm. While providing reduced spatial resolution when compared to camera-

based systems, fibre-based probes are more suitable for larger samples as a portable

system, which excludes ambient light when in contact with tissue. Typically, detector

fibres are coupled into CCD detectors, point photodiodes, or spectrometers but such a

device also offers the possibility of using highly sensitive point photodetectors such as

avalanche photodiodes or vacuum photomultipliers [16, 18, 15].

Empirical inverse models, similar to what is proposed here, have been previously

developed for the related problem of determining local optical properties. Farrell et al.

trained a simple neural network to estimate optical properties from diffuse reflectance.

Their neural network produced more robust estimates and solved 400 times faster than

a gradient search fitting scheme based upon the diffusion model [19, 20]. A similar

approach was taken more recently by Jäger et al., where multiple artificial neural

networks, trained on Monte Carlo simulations, were able produce accurate optical

property estimates with a computation time of less than a millisecond [21]. A different

method, using a multiple polynomial regression model, has also been employed to

estimate the optical properties of tissue using a fibre optic reflectance probe [16]. The

model was calibrated directly on measurements from a series of control phantoms and

was capable of estimating optical properties with errors less than 10 %. Furthermore,

the optical property estimates could be computed in ∼ 50 ms and it was noted that

a modern computer and compiled algorithm could significantly improve on this time.

In the present study, a similar approach is taken where a polynomial function is fitted

to Monte Carlo simulated data subsequently used for depth estimation rather than

property estimation. The model is applied to reflectance measurements collected using

a custom, high bandwidth fibre optic probe.
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Figure 1. Depth-controlled light source experiments where a light emitting optical

fibre is lowered into a tissue-mimicking phantom. The light source is guided through

the centre of the fibre optic probe, which measures the resulting diffuse reflectance

profile.

2. Materials and Methods

2.1. Fibre optic probe

The fibre optic probe consists of four silica-core optical fibres (200 µm core diameter,

NA = 0.22) mounted into a black acetal disk (80 mm diameter) (figure 1). The acetal

probe head provides a simple means of rigidly positioning the fibres, excludes ambient

light, and imposes a controlled boundary condition. The fibres are coupled into four

avalanche photodiode (APD) modules (Hamamatsu 2 × C12703-01, 2 × C5460-01). The

detector fibres are fixed at distances of 3 mm, 5 mm, 7 mm, and 9 mm from the centre

of the disk, while also being constrained to lie equidistant from the mounting point of an

additional fibre, used to calibrate the photodetectors. Differences in manufacturing the

probe and electrical characteristics of the photodetectors caused sensitivity differences

between the detection channels. It was therefore necessary to determine the calibration

factor for each detector pathway to normalise measurements to a common scale. This

was achieved by placing the probe on a scattering medium and illuminating the medium

through the calibration fibre. The radial symmetry of the resulting light distribution

ensured each detector fibre was exposed to an equal intensity, and a calibration factor

for each detector could be determined.

A depth-controlled light source was created with an optical fibre mounted to a

position-controlled (±15 µm) voice-coil motor [22]. A flat-end, 20 gauge needle (0.9 mm

outer diameter, 0.6 mm inner diameter) mounted to the motor provided a guide for the

200 µm optical fibre, which was positioned to protrude 0.5 mm from the end of the

needle. The beam from an 808 nm laser diode was coupled into the fibre to provide a

5 mW, depth-controllable light source. A linear potentiometer was used to track the

motor position (±15 µm) and a real-time controller (cRIO-9022, National Instruments)
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controlled the trajectory of the source while simultaneously recording the output from

the avalanche photodiodes at a sampling rate of 250 kHz.

The detector probe was positioned on the surface of a phantom (see below for

formulation details) and the voice-coil motor was retracted to hold the source fibre at

this location. The laser was energised, illuminating the scattering phantom through

the source fibre, and a two-stage positioning procedure was performed: the source was

held at the phantom surface for 20 ms while the surface-illuminated reflectance profile

was acquired, followed by a 30 mm/s descent into the phantom to a maximum depth of

15 mm.

2.2. Diffusion model depth estimation

For comparison, depth-estimation results using the polynomial model, described below,

were compared against a previously developed method using the diffusion model [23].

The details of the diffusion model depth estimation procedure are presented here briefly.

The diffusion model has been solved for the geometry involving a point source in a

semi-infinite, homogeneous medium (figure 2), where the radiance L (W/m2sr) at the

medium’s surface is given by [4]:

L(ρ) =
P

16π2D

(
exp(−µeffr1)

r1
− exp(−µeffr2)

r2

+ 3D
( d
r21

(µeff +
1

r1
) exp(−µeffr1)

+
d+ 2zb
r22

(µeff +
1

r2
) exp(−µeffr2)

))
, (1)

where ρ is the radial position on the medium surface, D ≡ 1
3(µ′s+µa)

is the diffusion

coefficient, µeff ≡
√

3µa(µ′s + µa), µ
′
s ≡ (1 − g)µs is the reduced scattering coefficient,

zb ≡ 1+Reff

1−Reff
2D, and Reff is the effective reflection coefficient, which depends on

the relative refractive index at the medium-air interface [4]. In the experimental

configuration, the optical indices of the medium and measurement probe are assumed

to be matched, meaning Reff becomes zero.

To solve the inverse problem, a nonlinear least squares fitting procedure using

the Levenberg-Marquardt algorithm was employed [23]. Three unknowns required

estimation: the absorption coefficient, µa, the reduced scattering coefficient, µ′s, and

the source depth, d, which were determined in two successive stages. Firstly, a

characterisation step was performed, where the medium’s optical properties were

estimated with the light source incident on the top surface of the medium. Subsequently,

with the source at an undetermined depth below the surface, the depth alone was found

using the estimated optical properties.

The diffusion model depth estimation method was formulated to use the relative

intensity profile to determine depth, meaning equation 1 was normalised when fitted to

measured data. Under surface-illuminated conditions, the profile was normalised to the
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Figure 2. Solving the diffusion equation in a semi-infinite homogeneous medium using

an extrapolated boundary condition.

value at the innermost radius, L
(exp)
d=0 (ρnorm), the nominal experimental normalisation

factor. The function L
(mod)
d=0 (ρ)/L

(mod)
d=0 (ρnorm) was then fitted to the data, thereby

designating L
(mod)
d=0 (ρnorm) as the model normalisation factor. For all subsequent depth

estimations, the reflectance profile was normalised by the experimental normalisation

factor before the depth was determined using Ld(ρ)/L
(mod)
d=0 (ρnorm).

2.3. Polynomial model development

Monte Carlo simulations were used to generate a dataset of reflectance profiles to which

the polynomial model could be fit. This provided a reference model of light propagation

which enabled quick generation of a dense dataset while remaining straightforward to

adapt to more complex geometries. A modified version of CUDAMCML, a GPU-

based Monte Carlo routine [24, 25], was used to simulate a pencil beam light source

at a prescribed depth in a single layer medium. The Henyey-Greenstein scattering

phase function was used with an anisotropy parameter, g, of 0.9 for all runs [26, 27].

Simulations were performed with 17 absorption coefficients, µa, and 17 reduced

scattering coefficients, µ′s, spanning the ranges: 0.01 mm−1 ≤ µa ≤ 0.15 mm−1 and

0.5 mm−1 ≤ µ′s ≤ 2.0 mm−1. A matched surface boundary condition was prescribed

at the surface of the medium and 107 photons were used in each simulation. For each

optical property set, simulations were performed with the source at depths from 0 mm to

15 mm in 0.5 mm increments. Thus, the dataset consisted of a total of 8959 simulations.

The surface light intensity distribution output from the Monte Carlo simulation was

convolved with a 0.2 mm, 2D top hat function using CONV [28] to match the size of

the source fibre used in the experimental procedure, described below. The reflectance

input values to the model were taken from radial positions of 3 mm, 5 mm, 7 mm, and

9 mm to match the measurement probe configuration. All reflectance data were log10

transformed before being input to the model.
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Table 1. Optical Properties of the Scattering Phantoms

Trial µa (mm−1) µ′s (mm−1) cink(% v/v) cint(% v/v)

a 0.045 0.875 0.015 4.56

b 0.045 1.625 0.015 8.47

c 0.115 0.875 0.038 4.56

d 0.115 1.625 0.038 8.47

In order to accurately estimate source depth, the variability of the local optical

properties must first be taken into account. The diffusion model depth estimation

procedure, described above, involved an initial estimate of the absorption and scattering

coefficients. However, for an empirical model, an explicit estimate of the optical

properties is not strictly necessary. Instead, the confounding effect of local optical

property variability can be isolated using the surface-illuminated reflectance profile as

a direct input to the model. Thus, the polynomial model estimates depth in a single

step with two sets of inputs: the surface-illuminated reflectance profile and the profile

measured at the depth to be determined. A 3rd-order polynomial was found to accurately

recover source depth from the eight independent variables across the parameter space.

With 8 independent variables, the polynomial model was formulated as:

P (xi, xj, ...xp) =
∑

i+j+...+p≤3
aijk...px

i
1x

j
2 . . . x

p
8, (2)

involving 165 coefficients (one 0th-order, eight 1st-order, 36 2nd-order, and 120 3rd-order),

which were determined using a least-squares fit to the Monte Carlo reflectance data with

the source depth as the dependent variable. Subsequent depth estimation required only

a straightforward function evaluation of equation 2 using the fitted coefficients.

In contrast to the diffusion model, the polynomial model used absolute reflectance

profiles, which require the input to be in the same units as the Monte Carlo simulations

(W/m2sr). It was therefore necessary to scale the avalanche photodiode output to the

units of the Monte Carlo simulation. The scale factor was determined by measuring

the reflectance profile on a phantom with controlled optical properties and simulating

the same conditions in a Monte Carlo simulation. The scale factor was then found by

minimising the error between the two equivalent profiles in a least squares sense. All

experimental data were subsequently scaled to the units of the Monte Carlo simulation

before applying the polynomial model.

2.4. Tissue-mimicking Phantoms

Aqueous solutions of 20 % Intralipid (Fresenius Kabi) and Black India Ink (Higgins)

were used as tissue-mimicking phantoms. A standardised procedure was used to create

the phantoms, using linear interpolation to find the specific optical properties for 808 nm

from the reference values [29]. Table 1 gives the nominal optical properties for the four

experimental trials and the concentrations of India Ink, cink and Intralipid 20%, cint.
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Figure 3. Depth estimation errors using the two-step diffusion model procedure.

Left: Errors plotted against the true source depth. Right: Histogram showing the

distribution of the depth errors. Errors beyond the range shown are accounted for in

the edge bins.

3. Results

3.1. Cross validation

The two models were validated on the Monte Carlo dataset, described in Section 2.3,

providing 8959 estimates to compare the accuracy of the models. The diffusion model

estimation procedure was applied directly to the dataset, whereas for the polynomial

model, leave-one-out cross-validation (LOOCV) was used to separate the test cases from

the fitting dataset. This involved successively removing each data point from the set,

fitting the model to the remaining data, and using the excluded point as a test case.

The diffusion model depth estimation model produces an RMS error of the estimates

of 0.22 mm and with consistently small errors, remaining almost entirely within ±1 mm

(figure 3).

When performed using the polynomial model, LOOCV produced depth estimates

that improved on the results from the method using the diffusion model (figure 4). For

the full parameter space, the depth estimate rarely deviates more than 1 mm from the

true depth value, with 99.4 % of the estimation errors within 0.5 mm. Furthermore, an

RMS error of 0.12 mm demonstrates distinct improvement on the depth estimates using

the diffusion model.

3.2. Experimental Results

When applied to the experimental data, the depth estimates using the diffusion model

successfully track the true probe depth well for all four trials, remaining within 1 mm of

the true depth up to a depth of 12 mm (figure 5). The ‘step’ consistently appearing in the

depth estimate during the initial stages of the trajectory can be explained by examining
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the least-squares objective function. Initially, a single minimum exists around a depth

of zero that, as the source progresses into the medium, separates into two minima, with

one tracking the progressively descending source. Until there is a distinct bifurcation,

the minimum remains near zero and consequently the source depth is underestimated.

The two trials with the higher absorption coefficient (Trials c and d) produced

noisy depth estimates as the probe depth approached 15 mm, appearing to approach

the practical depth detection limit of the system at the given source power. As the

signal-to-noise ratio depends on the attenuation of back-scattered light, the upper depth

limit of this technique will depend on the optical properties of the medium, with the

greatest depth range achieved when absorption is lowest and scattering is highest.

Depth estimates using the polynomial model produced estimates that remained

within 2 mm of the actual depth for the entirety of each trajectory (figure 6). As a source

depth of 15 mm is approached in Trial 4, the model produces a noisy estimate, likely due

to the poor signal-to-noise ratio at these depths. The deviation of the depth estimate

from the true source depth may arise due to discrepancies between the Monte Carlo and

experimental settings, the major difference being the presence of an opaque needle to

guide the light source in the phantom. There is also an additional source of error with

the polynomial model in calculating the scaling factor between the experimental and

Monte Carlo data, which may account for the increased error with the polynomial model.

Regardless, the ability of the measurement system and polynomial model to track the

source depth across four different media shows significant potential for a real-time depth

estimation system, particularly given the simplicity of the model.

Figure 4. Depth estimation errors from LOOCV using the polynomial depth

estimation model. Left: Depth errors plotted against the true source depth. Right: A

histogram showing the depth error distribution.
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Figure 5. Diffusion model depth estimation from experimental reflectance profiles

obtained from tissue-mimicking phantoms. The optical properties for trials a–d are

listed in Table 1. The estimated source depth is shown as the solid line, the true probe

depth is represented by the dashed line, and dotted lines border the ±2 mm error

region.

4. Discussion and Conclusion

We have outlined a device for source depth estimation in a scattering medium using a

high bandwidth, fibre-based probe to measure the reflectance profile and an empirical

model for depth estimation. The model was fitted to a set of reflectance data, generated

using Monte Carlo simulations, requires intensity data from four radial positions (3 mm,

5 mm, 7 mm, and 9 mm), and demonstrates superior accuracy to a diffusion model

depth estimation procedure. Cross validation of the polynomial model using the Monte

Carlo dataset produced an RMS error of 0.12 mm, with estimation errors typically less

than 0.5 mm. When applied to experimental data, the depth estimation tracked the

true source depth to within 2 mm, up to 15 mm into four phantoms with different

optical properties. In the application of jet injection depth monitoring or robotic needle

steering, this estimation accuracy could provide the means to control an intervention

into the subcutaneous fat layer, which typically resides from as shallow as 2 mm to

greater than 15 mm from the skin surface. Furthermore, the sensitive photodetectors

permit high-speed sampling of the light distribution, requiring only a 0.1 ms averaging
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Figure 6. Polynomial model depth estimation from experimental reflectance profiles

obtained from tissue-mimicking phantoms. The optical properties for trials a–d are

listed in Table 1. The solid line shows the estimate, the dashed line shows the true

source trajectory and dotted lines border the ±2 mm error region.

window. Thus, this method provides an estimation rate sufficient for jet injection depth

monitoring or to inform a needle steering controller.

The polynomial model offers several advantages over the diffusion model. The

diffusion model assumes that scattering outweighs absorption, while the Monte Carlo

method does not rely on this premise. This may partly explain the poor performance of

the diffusion model for Trial c (figure 5), where the absorption coefficient is highest and

the scattering coefficient is lowest. In addition, the evaluation of the polynomial model

is an inexpensive computation and could easily be implemented, for example, in an

FPGA for real-time depth estimation. In contrast, depth estimation using the diffusion

model requires a nonlinear fitting procedure, which typically requires 10 to 20 iterations

of the Levenberg-Marquardt algorithm. Furthermore, the polynomial model offers the

possibility to extend the complexity of the forward model. This is important as the

models here have so far assumed the medium of interest possesses homogeneous optical

properties, an unrealistic premise for biological tissue. Indeed, the optical properties of

the layers comprising skin tissue — epidermis, dermis, and subcutaneous fat — can vary

markedly across and between subjects [26]. Accurately characterising tissue properties
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then tends towards an ill-posed problem as the number of free parameters in an N -layer

medium becomes 3N − 1 when solving for µa, µ
′
s and layer thickness (assuming a semi-

infinite bottommost layer) [30]. However, the present scenario requires the estimation

of only a single parameter and there remains the possibility that the presence of layered

tissue does not heavily influence the ability to determine depth, as suggested by work

simplifying the multilayer problem [31, 32, 18, 33]. Extending the geometry of the Monte

Carlo forward model and performing simulations over the relevant parameter space will

reveal the accuracy of this technique in multi-layer tissue, without necessarily increasing

the complexity of the inverse model.
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