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Abstract

A compact Riemann surface is called pseudo-real if it admits anti-conformal
(orientation-reversing) automorphisms, but no anti-conformal automorphism of or-
der 2, or equivalently, if the surface is reflexible but not definable over the reals. In
this paper, we consider upper bounds on the order of a group G of automorphisms of
a pseudo-real surface S of given genus g > 1, in the case where G is cyclic, abelian,
or an arbitrary group of automorphisms of S. This is motivated by a number of long-
standing theorems about the orders of groups of automorphisms of general compact
Riemann surfaces, including theorems of Hurwitz (1893) and Wiman (1896).

We determine, for each integer g ≥ 2, the orders of the largest cyclic and the
largest abelian group of automorphisms of a pseudo-real surface of genus g such
that the group contains orientation-reversing elements, and consider the problem of
finding similar bounds when the groups contain no orientation-reversing elements.

In the case of arbitrary groups, we show that if M(g) is the order of the largest
group of automorphisms of a pseudo-real surface of genus g, then M(g) ≥ 2g for
every even g ≥ 2, while M(g) ≥ 4(g − 1) for every odd g ≥ 3, and we prove that
the latter bound is sharp for a very large and possibly infinite set of odd values of
g ≥ 3. Unfortunately we are not yet able to determine the level of sharpness of the
former bound (for even g), so we leave that as an open question. We also give the
precise values of M(g) for all g between 2 and 128, together with the signatures for
the actions of the corresponding groups of largest order.

2010 Mathematics Subject Classification: 30F10; 14H37, 20B25, 20H10

1 Introduction

A compact Riemann surface is called pseudo-real if it admits anti-conformal (orientation-
reversing) automorphisms, but no anti-conformal automorphism of order 2. Another term
used for such surfaces is asymmetric. Their importance stems from the fact that in the

∗Partially supported by Project PGC2018-096454-B-I00
†Partially supported by Project PGC2018-096454-B-I00
‡Partially supported by N.Z. Marsden Fund project UOA1626

1



moduli space of compact Riemann surfaces of given genus, pseudo-real surfaces represent
the points that have real moduli but are not definable over the reals.

Here we note that there are no pseudo-real surfaces of genus 0 or 1, since in those cases
every reflexible surface admits an anti-conformal automorphism of order 2. On the other
hand, it was shown in [9] that there exists at least one pseudo-real surface of genus g for
every integer g > 1. Indeed the pseudo-real surfaces of genus 2 to 4 were classified in
[9, 10], and this was extended for genus 5 to 10 in [2], except that five of the entries in the
tables in [2] are invalid and should be deleted, as will be explained later.

In this paper, we consider upper bounds on the order of a group of automorphisms of
a pseudo-real surface of given genus g > 1. This is motivated by a number of theorems
about the orders of groups of automorphisms of other kinds of surfaces. The most famous
of these are the theorems of Hurwitz (1983) and Wiman (1896) that give an upper bound
of 84(g−1) on the number of orientation-preserving automorphisms of a compact Riemann
surface of genus g > 1, and an upper bound of 4g+2 on the order of any such automorphism,
respectively. Other such theorems deal with special cases where the group is abelian, or the
surface is non-orientable, or the automorphism reverses orientation; see [6, 14, 15, 16, 17].

It was shown in [9] that the total number of automorphisms of a pseudo-real surface
of given genus g > 1 is bounded above by 12(g − 1). This upper bound is attained for
infinitely many g, but certainly not for all g > 1, and so it makes sense to look for more
refined bounds on the group order, in general and special cases. One particular question of
interest is to find a sharp lower bound on the order of the largest group of automorphisms
of a pseudo-real surface of given genus, akin to the Accola-Maclachlan bound for general
compact Riemann surfaces (see [1, 18]). We can find a lower bound for all even g and a
lower bound for all odd g, and prove that the latter is sharp for a very large and possibly
infinite set of odd values of g, but the corresponding task is much more challenging for
even values of g. Nevertheless we can give sharp bounds for every genus g > 1 when we
restrict to the cases where the group is cyclic or abelian. To explain this in more detail,
we define certain parameters.

For every integer g > 1, let M(g) be the order of the largest group of automorphisms
of a pseudo-real surface of genus g. Note that this group contains elements that reverse
the orientation of the surface, but the same is not necessarily true for smaller groups
of automorphisms. Accordingly, we also denote by Mab(g) and Mcyc(g) respectively the
orders of the largest abelian and largest cyclic group of automorphisms of a pseudo-real
surface of genus g, such that the group contains orientation-reversing elements, and by
M+

ab(g) and M+
cyc(g) respectively the orders of the largest abelian and largest cyclic group

of orientation-preserving automorphisms of a pseudo-real surface of genus g.
In Sections 3 and 4 we show that Mab(g) = Mcyc(g) = 2g for every even g ≥ 2. For

all but three values of g for which this bound is attained, the surface is hyperelliptic, by a
theorem from [7]. We also show that Mcyc(g) = 2g− 2 for every odd g ≥ 3, and that in all
cases where this bound is attained, the surface is elliptic-hyperelliptic. On the other hand,
for odd g > 1 we find that Mab(g) = 2g+6 when g ≡ 1 mod 4, while Mab(g) = 2g+2 when
g ≡ 3 mod 4. In all these cases we give specific details about the surfaces and groups.

Similarly, but somewhat differently, in Sections 3 and 4 we show that M+
cyc(g) = g − 1
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for infinitely many g ≡ 3 mod 4, while M+
cyc(g) ≥ g for all even g ≥ 2 and M+

cyc(g) ≥ g + 1
for all g ≡ 1 mod 4, and hence that g − 1 is a sharp lower bound for M+

cyc(g) for infinitely
many g ≥ 3. On the other hand, M+

ab(g) ≥ g + 1 for all odd g ≥ 3, while M+
ab(g) = g for a

very large and possibly infinite set of even values of g ≥ 2.
In Section 5 we turn to the general case (involving arbitrary groups of automorphisms),

and show that M(g) ≥ 2g for every even g ≥ 2, while M(g) ≥ 4(g−1) for every odd g ≥ 3,
and prove that the latter bound is sharp for a very large and possibly infinite set of odd
values of g ≥ 3. Unfortunately we are not yet able to either improve the former bound (for
even g) or prove it is sharp, so we leave that as an open question.

Finally, in an Appendix we give a table of the values of M(g) for all g between 2 and
128, including the signatures for the actions of the corresponding groups of largest order.
This considerably extends the determination of M(g) for 2 ≤ g ≤ 10 resulting from the
work by Artebani, Quispe and Reyes in [2].

Before all of that, we give some further background in Section 2, on Riemann surfaces,
NEC groups and their signatures, and some more information about group actions on
pseudo-real surfaces. In particular, in subsection 2.2 we mention a related piece of work
by the third author and his student Stephen Lo, on finding the smallest genus of a pseudo-
real surface admitting a given group of automorphisms. The latter piece of work has some
overlap with this one, but we repeat some of the key common features for completeness.

2 Further background

In this section we begin with some background about Riemann surfaces and their groups,
a lot of which can be found in [11], and then we provide some further information about
group actions on pseudo-real surfaces.

2.1 Riemann surfaces, NEC groups and their signatures

First, let S be any compact Riemann surface of genus g > 1. Then S can be represented as
the orbit space U/Φ of the upper half-plane U under the action of some surface Fuchsian
group Φ (that is, a torsion-free discrete cocompact subgroup of PSL(2,R)). A finite group
G acts as a group of automorphisms of the surface S if and only if G is isomorphic to
the quotient Γ/Φ for some non-Euclidean crystallographic group Γ (a discrete cocompact
subgroup of PGL(2,R)) containing Φ as a normal subgroup of index |G|. The canonical
epimorphism θ : Γ→ G (∼= Γ/Φ) is said to be smooth (since Φ is torsion-free). In particular,
the full automorphism group Aut(S) of S is isomorphic to the quotient Γ/Φ where Γ is the
normaliser in Aut(U) = PGL(2,R) of the surface group Φ, and its orientation-preserving
subgroup Aut+(S) (of conformal automorphisms) is isomorphic to Γ+/Φ where Γ+ is the
normaliser of Φ in Aut+(U) = PSL(2,R).

The structure of the NEC group Γ is determined by its signature

s(Γ) = (γ;±; [m1, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk)}),
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where (a) γ is the topological genus of the orbit space U/Γ, (b) k is the number of its
boundary components, (c) the sign is + or − according to whether or not U/Γ is orientable,
(d) the integers mi ≥ 2 are the orders of the r branch points in the interior of U/Γ, and
(e) the nj` are the orders of the sj branch points on the jth boundary component of U/Γ,
for 1 ≤ j ≤ k.

Associated with every signature s(Γ) is a canonical presentation for the group Γ, and
a formula for the hyperbolic area of a fundamental domain for Γ. If the sign is + then Γ is
generated by elliptic elements x1, . . . , xr, reflections c10, . . . , c1s1 , . . . , ck0, . . . , cksk , bound-
ary transformations e1, . . . , ek, and hyperbolic elements a1, b1, . . . , aγ, bγ, which satisfy the
defining relations

xmi
i = 1 (for 1 ≤ i ≤ r),

c2ij−1 = c2ij = (cij−1cij)
nij = 1, cisi = e−1i ci0ei (for 1 ≤ i ≤ k, 0 ≤ j ≤ si),

x1 . . . xr e1 . . . ek a1b1a
−1
1 b−11 . . . aγbγa

−1
γ b−1γ = 1.

On the other hand, if the sign is −, then γ > 0 and the generators ai and bi are replaced by
glide reflections d1, . . . , dγ, and the final relation replaced by x1 . . . xr e1 . . . ek d

2
1 . . . d

2
γ = 1.

In the first case, the orientation-preserving subgroup Γ+ is the subgroup generated by
the elements xi, ei, ai and bi and their conjugates under the elements cij, plus the pairwise
products of the cij. This is the subgroup consisting of all elements expressible as words
in the generators of Γ such that the total number of occurrences of reflections cij is even,
and hence has index 2 in Γ if k > 0, or index 1 otherwise. In the second case, where the
sign is −, Γ+ is the index 2 subgroup consisting of all elements expressible as words in
the generators of Γ such that the total number of occurrences of reflections cij and glide
reflections di is even.

The hyperbolic area of a fundamental region for Γ is given by

µ(Γ) = 2π
(
εγ − 2 + k +

∑r
i=1

(
1− 1

mi

)
+ 1

2

∑k
i=1

∑si
j=1

(
1− 1

nij

))
,

where ε = 2 if the sign is +, and ε = 1 if the sign is −.
Furthermore, if ∆ is any subgroup of finite index in Γ, then ∆ is an NEC group, and

the hyperbolic areas of fundamental regions for ∆ and Γ satisfy the Riemann-Hurwitz
formula µ(∆) = |Γ : ∆|µ(Γ). In particular, if Φ is the surface Fuchsian group for which
S ∼= U/Φ, then Φ has signature s(Φ) = (g; +; [−]; {−}) and so µ(Φ) = 2π(2g − 2) while
|Γ : Φ| = |Γ/Φ| = |G|, and it follows that

2g−2 = |G|

(
εγ − 2 + k +

r∑
i=1

(
1− 1

mi

)
+

1

2

k∑
i=1

si∑
j=1

(
1− 1

nij

))
.

Letting R be twice the reciprocal of the bracketed expression on the right-hand side of this
equation, we have |G| = R(g − 1), where 0 < R ≤ 168, with the maximum value of R
attained when s(Γ) = (0; +; [−]; {(2, 3, 7)}).

Conversely, if G is any finite group that can be generated by elements that satisfy one
of the two canonical presentations given above for the NEC group Γ, with the elements xi
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and cij and the products cij−1cij having the orders mi, 2 and nij as appropriate, then G is
isomorphic to the quotient Γ/Φ, where Φ is a surface Fuchsian group, and G acts faithfully
on the compact Riemann surface S ∼= U/Φ of genus g given by |G| = R(g−1). Also in this
case we say that G acts with the given signature on S. Any such action can be described
by means of a generating vector, which consists of the images under the corresponding
smooth epimorphism θ : Γ→ G of the canonical generators for Γ.

Later in this paper we consider upper bounds on the order of a single automorphism of
a surface of given genus. For a compact Riemann surface of genus g > 1, this upper bound
is 4g+ 2 (first proved by Wiman [20]), while for a compact non-orientable Klein surface of
algebraic genus p, it is 2p+ 2 when p is even, and 2p when p is odd (proved independently
by Wendy Hall [16] and the first author [6]).

2.2 Group actions on pseudo-real surfaces

Now suppose the surface S is pseudo-real. Then S admits orientation-reversing automor-
phisms but no reflections, and so k = 0, and the sign is −, and the signature of Γ is
(γ;−; [m1, . . . ,mr]; {−}) for some γ > 0 and integers mi ≥ 2 for 1 ≤ i ≤ r.

Now let G be any group that acts on S with some automorphisms that reverse orienta-
tion. Following [2] and [3] we call such an action essential. Then the group G is generated
by elements d1, . . . , dγ and x1, . . . , xr satisfying the relations

xm1
1 = xm2

2 = · · · = xmr
r = x1 . . . xr d

2
1 . . . d

2
γ = 1,

or equivalently, by elements d1, . . . , dγ and x1, . . . , xr−1 such that

xm1
1 = xm2

2 = · · · = x
mr−1

r−1 = ( d 2
1 . . . d

2
γ x1 . . . xr−1)

mr = 1,

and its orientation-preserving subgroup G+ is generated by the elements xi and their
conjugates under the elements dj, plus products of any even number of the dj.

Moreover, |G| = R(g−1) where 2/R = γ−2+
∑r

i=1

(
1− 1

mi

)
, and it follows easily that

|G| ≤ 12(g − 1), with the maximum value of 12 for R attained if and only if the signature
is (1;−; [2, 3]; {−}), as proved in [9, Theorem 5.1]. Also if |G| < 12(g − 1), then the next
highest possibility is 8(g − 1), which occurs for signature (1;−; [2, 4]; {−}).

Incidentally, because S admits no orientation-reversing automorphisms of order 2, it
also admits no orientation-reversing automorphisms of order 2n with n odd, and so the
order of every element of G\G+ is divisible by 4. In particular, every involution in Aut(S)
preserves orientation, and |Aut(S)| is divisible by 4.

Furthermore, it was proved in [3, Theorem 3.3] that a finite group G is the full auto-
morphism group of some pseudo-real surface S if and only if G is a non-split extension of
a subgroup H of even order by the cyclic group of order 2.

On the other hand, it can happen that a group G ∼= Γ/Φ acts faithfully and essentially
on a compact Riemann surface S ∼= U/Φ, but is not the full automorphism group of S.
When that happens, there exists an NEC group Λ containing Γ and normalising Φ, so Λ/Φ
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is a group of automorphisms of S larger than G. If Λ and Γ have the same Teichmüller
dimension then the signatures of Γ and Λ must appear in the lists of finite index inclusions
of NEC groups, given by the first author [5] for the case where Γ is normal in Λ, and by
Estévez and Izquierdo [13] for the case where Γ is not normal in Λ. These inclusions are
analysed in further detail in [8].

If a pair (σ, σ′) of signatures occurs in any of these lists, then for any NEC group Γ with
signature s(Γ) = σ there always exists another NEC group Λ with signature s(Λ) = σ′

containing Γ with finite index. In this case, if the surface subgroup Φ is normal in Λ then
the action of G = Γ/Φ on S = U/Φ is extendable to the action of the larger group Λ/Φ,
but if Φ is not normal in Λ then no such extension (via Λ) is possible.

On the other hand, if a signature σ does not occur as the first entry of a pair in any
of the above lists, then there exists a maximal NEC group Γ with signature s(Γ) = σ, so
Γ is not contained in any other NEC group with finite index. In this case, the action of
G = Γ/Φ cannot be extended, and G = Aut(S).

If the signature of Γ is of the form (γ;−; [m1, . . . ,mr]; {−}), then an inspection of those
lists shows that we have only the following possibilities to consider for the signatures of Γ
and Λ, all coming from [5], with Γ normal in Λ:

(a) s(Γ) = (3;−; [−]; {−}) and s(Λ) = (0; +; [2, 2, 2]; {(−)}),
(b) s(Γ) = (2;−; [t], {−}) and s(Λ) = (0; +; [2, 2]; {(t)}) where t ≥ 2,

(c) s(Γ) = (1;−; [t, t]; {−}) and s(Λ) = (0; +; [2, t]; {(−)}) where t ≥ 3,

(d) s(Γ) = (1;−; [t, u]; {−}) and s(Λ) = (0; +; [2]; {(t, u)}) where max(t, u) ≥ 3,

(e) s(Γ) = (1;−; [t, t]; {−}) and s(Λ) = (0; +; [−]; {(2, 2, 2, t)}) where t ≥ 3.

In cases (a) to (d) of this list, the index of Γ in Λ is 2, while in case (e) it is 4, but in
that case the extension of Γ to Λ is a combination of an index 2 intermediate extension of
type (c) or (d) with a further index 2 extension from [5], but each of those intermediate
extensions introduces reflections (of order 2), and so we will ignore this possibility. Hence
we consider extensions of types (a), (b), (c) and (d) only.

For type (a), the NEC group Γ is generated by elements d1, d2 and d3 that satisfy the re-
lation d 2

1 d
2
2 d

2
3 = 1, and extending from Γ to the NEC group Λ involves adjoining a new gen-

erator c0 that satisfies the relations (d1c0)
2 = (c0d2)

2 = (d2d3c0d2)
2 = [d1d

2
2 d3c0d2, c0] = 1,

with the elements x1 = d1c0, x2 = c0d2, x3 = d2d3c0d2 and c0 being standard genera-
tors for Λ (see [8]). Conjugation by c0 ∈ Λ \ Γ induces an automorphism of Γ that takes
(d1, d2, d3) to (d−11 , d−12 , d 2

2 d
−1
3 d−22 ). Hence it is possible to extend the action of the group

G to some larger group of automorphisms acting with signature (0; +; [2, 2, 2]; {(−)}) on
the same surface if and only if the group G has an automorphism that inverts the images
of each of d1 and d2 and takes d3 to d 2

2 d
−1
3 d−22 (= d−21 d−13 d 2

1 ).

For type (b), the group Γ is generated by elements d1, d2 and x1 that satisfy the relations
d 2
1 d

2
2 x1 = x t1 = 1, and extending from Γ to Λ involves adjoining a new generator c0 that

satisfies the relations c 20 = (d1c0)
2 = (c0d2)

2 = [d1d2, c0] = 1, with x′1 = d1c0, x
′
2 = c0d2

and c0 being standard generators for Λ (see [8]). Conjugation by c0 ∈ Λ \ Γ induces
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an automorphism of Γ that takes (d1, d2) to (d−11 , d−12 ), and also takes x1 = (d 2
1 d

2
2 )−1 to

(d−21 d−22 )−1 = d 2
2 d

2
1 = d−21 x−11 d 2

1 . Hence it is possible to extend the action of the group
G to some larger group of automorphisms acting with signature (0; +; [2, 2]; {(t)}) on the
same surface if and only if the group G has an automorphism that inverts the images of
each of d1 and d2.

Note that in particular, this refutes Lemma 4.3 of [3], the proof of which was wrong.

For type (c), the group Γ is generated by elements d1, x1 and x2 that satisfy the relations
d 2
1 x1x2 = x t1 = x t2 = 1, and extending from Γ to Λ involves adjoining a new generator
c0 that satisfies c 20 = (d1c0)

2 = [d1c0x1, c0] = 1 with x′1 = d1c0, x′2 = x1 and c0 being
standard generators for Λ. Then since (d1c0)

2 = 1 and [x′1x
′
2, c0] = 1, conjugation by the

involution c0 induces an automorphism of Γ that takes (d1, x1, x2) to (d−11 , x−12 , x−11 ). Hence
the action of the group G on the surface can be extended to one of a larger group with
signature (0; +; [2, t]; {(−)}) if and only if G has an automorphism that conjugates the
image of d1 to its inverse, and interchanges the image of each of x1 and x2 with the inverse
of the image of the other.

Similarly, for type (d), the group Γ is generated by elements d1, x1 and x2 that satisfy
the relations d 2

1 x1x2 = x t1 = xu2 = 1, and extending from Γ to Λ involves adjoining a new
generator c0 that satisfies c 20 = (d1c0)

2 = (c0x1)
2 = 1, with x′1 = d1c0, c0 and c1 = c0x1

being standard generators for Λ. Then since (d1c0)
2 = (c0x1)

2 = 1, conjugation by the
involution c0 induces an automorphism of Γ that takes (d1, x1) to (d−11 , x−11 ), and also
takes x2 = x−11 d−21 to x1d

2
1 = x1x

−1
2 x−11 . Hence the action of the group G on the surface

extends to one of a larger group with signature (0; +; [2]; {(t, u)}) if and only if G has an
automorphism that inverts the images of each of d1 and x1.

We collect the above observations into the following proposition, for future reference.

Proposition 2.1 If a finite group G acts on a Riemann surface with non-maximal sig-
nature (a), (b), (c) or (d) and the corresponding presentation of G admits the respective
automorphism as described above, then the surface is not pseudo-real.

This has a number of consequences, including the following, which are also given in [12].

Proposition 2.2 Let Γ be a maximal NEC group with signature (1;−; [i, j, k]; {−}) for
some i, j, k. If the finite group G = Γ/Φ has a faithful action on the Riemann surface
S = U/Φ, and G has no elements of order 2 lying outside G+, then S is pseudo-real and
G = Aut(S).

Proof : First observe that there exist maximal NEC groups Γ with signature σ =
(1;−; [i, j, k]; {−}), because there is no pair (σ, σ′) in the list of finite index inclusions
of NEC groups in [5]. It follows that the action of G on S is not extendable to the action
of some larger group, and so G = Aut(S). Moreover, it follows that S has no orientation-
reversing automorphisms of order 2, and therefore S is pseudo-real.
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Proposition 2.3 No finite abelian group G has a faithful essential action on a pseudo-real
surface with signature (1;−; [ j, k]; {−}) for 2 ≤ j ≤ k, or (2;−; [k]; {−}) for k ≥ 2, or
(3;−; [−]; {−}).

Proof : In the first case, suppose to the contrary that the abelian group G has a faithful
essential action on a pseudo-real surface S with signature (1;−; [ j, k]; {−}). Then G can
be generated by elements d and x such that x has order j and d 2x has order k. But since G
is abelian, G has an automorphism that inverts each of d and x. It follows that the action
of G on S can be extended to one of a larger group on S with signature (0; +; [2]; {(j, k)}).
Hence in particular, the surface S admits reflections, contradiction.

The same argument holds for the second signature (2;−; [k]; {−}), for in this case, G
must be generated by elements d and e such that d 2e2 has order k, and then since the
abelian group G has an automorphism that inverts each of d and e, the action is extend-
able to one of a larger group with signature (0; +; [2, 2]; {(k)}) on S, and again S admits
reflections, contradiction. The third case can be eliminated similarly.

Corollary 2.4 If the finite abelian group G has a faithful essential action on a pseudo-real
surface of genus g where |G| > 2(g − 1), then G acts with signature (1;−; [2, j, k]; {−})
where either j = 2 ≤ k or {j, k} = {3, 3}, {3, 4} or {3, 5}.

Proof : It is easy to verify that if |G| > 2(g − 1) (so that 2/R < 1), then the signature
must be either (1;−; [ j, k]; {−}) where 2 ≤ j ≤ k, or (2;−; [k]; {−}) for some k ≥ 2, or
(1;−; [2, j, k]; {−}) where 2 ≤ j ≤ k. Proposition 2.3 eliminates the first two of these cases,
while in the third case 1 > 2/R = 3/2− 1/j − 1/k, so 1/j + 1/k > 1/2 and so j = 2 ≤ k
or {j, k} = {3, 3}, {3, 4} or {3, 5}.

Here we note that Proposition 2.3 above shows that the single entries in the tables at
the end of [2] with (g,Aut±(S)) = (5, C12), (9, C20) and (9, C24) and also the two entries
with (g,Aut±(S)) = (9, C12 × C2) are all invalid, and should be deleted.

The origin of this problem with the tables in [2] is the mistaken Lemma 4.3 of [3]. Also
the latter was applied in an flawed attempt in [3] to find the smallest genus of a pseudo-real
surface with a given cyclic group (of order divisible by 4) as its full automorphism group,
and as a result, Theorem 6.1 of [3] is invalid as well. These mistakes were corrected in [12],
where the notion of the pseudo-real genus of a group was investigated, as follows.

For any finite group G, let ψ(G) be the smallest genus of those pseudo-real Riemann
surfaces on which G acts faithfully as a group of automorphisms, possibly (but not nec-
essarily) preserving orientation, and let ψ∗(G) be the smallest genus of those pseudo-real
Riemann surfaces on which G acts faithfully and essentially as a group of automorphisms,
when this exists. (Recall that an essential action is one that includes orientation-reversing
elements.) The main theorem of [12] shows that for every integer g ≥ 2, there exists a finite
group G for which ψ(G) = ψ∗(G) = g, and hence that the range of each of the functions
ψ and ψ∗ is the set of all integers g ≥ 2.

We will contribute to the theory of these two parameters in what follows.
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3 The cyclic case

We begin this section with the following result by Etayo [14], which gives necessary and
sufficient conditions for the existence of an action of a finite cyclic group with signature
(γ;−; [m1, . . . ,mr]; {−}) on a Riemann surface.

Proposition 3.1 [14, Theorem 4] A cyclic group of order 4n acts with signature
(γ;−; [m1, . . . ,mr]; {−}) on a compact Riemann surface if and only if

(a) mi divides 2n for 1 ≤ i ≤ r ;

(b) if γ = 1 then lcm(m1, . . . ,mr) = 2n and r ≥ 2;

(c)
r∑
i=1

2n

mi

≡ γ mod 2.

Using this, we can prove the following:

Theorem 3.2 For every even integer g ≥ 2, the largest order of an orientation-reversing
automorphism of a pseudo-real surface of genus g is 2g.

Proof : By Proposition 3.1 we know that the cyclic group C2g of order 2g acts as Γ/Φ with
signature (1;−; [2, 2, g]; {−}) on a Riemann surface S = U/Φ, with genus g (as given by the
Riemann-Hurwitz formula). Moreover, we may choose the NEC group Γ to be maximal,
and note that the unique involution in C2g preserves orientation, because g is even. Hence
by Proposition 2.2 we find that S is pseudo-real, with C2g = Aut(S).

Next, we show that 2g is the largest possible order. Suppose there exists an orientation-
reversing automorphism of a pseudo-real surface of the given genus g, having order 4n ≥ 2g.
Then by Corollary 2.4, we find that the cyclic group G generated by that automorphism
acts with signature (1;−; [m1,m2,m3]; {−}), where {m1,m2,m3} = {2, 2,m} for some
m ≥ 2, or {2, 3, 3}, {2, 3, 4} or {2, 3, 5}. In the first case, condition (c) of Proposition 3.1
tells us that n + n + 2n/m ≡ 1 mod 2, and hence that m is even, and then condition (b)
of Proposition 3.1 implies that 2n = lcm(2, 2,m) = m, and then the Riemann-Hurwitz
formula gives g = m = 2n, and |G| = 4n = 2g. Similarly, in the last three cases {2, 3, 3},
{2, 3, 4} and {2, 3, 5} we have 2n = lcm(m1,m2,m3) = 6, 12 and 30, and g = 6, 12 and 30,
respectively, and again |G| = 4n = 2g.

Remark 3.3 Compact (but not necessarily pseudo-real) Riemann surfaces of even genus
g that admit an orientation-reversing automorphism u of order 2g were studied previously
in detail in [7]. There it was shown that if g 6= 6, 12 or 30, then every such group action
(with signature (1;−; [2, 2, g]; {−}) as shown above) is unique, given by the generating
vector (θ(d1), θ(x1), θ(x2), θ(x3)) = (u, ug, ug, u−2), and the surfaces are hyperelliptic.

For odd values of g, the largest orders of cyclic groups acting faithfully on a com-
pact Riemann surface cannot be attained by group actions with signatures of the form
(1;−; [m1, . . . ,mr]; {−}). This is an easy consequence of Proposition 3.1, as follows.
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Proposition 3.4 A cyclic group of order 4n cannot act faithfully with signature
(1;−; [m1, . . . ,mr]; {−}) on a compact Riemann surface of odd genus.

Proof : Let G be a cyclic group of order 4n acting with the given signature. Then by
Proposition 3.1 we have |G| = 4n = 2 lcm(m1, . . . ,mr), and

∑r
i=1

2n
mi

is odd. But also the

Riemann-Hurwitz formula gives g− 1 = 2n (r− 1−
∑r

i=1
1
mi

) = 2n(r− 1)−
∑r

i=1
2n
mi
, and

then since the right-hand side is odd, it follows that the genus g must be even.

Theorem 3.5 For every odd integer g ≥ 3, the largest order of an orientation-reversing
automorphism of a pseudo-real surface of genus g is 2g − 2.

Proof : By Proposition 3.1 we know that the cyclic group C2g−2 of order 2g−2 acts as Γ/Φ
with signature (2;−; [2, 2]; {−}) on a Riemann surface S = U/Φ, with genus g (as given by
the Riemann-Hurwitz formula). Again we may choose the NEC group Γ to be maximal,
and note that the unique involution in C2g−2 preserves orientation, because (this time) g
is odd. Hence by Proposition 2.2 we find that S is pseudo-real, with C2g−2 = Aut(S).

Also 2g − 2 is the largest possible order, because if there exists a cyclic group G with
order 4n ≥ 2g − 2 acting on a pseudo-real surface of the given genus g, then by Corol-
lary 2.4 we find that G acts with signature (1;−; [m1,m2,m3]; {−}) for some {m1,m2,m3},
but that contradicts Proposition 3.4.

Next, we show that for odd genus g ≥ 3, the largest cyclic group actions are not unique,
and that the corresponding surfaces are elliptic-hyperelliptic (in contrast to the situation
for even genus, described in Remark 3.3).

Proposition 3.6 A pseudo-real surface of odd genus g admitting an orientation-reversing
automorphism v of the largest possible order 2g − 2 is elliptic-hyperelliptic. In this case
the cyclic group 〈v〉 acts with signature (2;−; [2, 2]; {−}), and the action is given by the
generating vector (θ(d1), θ(d2), θ(x1), θ(x2)) = (v, v−1, vg−1, vg−1) or (v, vg−2, vg−1, vg−1).

Proof : Suppose that C2g−2 acts with signature (γ;−; [m1, . . . ,mr]; {−}) on a pseudo-real
surface of odd genus g. Then by the Riemann-Hurwitz formula, γ− 2 +

∑r
i=1(1−

1
mi

) = 1,
which forces γ ≤ 3. If γ = 3 then r = 0, but then the surface is not pseudo-real by
Proposition 2.3, so γ 6= 3. Similarly, γ 6= 1 by Proposition 3.4. Hence γ = 2, and it follows
easily that r = 2 with m1 = m2 = 2, and the signature is (2;−; [2, 2]; {−}).

Next, let {d1, d2, x1, x2} be a canonical set of generators for a maximal NEC group
Γ with signature (2;−; [2, 2]; {−}), and let θ : Γ → C2g−2 be a smooth epimorphism
whose kernel uniformises a pseudo-real surface. Since C2g−2 contains a unique element of
order 2, we find that θ(x1) = θ(x2), and then from the relation d 2

1 d
2
2x1x2 = 1 we obtain

(θ(d1)θ(d2))
2 = 1. Hence either θ(d1)θ(d2) = 1, or θ(d1)θ(d2) = θ(x1). But also each of

θ(d1) and θ(d2) reverses orientation and hence has order divisible by 4, so each generates a
cyclic subgroup containing the unique involution θ(x1), and it follows that in both cases,
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the element v = θ(d1) generates the whole cyclic group. Accordingly, we find there are just
two possibilities θ1 and θ2 for the epimorphism θ, given by

θ1(d1) = v, θ1(d2) = v−1, θ1(x1) = θ1(x2) = vg−1,

θ2(d1) = v, θ2(d2) = vg−2, θ2(x1) = θ2(x2) = vg−1.

These give the two generating vectors (v, v−1, vg−1, vg−1) and (v, vg−2, vg−1, vg−1).
Finally, consider the pre-image Ψi = θ−1i (〈vg−1〉) in Γ of the subgroup generated

by the (orientation-preserving) involution vg−1, for i ∈ {1, 2}. By Theorems 2.2.4 and
2.1.3 in [11] and the Riemann-Hurwitz formula, it is easy to see that Ψi has signature
(1; +; [2, 2g−2. . . , 2]; {−}) for both values of i. This implies that the surface Si = U/ ker θi can
be represented as the double covering Si → Si/〈vg−1〉 of an orientable surface of genus 1,
ramified over 2g − 2 points. In other words, Si is an elliptic-hyperelliptic surface, for both
values of i.

Theorems 3.2 and 3.5 show respectively that Mcyc(g) = 2g for every even g ≥ 2, and
Mcyc(g) = 2g − 2 for every odd g ≥ 3. They also give a solution to the minimum genus
problem for orientation-reversing cyclic group actions on pseudo-real surfaces, and correct
the mistake made about this in [3, Theorem 6.1].

Corollary 3.7 The minimum genus of a pseudo-real surface admitting an orientation-
reversing automorphism of order 4n is 2n.

Proof : By Theorem 3.2, we know there exists a pseudo-real surface of genus 2n admitting
an orientation-reversing automorphism of order 4n. Now let S be any pseudo-real surface
admitting such an automorphism, and let g be the genus of S. If g is even then 4n ≤ 2g
by Theorem 3.2, while if g is odd then 4n ≤ 2g− 2 by Theorem 3.5. In both cases we have
2g ≥ 4n, and so g ≥ 2n, as required.

In terms of the ‘pseudo-real genus’ notation introduced in [12] and described briefly at
the end of Section 2, the above corollary is equivalent to stating ψ∗(C4n) = 2n. This fact
was also proved in [12, Proposition 3.1]. Moreover, it was shown in [12, Proposition 3.3]
that the assumption that the automorphism reverses orientation can be dropped, to give
ψ(C4n) = 2n as well.

Next, we investigate in more detail the case where a cyclic group of automorphisms of
a pseudo-real surface preserves orientation. Of course here if G is the full automorphism
group of the surface, then the given cyclic group H is a subgroup of G+ and hence a proper
subgroup of G, and G+ contains all the involutions of G.

Proposition 3.8 Let g be any integer greater than 1. Then the following hold :

(a) If g ≡ 0 mod 2, then H = Cg is the orientation-preserving subgroup of G = C2g in
its action on a pseudo-real surface of genus g with signature (1;−; [2, 2, g]; {−}).
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(b) If g ≡ 1 mod 4, then H = Cg+1
∼= C(g+1)/2×C2 is the orientation-preserving subgroup

of the direct product G = Cg+1×C2 in its action on a pseudo-real surface of genus g
with signature (1;−; [2, 2, (g + 1)/2]; {−}).

(c) If g ≡ 3 mod 4 and g ≥ 7, then H = C(g−1)/2 × C2
∼= Cg−1 is the orientation-

preserving subgroup of the semi-direct product G = C(g−1)/2 o−1 C4 in its action on
a pseudo-real surface of genus g with signature (2;−; [2, 2]; {−}).

Proof : First, case (a) follows from the action of G = C2g on a pseudo-real surface of genus
g as given by Theorem 3.2, with H = G+ ∼= Cg.

For case (b), let v and u be generators for G = Cg+1 × C2 of orders g + 1 and 2,
respectively, and let Γ be a maximal NEC group with signature (1;−; [2, 2, (g+1)/2]; {−}),
and canonical generators d1, x1, x2, x3 satisfying d 2

1x1x2x3 = x 2
1 = x 2

2 = x
(g+1)/2
3 = 1. Then

there exists an epimorphism θ : Γ → G taking (d1, x1, x2, x3) to (v−1, u, u, v2), and by
Proposition 2.2, this gives a pseudo-real surface S with G = Aut(S), and with G+ being
the index 2 subgroup generated by the θ-images of d 2

1 , x1, x2 and x3, namely H = 〈v2, u〉 ∼=
C(g+1)/2 × C2

∼= Cg+1.
Finally, for case (c), let w and v be generators for G = C(g−1)/2o−1C4 of orders (g−1)/2

and 4 respectively such that wv = w−1, and let Γ be a maximal NEC group with signature
(2;−; [2, 2]; {−}), and generators d1, d2, x1, x2 satisfying d 2

1 d
2
2x1x2 = x 2

1 = x 2
2 = 1. Then

there exists an epimorphism θ : Γ→ G taking (d1, d2, x1, x2) to (v, wv, v2, v2), and since w
has odd order (g−1)/2, Proposition 2.2 gives us a pseudo-real surface S with G = Aut(S),
and with G+ being the index 2 subgroup generated by the θ-images of d 2

1 , d 2
2 , d1d2, x1 and

x2, namely H = 〈w, v2〉 ∼= C(g−1)/2 × C2
∼= Cg−1.

This gives M+
cyc(g) ≥ g for g ≡ 0 mod 2 and M+

cyc(g) ≥ g + 1 for g ≡ 1 mod 4, while
M+

cyc(g) ≥ g−1 for g ≡ 3 mod 4 with g ≥ 7. (It is easy to see that also M+
cyc(3) = 2 = 3−1.)

In particular, M+
cyc(g) ≥ g − 1 for all g ≥ 2. We now show that this bound is sharp for

infinitely many g.

Theorem 3.9 For every integer g > 59 of the form g = 2p + 1 where p is prime, the
maximum order of a cyclic group of orientation-preserving automorphisms of a pseudo-
real surface of genus g is g − 1.

Proof : First, g = 2p + 1 ≡ 3 mod 4, and so by Proposition 3.8 we know that Cg−1 is
the orientation-preserving subgroup of the automorphism group of a pseudo-real surface of
genus g.

Now suppose that H is a larger cyclic group of orientation-preserving automorphisms
of some pseudo-real surface S of genus g, and let G = Aut(S). Then |G| is divisible by 4,
and |H| > g − 1, so |G| > 2(g − 1), and it follows that G acts with one of the following
signatures:

(1) Signature (2;−; [m]; {−}) for some m ≥ 2;
(2) Signature (1;−; [j, k]; {−}) for some (j, k) with k ≥ j ≥ 2;
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(3) Signature (1;−; [2, j, k]; {−}) for some (j, k) with k ≥ j ≥ 2.

We will consider these three cases in turn, noting that p > 29.

Case (1): Signature (2;−; [m]; {−})
Here the Riemann-Hurwitz formula gives |G| = 2m(g − 1)/(m − 1) = 4mp/(m − 1),

and |G+| = 2mp/(m− 1). Then since G+ must have an element of order m, it follows that
m − 1 divides 2p. In particular, m − 1 lies between 1 and 2p, so |G| = 4mp/(m − 1) lies
between 2(2p+ 1) = 2g and 8p = 4(g− 1), and therefore |G+| lies between g and 2(g− 1).
But also |H| > g and |H| divides |G|/2, and it follows that |G| = 2|H|, and H = G+.

In fact m = 2, 3, p+ 1 or 2p+ 1, and accordingly, |G| = 8p, 6p, 4p+ 4 or 4p+ 2, but the
second and fourth of these are impossible, since |G| is divisible by 4. Hence either m = 2
or m = p+ 1, and |G| = 8p = 4(g − 1) or |G| = 4p+ 4 = 2(g + 1), respectively.

Next, the group G is generated by the images d, e and x of the generators d1, d2 and x1
of any NEC group with signature (2;−; [m]; {−}) such that 1 = d 2e2x = xm. The index
2 orientation-preserving subgroup H = G+ of G is generated by (a, b, c) = (d 2, e2, de−1),
with x = e−2d−2 = b−1a−1, and xd = d−1e−2d−1 = d−2de−1e−2ed−1 = a−1cb−1c−1 = x, and
xe = e−3d−2e = e−4ed−1d−2de−1e2 = b−2c−1a−1cb = x. Conjugation of the generators a, b
and c of G+ by d has the following effect, since H is abelian: ad = d 2 = a; bd = d−1e2d =
d−2de−1e2ed−1d 2 = a−1cbc−1a = b; and cd = e−1d = e−2ed−1d 2 = b−1c−1a = ab−1c−1. Also
conjugation by e has the same effect as d, since de−1 = c lies in H.

Next, let v be any generator for the group H, which has order n, say. Then d 2 = a = vr,
and e2 = b = vs, and de−1 = c = vt for some r, s and t. In particular, cd = ab−1c−1 = vr−s−t,
and then because cd has the same order as c = vt, we find that vr−s−t = cd = vtk = ck for
some k, with r−s−t ≡ tk mod n. Moreover, c = ca = cd

2
= ck

2
and so k2 ≡ 1 mod o(c),

where o(c) is the order of c. Also d centralises vr (= a) and vs (= b), and conjugates vt

(= c) to vr−s−t.
This information is enough to completely define G, as a non-split extension by C2 of

the cyclic group H of order n generated by v.
It also follows that there exists an automorphism of G that inverts each of d, e, a and

b, and takes c to c−k. To see this, note that the relations a = d 2, b = e2, ad = a and
bd = b are all preserved when each of a, b, d and e is replaced by its inverse. Also the
same holds for the relations c = de−1 and cd = ab−1c−1 when c is taken to c−k, because
d−1e = d−2de−1e2 = a−1cb = vt+s−r = v−tk = c−k, and a−1bck = v−r+s+tk = v−t = c−1,
while on the other hand (c−k)d

−1
= (c−k)d = c−k

2
= c−1 as well.

It follows that the group G admits an automorphism that inverts each of d and e, and
hence by Proposition 2.1, the action of G on the surface S extends to an action of a larger
group with signature (0; +; [2, 2]; {(m)}) on S, so S is not pseudo-real. This contradiction
shows that case (1) is impossible.

Case (2): Signature (1;−; [j, k]; {−})
We know that the group G is generated by elements d, x and y, as the images of

the generators d1, x1 and x2 of any NEC group with signature (1;−; [j, k]; {−}) such that
1 = d 2xy = xj = yk = 1, and that its index 2 subgroup G+ is generated by x, y and z = xd,
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with d 2 = (xy)−1 and yd = d−1yd = d−1(d 2x)−1d = d−1x−1dd−2 = z−1xy. Conjugation of
the generators x, y and z of G+ by d has the following effect, since H is abelian: xd = z,
yd = z−1xy (as above), and zd = xd

2
= x (since d 2 lies in H).

Now suppose that H = G+. Then G+ itself is cyclic, generated by an element v, and
x = vr and y = vs, and xd = z = vt for some r, s and t, with d 2 = (xy)−1 = v−(r+s). Also
conjugation by d interchanges vr and vt, and takes vs to vr+s−t.

This information and the order of v are enough to completely define G, as a non-
split extension by C2 of the cyclic group H generated by v. Moreover, the set all of
the relations that are satisfied by d, x, y and v is preserved under a transformation that
inverts each of d and x (and takes y = x−1d−2 = vs to xd 2 = v−s, and z = xd = vt

to dx−1d−1 = d 2(d−1xd)−1d−2 = v−t). Hence the group G admits an automorphism
that inverts each of d and x, and so by Proposition 2.1 the surface S is not pseudo-real,
contradiction.

Hence H is a proper subgroup of G+. In particular, G+ is not cyclic. Furthermore,
this implies that |G| = 2|G+| ≥ 4|H| > 4(g− 1), and it follows from the Riemann-Hurwitz
formula that either j = 2 and k > 2, or j = 3 and k = 3, 4 or 5.

If (j, k) = (3, 3) then |G| = 6(g−1) = 12p. As p > 29, we find that G has a cyclic normal
Sylow p-subgroup P of order p, with quotient G/P of order 12. Hence the associated NEC
group Γ with signature (1;−; [3, 3]; {−}) has a normal subgroup N of index 12 contained
in Γ+. But an easy computation using Magma shows there is no such subgroup N in Γ,
contradiction. Similarly if (j, k) = (3, 4) then |G| = (24/5))(g − 1) = 48p/5, which gives
p = 5, while if (j, k) = (3, 5) then |G| = (30/7)(g − 1) = 60p/7, which gives p = 7, and
both of these are impossible (because we have assumed that p > 29).

Thus j = 2 and k > 2.
Now the Riemann-Hurwitz formula gives |G| = (4k/(k− 2))(g− 1) = 8kp/(k− 2). Also

|G| must be divisible by 2k since the element y of order k lies in G+, but also |G| cannot
be 2k (for otherwise G+ is cyclic, generated by y), and therefore k − 2 strictly divides 4p,
so k− 2 = 1, 2, 4, p or 2p. This gives us five sub-cases to consider, which we will denote by
(2a) to (2e).

In sub-case (2a), we have k = 3. Then G acts with signature (1;−; [2, 3]; {−}), and
|G| = 8kp/(k − 2) = 24p, so |G+| = 12p, and then since |G+| > |H| > g − 1 = 2p
(and p > 29), we find that |H| = 3p, 4p or 6p. Next, as p > 23, we know that G has a
cyclic normal Sylow p-subgroup P of order p, with quotient G/P of order 24. Accordingly,
the NEC group Γ with signature (1;−; [2, 3]; {−}) has a normal subgroup N of index 24.
A Magma computation shows that there is just one possibility for N , and in this case
Γ+/N is isomorphic to A4. On the other hand, H is a cyclic subgroup of G+ with |H| > 2p,
and since the orders of the elements of A4 are 1, 2 and 3, we deduce that |H| = 3p. In
particular, some element of order 3 in G centralises P , and since P is normal in G and
the single conjugacy class of cyclic subgroups of order 3 in A4 generates A4, it follows that
P is central in G+. Now by Schur’s theorem on centre-by-finite groups (see [19, 10.1.4]),
the exponent of the derived subgroup of G+ divides the index of the centre of G+ in G+,
so divides |G+ : P | = 12. Another computation using Magma shows that the derived
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subgroup of Γ+ has index 6 in Γ+, so the index of the derived subgroup of G+ in G+

divides 6, and therefore this derived subgroup contains P . In particular, the exponent of
P divides 12, and so p = 3, contradiction.

In sub-case (2b), where k = 4, we know that G acts with signature (1;−; [2, 4]; {−}),
and |G| = 16p, with |G+| = 8p and |H| = 4p (again since |G+| > |H| > 2p). Hence in
particular, H has index 2 in G+, and index 4 in G. Accordingly, the NEC group Γ with
signature (1;−; [2, 4]; {−}) has a subgroup of index 4 lying inside Γ+, with abelianisation
large enough for it to have the cyclic group H of order 4p as a quotient.

A computation with Magma shows that there are seven conjugacy classes of subgroups
of index 2 in Γ+, but for six of them the subgroups have abelianisation of order 32 or 64,
and so H must be a quotient of a subgroup in the seventh one. That class consists of a
single subgroup of index 4 in Γ, generated by x1x2, x2x1 and x1d1x1d

−1
1 , and hence H is

generated by a = xy, b = yx and c = xdxd−1 (where d, x and y are the images of d1,
x1 and x2). Conjugation by x and d have the following effects: ax = b, and bx = a, and
cx = c−1, while ad = a (since a = d−2), and bd = d−1yxd = ac−1bca−1 = b (by an easy
exercise), and cd = d−1xdx = ac−1b−1 (by an easier exercise).

Next, let v be a generator for H, and suppose a = vr, and b = vs, and c = vt. Then
d 2 = (xy)−1 = a−1 = v−r, and conjugation by x interchanges vr with vs and inverts
vt, while conjugation by d fixes vr and vs, and takes vt to vr−s−t. Since x has order 2
and [d, x] = d−1xdx is conjugate to c, which lies in H and therefore centralises H, this
information is enough to completely define G, as a non-split extension by C2 × C2 of the
cyclic group of order 4p generated by v. Also the set all of the relations that are satisfied by
d, x, y and v is preserved under a transformation that inverts d and x (and takes y = (d 2x)−1

to (d−2x)−1 = (xyx)−1), and vr = a = d−2 to d 2 = a−1 = v−r, and vs = b = ax to (a−1)x =
v−s, and vt = c = xdxd−1 to xd−1xd = (d−1xdx)−1 = (ac−1b−1)−1 = bca−1 = v−(r−s−t).
Hence G admits an automorphism that inverts each of d and x, and so by Proposition 2.1,
the surface S is not pseudo-real, contradiction.

In sub-case (2c), we have k = 6, and G acts with signature (1;−; [2, 6]; {−}). This
case may be eliminated by a similar argument. We have |G| = 12p, so |G+| = 6p and
therefore |H| = 3p, with |G :H| = 4. A Magma computation shows that there is just one
possibility for the pre-image of H in the associated NEC group Γ, and again this subgroup
is generated by x1x2, x2x1 and x1d1x1d

−1
1 . We can now proceed using the same argument

as above, to show that G admits an automorphism that inverts each of the images d and
x of the generators d1 and x1 of Γ, and hence S is not pseudo-real, contradiction.

In sub-case (2d), where k = p+ 2, we have |G| = 8k = 8p+ 16 so |G+| = 4k = 4p+ 8,
and then since 2 ≤ |G+ : H| < (4p + 8)/(2p) < 5p/(2p) < 3, we have |H| = |G+|/2 =
2p + 4 = 2k. Next, if d, x and y are the usual images of the generators of the associated
NEC group Γ, then the elements y, yx and yd of G+ all have the same order and generate
the maximal cyclic subgroup of odd order p+ 2 = k in H, with index 2. In particular, this
subgroup is characteristic in H and hence normal in G+, and it follows that the subgroup
generated by y, yx, yd and x has order 2k. But also this subgroup contains (xy)−1 = d 2

and ydy−1x = ydd 2 = d−1yd 2d = d−1xd = xd, and so contains all of the generators d 2, x,
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y, xd and yd of G+, so |G+| = 2k, contradiction.

Finally, in sub-case (2e), we have k = 2p+ 2, with |G| = 4k, so |G+| = 2k = 4p+ 4 and
|H| = 2p+2 = k. We can replace H if necessary and suppose that H is the cyclic subgroup
generated by y. Then also H contains yx (since H is normal in G+), and so yx commutes
with y, and hence 1 = [yx, y] = xy−1xy−1xyxy, which gives d−4 = (xy)2 = (yx)2 ∈ H.

Let us consider the elements a = y, b = yx and c = yd of G+. Using the facts that
(xy)2 = (yx)2 and d 2xy = 1 (and hence that xy commutes with d, and also dxyd = 1), we
find that conjugation of a, b and c by each of d and x has the following effects:

ad = yd = c,

bd = yxd = d−1xyxd = d−1(xy)2y−1d
= (xy)2d−1y−1d = (yx)2(yd)−1 = y(yx)(yd)−1 = abc−1,

cd = yd
2

= yy
−1x = yx = b,

ax = yx = b,

bx = yx
2

= y = a,

cx = ydx = (dx)−1ydx = (yd)ydx = y(dx)xydx
= y(yd)−1xydx = yd−1y−1dxyx = y(yd)−1(yx) = ac−1b.

In particular, since conjugation by d 2 = y−1x has the same effect as x, this implies
that ac−1b = cx = cd

2
= bd = abc−1, and therefore c−1b = bc−1, so bc = cb. But also

ba = (xy)2 = (yx)2 = ab, and conjugating bc = cb by d−1 gives ca = ac. Hence the
subgroup generated by a, b and c is abelian.

We can now show that H contains c = yd. For suppose the contrary. Then the cyclic
subgroups of order k generated by a = y and c = yd are distinct, and both have index 2
in G+, and so they generate G+. Hence G+ is abelian. In particular, since x ∈ G+ we see
that x centralises a, so b = ax = a, and then also c = cx = ac−1b = a2c−1, so c2 = a2. Next,
consider x once more. We have x = aj or ajc for some j, and because x has order 2, either
x = ak/2 (= ck/2 since k/2 = p+ 1 is even), or x = a−1c, or a(k/2)−1c. But if x = ak/2 then
d−2 = xy = a1+k/2, which has order k and so generates H, and it follows that both x and
y are powers of d, so G is cyclic, generated by d, but of order 2k, not 4k, a contradiction.
Similarly, if x = a(k/2)−1c, then d−2 = xy = ak/2c = ck/2+1, so d−2 has order k and hence
generates H; but then conjugating by d shows also that d−2 = (d−2)d is a generator for the
cyclic subgroup generated by cd = b = a, and again this implies that G is cyclic of order
2k, a contradiction. On the other hand, if x = a−1c then d−2 = xy = c, so a = b = cd = c,
but then G+ is generated by a single element of order k, another contradiction.

Thus H contains yd, and it follows that H contains all three of a, b and c, but not x or xd

(as in sub-case (2d)). Indeed since H is generated by y, we see that b = ys for some integer
s < k, with s2 ≡ 1 mod k (because x2 = 1), and similarly c = yt for some t < k, with t4 ≡ 1
mod k (because d4 = (xy)−2 ∈ H and so centralises y). Indeed d−4 = (xy)2 = ba = ys+1.

Next, conjugation by d takes y = a to c = yt, and yt = c to b = ys, and ys = b to
abc−1 = y1+s−t. Hence ys = (yt)d = (yd)t = yt

2
, so s ≡ t2 mod k. Similarly, conjugation

by x interchanges y with ys, and takes yt to y1+s−t, as does conjugation by d 2 = y−1x. In
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particular, yts = (yt)x = y1+s−t, so st ≡ 1 + s − t mod k, which implies that bd = cx =
y1+s−t = yst. Also d 4 = a−1b−1 = y−(1+s) = y−(1+t

2), and [d, x] = d−1xdx = d−2(dx)2 =
d−2(yd)−2 = d−4dy−1d−1y−1 = ba(d−3a−1d)a−1 = ba(abc−1)−1a−1 = ca−1 = yt−1.

Again this information is enough to completely define G, this time as an extension by
C4 of the cyclic group of order k generated by y, and then the set all of the relations that
are satisfied by d, x and y is preserved under a transformation that inverts each of d and
x, and takes a = y = x−1d−2 to xd 2 = x(xy)−1 = xy−1x = b−1 = y−s, and b = ys to
y−1 = a−1, and c = yd = yt to y−st. It follows that the group G admits an automorphism
that inverts each of d and x, and so by Proposition 2.1, the surface S is not pseudo-real,
another contradiction. Thus case (2) is impossible as well.

Case (3): Signature (1;−; [2, j, k]; {−})
Here G is generated by elements d, x, y and z such that 1 = d 2xyz = x2 = yj = zk = 1,

and G+ is generated by x, y, z, xd, yd and zd (with d 2 = (xyz)−1). These elements have
orders 2, j, k, 2, j and k. Also |G| = 4jk(g − 1)/(3jk − 2j − 2k) by the Riemann-Hurwitz
formula, and then because |H| > g− 1 = 2p, we need |G| > 2(g− 1) = 4p. Together these
things imply that either j = 2, or (j, k) = (3, 3), (3, 4) or (3, 5), as earlier.

If j = 3 then |G| = (12k/(7k−6))(g−1) = (12/5)(g−1), (24/11)(g−1) or (60/29)(g−1),
and therefore |G| = 24p/5, 48p/11 or 120p/29. But these are all impossible, since the prime
p is not 5, 11 or 29.

Thus j = 2, and |G| = 8k(g−1)/(4k−4) = 2k(g−1)/(k−1) = 4kp/(k−1). Moreover,
since |G| must be divisible by 4, and k− 1 is coprime to k, we find that k− 1 must divide
p and hence k− 1 = 1 or p, which gives k = 2 or p+ 1, and therefore |G| = 8p or 4(p+ 1).

In the first case, |G| = 8p = 4(g− 1), and |H| divides |G+| = 2(g− 1), but |H| > g− 1,
so |H| = 2(g − 1). Hence H = G+, so G+ is cyclic, of order 2(g − 1) = 4p. On the other
hand, G+ is generated by the elements x, y, z, xd, yd and zd, which all have order 2, so this
is impossible. In the second case, |G| = 4p+4 = 2(g+1), and so |H| divides g+1, and then
since |H| > g − 1 we find that |H| = g + 1 = 2p+ 2 = 2k. Thus |H| = |G|/2, so H = G+,
and again G+ is cyclic, of order 2k. On the other hand, G+ is generated by the elements
x, y, z, xd, yd and zd, which all have order 2 or k, and since they generate a cyclic group of
order 2k, we deduce that k is odd. But here k = p+ 1, which is even, contradiction.

This completes the proof.

We can now summarise the situation for cyclic group actions in the following.

Corollary 3.10
(a) Mcyc(g) ≥ 2g − 2 for all g ≥ 2, and this bound is sharp for every odd g ≥ 3;

(b) M+
cyc(g) ≥ g − 1 for all g ≥ 2, and this bound is sharp for infinitely many g ≥ 3.

4 The abelian case

In this section, we first consider the parameter Mab(g), in three different cases (namely
g even, g ≡ 1 mod 4 and g ≡ 3 mod 4), and find its precise value for each g ≥ 2; see
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Corollary 4.7. Then we consider M+
ab(g) in the same three cases, and show that the smallest

of these gives a sharp bound for a very large and possibly infinite set of genera g.

Theorem 4.1 For every even integer g ≥ 2 with g 6= 16, the largest order of an abelian
group of automorphisms acting essentially on a pseudo-real surface of genus g is 2g. When
g = 16, the largest such order is 36.

Proof : First, we know that Mab(g) ≥ Mcyc(g) ≥ 2g, by Theorem 3.2, and so all we have
to do is show that Mab(g) cannot be greater than 2g, except in the case g = 16.

So let G be an abelian group of order 4n ≥ 2g having a faithful essential action on
a pseudo-real surface of even genus g ≥ 2. Then by Corollary 2.4, we know that G acts
with signature (1;−; [2, j, k]; {−}), where either j = 2 ≤ k, or {j, k} = {3, 3}, {3, 4} or
{3, 5}. In these cases, if d, x, y and z are the images in G of the canonical generators of the
associated NEC group Γ, with d 2xyz = x2 = yj = zk = 1, then the orientation-preserving
subgroup G+ is generated by x, y and z (with d 2 = (xyz)−1, and (xd, yd, zd) = (x, y, z)
since G is abelian), and so lcm(2, j, k) divides 2n = |G+|, which in turn divides 2jk.

If j = 2, then by the Riemann-Hurwitz formula g = 1 + 2n(1− 1/k) = 1 + 2n− 2n/k,
and so 2n/k has to be odd, making k even (and giving lcm(2, 2, k) = k, which divides
2n). Also 2n = |G+| divides the product 2jk = 4k, and it follows that k = n/2, n or 2n,
and the unique value of k making 2n/k odd is 2n. Accordingly g = 1 + 2n − 1 = 2n, so
|G| = 4n = 2g, which gives no improvement on what comes from Theorem 3.2.

If {j, k} = {3, 3}, then 6 = lcm(2, j, k) divides 2n, which divides 2jk = 18, and therefore
2n = 6, 12 or 18, and |G| = 12, 24 or 36, respectively. By the Riemann-Hurwitz formula,
g = 1 + 5|G|/12 = 6, 11 or 16. In the first case, |G| = 2g, giving no improvement, while
in the second case, the genus g is odd. In the third case, however, |G| > 2g, and indeed
this case can be realised, by taking G = 〈u, v | u3 = v12 = [u, v] = 1 〉 ∼= C3 × C12, and
(d, x, y, z) = (v, v6, uv8, u−1v8), for example. Hence |G| can be 36 when g = 16.

If {j, k} = {3, 4}, then 12 = lcm(2, j, k) divides 2n, which divides 2jk = 24, so 2n = 12
or 24, and |G| = 24 or 48, respectively. Also g = 1 + 11|G|/24 = 12 or 23, and the former
case gives no improvement, while the latter gives odd genus.

Finally, if {j, k} = {3, 5}, then lcm(2, j, k) = 2jk = 30, so 2n = 30 and |G| = 60, and
then g = 30 by the Riemann-Hurwitz formula, again giving no improvement.

In fact the largest order described in Theorem 4.1 completely determines the group,
and in most cases the group action, as we see below.

Proposition 4.2 The largest order of an abelian group having a faithful essential action
on a pseudo-real surface of even genus g is attained only by the cyclic group C2g when
g 6= 16, and by C3×C12 when g = 16. Moreover, when g 6= 6, 12 or 30, the group action is
also uniquely determined (up to group automorphism) : if Γ is the associated NEC group,
then the action of G is given by the epimorphism θ : Γ → C2g described in Remark 3.3
when g 6= 16, or the epimorphism θ : Γ→ C3×C12 given in the proof of Theorem 4.1 when
g = 16. For the exceptional genera 6, 12 and 30, the actions are not unique.
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Proof : We use the same notation as in the proof of Theorem 4.1.
If j = 2, then k = 2n = |G+|, and so G+ is cyclic, generated by z, and hence each of x

and y is the unique involution in G+, namely zk/2 = zn. It follows that d 2 = (xyz)−1 = z−1,
and therefore G is cyclic of order 4n = 2g, generated by d. In this case, the action of
G = C2g with signature (1;−; [2, 2, g]; {−}) is unique up to an automorphism of G, as
explained in Remark 3.3.

If {j, k} = {3, 3}, then g = 6 and |G| = 12, or g = 16 and |G| = 36. In the former case,
G+ is generated by elements x, y and z of orders 2, 3 and 3 and hence is cyclic of order 6,
and d 2 = (xyz)−1 has order 2 or 6, so G is cyclic of order 12. Similarly, in the latter case,
G+ is isomorphic to C3×C6 (since it has order 18), and d 2 = (xyz)−1 has order 6, so d has
order 12, and G ∼= C3 × C12. In this case we also note that x = d 6 (the unique involution
in G), and y can be chosen as any element of order 3 lying outside 〈d〉, and this makes the
action of G unique up to an automorphism of G, as explained in the proof of Theorem 4.1.

If {j, k} = {3, 4}, then g = 12 and |G| = 24, and G+ is generated by elements x, y and
z of orders 2, 3 and 4, so must be cyclic of order 12, then d 2 = (xyz)−1 has order 12, so
G ∼= C24. Similarly, if {j, k} = {3, 5}, then g = 30 and |G| = 60, and G+ is cyclic of order
2 · 3 · 5 = 30, so G ∼= C60.

In particular, these cases with j = 3 show that for genera 6, 12 and 30, there is
more than one action of C2g (up to equivalence). In addition to the action with sig-
nature (1;−; [2, 2, g]; {−}) described in Remark 3.3, the extra actions are the following,
where u is a generator for C2g. When g = 6 there are two more actions, with sig-
nature (1;−; [2, 3, 3]; {−}), and described by the generating vectors (u, u6, u−4, u−4) and
(u3, u6, u4, u−4); when g = 12 there is one more action, with signature (1;−; [2, 3, 4]; {−})
and described by (u, u12, u−8, u−4); and when g = 30 there is one more action, with signa-
ture (1;−; [2, 3, 5]; {−}), and described by (u, u30, u−20, u−12).

Next, we consider essential actions of abelian groups on pseudo-real surfaces of odd
genus. We split this into two cases, starting with the case g ≡ 1 mod 4.

Theorem 4.3 For every integer g ≡ 1 mod 4 with g ≥ 5, the largest order of an abelian
group of automorphisms acting essentially on a pseudo-real surface of genus g is 2(g + 3).

Proof : First, we show that Mab(g) ≥ 2(g + 3) for every such g.

Let Γ be a maximal NEC group with signature (1;−; [2, 2, (g+3)/4]; {−}), and canonical

generators d1, x1, x2 and x3 satisfying d 2
1x1x2x3 = x 2

1 = x 2
2 = x

(g+3)/4
3 = 1.

If (g + 3)/4 is even, then there exists a smooth epimorphism θ from Γ to the direct
product G = C2 × C2 × C(g+3)/2 generated by commuting elements a, b and c of orders 2,
2 and (g+ 3)/2, respectively, taking (d1, x1, x2, x3) to (c, a, b, abc−2). On the other hand, if
(g + 3)/4 is odd, then there exists a smooth epimorphism θ from Γ to the direct product
G = C2×Cg+3 generated by commuting elements u and v of orders 2 and g+3, respectively,
taking (d1, x1, x2, x3) to (v, u, uv(g+3)/2, v(g−1)/2).

In both of these two cases, G is an abelian group of order 2(g + 3). Moreover, all of
the involutions of the chosen group G lie inside the subgroup generated by the images
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of x1, x2 and x3, and so by Proposition 2.2 we find that G is the automorphism group
of a pseudo-real surface S. Also by the Riemann-Hurwitz formula, the genus of S is
1 + |G|(g − 1)/(2(g + 3)) = g, and so this gives Mab(g) ≥ |G| = 2(g + 3).

Next, we show that this bound of 2(g + 3) is sharp.

Let G be an abelian group of automorphisms of a pseudo-real surface of genus g, of order
4n ≥ 2(g+ 3), and acting with signature (γ;−; [m1, . . . ,mr]; {−}). Then by Corollary 2.4,
we know that γ = 1 and r = 3, with {m1,m2,m3} = {2, j, k} for some j, k, where either
j = 2 ≤ k, or {j, k} = {3, 3}, {3, 4} or {3, 5}. Also, just as in the proof of Theorem 4.1,
we know that 2n = |G+| is divisible by lcm(2, j, k) and divides 2jk.

If j = 2 and k is even then 2n is divisible by lcm(2, j, k) = k and divides 4k, so 2n = k,
2k or 4k, but then substituting into the Riemann-Hurwitz formula gives 4n = 2g, 2g + 2
or 2g + 6 respectively, which gives no improvement. Similarly if j = 2 and k is odd then
2n is divisible by lcm(2, j, k) = 2k and divides 4k, so 2n = 2k or 4k, and then 4n = 2g+ 2
or 2g + 6, which again gives no improvement. On the other hand, if {j, k} = {3, 3}, {3, 4}
or {3, 5}, then the same arguments give 2n ∈ {6, 18}, {12, 24} or {30}, and g ∈ {6, 16},
{12, 23} or {30}, respectively, but in none of these cases is g ≡ 1 mod 4, so these three
cases can be eliminated. Accordingly, we cannot do better than |G| = 2(g + 3).

Once again, the largest order completely determines the group, and this time also the
group action.

Proposition 4.4 The largest order of an abelian group G with a faithful essential action
on a pseudo-real surface of genus g ≡ 1 mod 4 is attained only for G = C2 ×C2 ×C(g+3)/2

when (g+3)/4 is even, and for C2×Cg+3 when (g+3)/4 is odd, and in both cases, the group
acts with signature (1;−; [2, 2, (g+3)/4]; {−}). Moreover, the group action is also uniquely
determined (up to group automorphism) : if Γ is the associated NEC group, then the action
of G is given by the epimorphism θ : Γ→ G as described in the proof of Theorem 4.3.

Proof : First, the calculations in the proof of Theorem 4.3 show that the only cases for
which |G| = 2(g+3) are those with |G|/2 = 4k, giving signature (1;−; [2, 2, (g+3)/4]; {−}).
In these cases, the orientation-preserving subgroup G+ (of order g+ 3) is generated by the
images of the elements x1, x2 and x3 of the associated NEC group Γ, which have orders 2,
2 and (g + 3)/4 respectively. It follows that G+ ∼= C2 ×C2 ×C(g+3)/4, which is isomorphic
to C2 × C(g+3)/2 when (g + 3)/4 is odd. Also the relation d 2

1x1x2x3 = 1 implies that the
image in G of d1 has order 2 · lcm(2, 2, (g+ 3)/4), which is (g+ 3)/2 when (g+ 3)/4 is even,
and g+3 when (g+3)/4 is odd. It follows that G is isomorphic to C2×C2×C(g+3)/2 when
(g + 3)/4 is even, and to C2 × Cg+3 when (g + 3)/4 is odd.

Next, suppose the action of G is given by the smooth epimorphism ϕ : Γ→ G.

If (g+3)/4 is even, with G ∼= C2×C2×C(g+3)/2, then the images ϕ(d1), ϕ(x1) and ϕ(x2)
must be elements of G of orders (g+3)/2, 2 and 2 respectively, in order to generate G. But
also |G| = 2(g+3) is the product of those orders, and it follows thatG = 〈a〉×〈b〉×〈c〉 where
(a, b, c) = (ϕ(x1), ϕ(x2), ϕ(d1)), and then also ϕ(x3) = ϕ(d 2

1x1x2)
−1 = (c2ab)−1 = abc−2.

This makes ϕ equivalent to the epimorphism θ : Γ→ G given in the proof of Theorem 4.3.
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On the other hand, if (g + 3)/4 is odd, with G ∼= C2 × Cg+3, then ϕ(d1) must have
order g + 3, while each of ϕ(x1) and ϕ(x2) is one of the three involutions in G, and
ϕ(x3) = ϕ(d 2

1x1x2)
−1 has to be an element of order (g + 3)/4. In particular, ϕ(x3) lies in

〈ϕ(d1)〉 ∼= Cg+3, since its order (g + 3)/4 is odd, and it follows that both ϕ(x1) and ϕ(x2)
lie outside 〈ϕ(d1)〉. Letting u = ϕ(x1) and v = ϕ(d1), we find that ϕ(x2) ∈ {u, uv(g+3)/2}.
But ϕ(x2) 6= u, for otherwise ϕ(x3) = v−2 which has order (g + 3)/2, and therefore
ϕ(x2) = uv(g+3)/2, which gives ϕ(x3) = (v2uuv(g+3)/2)−1 = (v(g+7)/2)−1 = v(g−1)/2. Again
this makes ϕ equivalent to the epimorphism θ : Γ→ G chosen in the proof of Theorem 4.3.

We now turn to the case g ≡ 3 mod 4.

Theorem 4.5 For every positive integer g ≡ 3 mod 4, the largest order of an abelian group
of automorphisms acting essentially on a pseudo-real surface of genus g is 2(g + 1).

Proof : First, we show that Mab(g) ≥ 2(g + 1) for every such g.

Let Γ be a maximal NEC group with signature (1;−; [2, 2, (g+1)/2]; {−}) and canonical

generators d1, x1, x2 and x3 satisfying d 2
1x1x2x3 = x 2

1 = x 2
2 = x

(g+1)/2
3 = 1, and let

G = C2×Cg+1, generated by commuting elements u and v of orders 2 and g+1 respectively.
Then there exists a smooth epimorphism θ : Γ → G taking (d1, x1, x2, x3) to (v, u, u, v−2).
Moreover, since (g+ 1)/2 is even, all the involutions of G lie inside the subgroup generated
by the images of x1, x2 and x3, and so by Proposition 2.2 we find thatG is the automorphism
group of a pseudo-real surface S. Also by the Riemann-Hurwitz formula, the genus of S is
1 + |G|(g − 1)/(2(g + 1)) = g, and so this gives Mab(g) ≥ |G| = 2(g + 1).

Next, we show that this bound of 2(g + 1) is sharp.

Let G be an abelian group of automorphisms of a pseudo-real surface of genus g, of order
4n ≥ 2(g+ 1), and acting with signature (γ;−; [m1, . . . ,mr]; {−}). Then by Corollary 2.4,
we know that γ = 1 and r = 3, with {m1,m2,m3} = {2, j, k} for some j, k, where either
j = 2 ≤ k, or {j, k} = {3, 3}, {3, 4} or {3, 5}. Also, just as in the proof of Theorem 4.1,
we know that 2n = |G+| is divisible by lcm(2, j, k) and divides 2jk.

If j = 2 and k is even then 2n is divisible by lcm(2, j, k) = k and divides 4k, so
2n = k, 2k or 4k, and then substituting into the Riemann-Hurwitz formula gives g = 2n,
or g = 2n − 1, or g = 2n − 3 = 4k − 3 respectively. The only possibility with g ≡ 3 mod
4 is the second, which gives |G| = 4n = 2(g + 1) and hence no improvement. Similarly if
j = 2 and k is odd then 2n is divisible by lcm(2, j, k) = 2k and divides 4k, and so 2n = 2k
or 4k, but then g = 2n− 1 = 2k − 1 ≡ 1 mod 4 or g = 2n− 3 = 4k − 3, and both of these
are impossible. On the other hand, if {j, k} = {3, 3}, {3, 4} or {3, 5}, then once again we
find that 2n ∈ {6, 18}, {12, 24} or {30}, and g ∈ {6, 16}, {12, 23} or {30}, respectively.
Here there is one case with g ≡ 3 mod 4, namely the one with g = 23 and |G| = 4n = 48
(occurring when {j, k} = {3, 4}), and again |G| = 2(g + 1), so there is no improvement.

Accordingly, we cannot do better than |G| = 2(g + 1).

Here the abelian group G realising the largest action is unique, and the signature with
which it acts is unique for g 6= 23, but in contrast to previous cases, there are several
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inequivalent actions (namely three when g ≡ 3 mod 8 and four when g ≡ 7 mod 8), as we
show below.

Proposition 4.6 The largest order of an abelian group G with a faithful essential ac-
tion on a pseudo-real surface of genus g ≡ 3 mod 4 is attained only for G = C2 × Cg+1.
When g 6= 23, the largest such group G acts with signature (1;−; [2, 2, (g + 1)/2]; {−}),
and if u and v are generators for G = C2 × Cg+1 of orders 2 and g + 1 respectively, then
its action is given by (θ(d1), θ(x1), θ(x2), θ(x3)) = (v, u, u, v−2), (v, u, v(g+1)/2, uv(g−3)/2)
or (v, v(g+1)/2, u, uv(g−3)/2), or (v, u, uv(g+1)/2, v(g−3)/2) when g ≡ 7 mod 8. In the first
of these three or four cases, the surface is hyperelliptic. When g = 23, the signature
can be (1;−; [2, 2, 12]; {−}) or (1;−; [2, 3, 4]; {−}), and in addition to the same four pos-
sibilities given in the previous sentence for the former signature, when the signature is
(1;−; [2, 3, 4]; {−}) the action is given by (θ(d1), θ(x1), θ(x2), θ(x3)) = (v, u, v16, uv6).

Proof : The calculations in the proof of Theorem 4.5 show that if g 6= 23 then the only
signature with which the bound is attained is (1;−; [2, 2, (g + 1)/2]; {−}).

So now let G be an abelian group of order 2(g+1) acting with this signature on a pseudo-
real surface of genus g, and let d, x, y and z be the images of the canonical generators d1,
x1, x2 and x3 of the associated NEC group Γ. Then the subgroup G+ has order g + 1 and
is generated by x, y and z, of orders 2, 2 and (g + 1)/2 respectively, and it follows that
G+ ∼= C2 × C(g+1)/2, and also that at least one of x and y lies outside 〈z〉. On the other
hand, G+ is also generated by d 2, x and y (with z = (d 2xy)−1), and so d 2 must have order
(g + 1)/2 as well, and therefore d has order g + 1 (for otherwise d ∈ 〈d 2, x, y〉 = G+), and
at least one of x and y lies outside 〈d〉. Accordingly, G ∼= C2 × Cg+1, as required.

Next, let u be any involution of G lying outside 〈d〉, so that G = 〈u〉 × 〈d〉. Then each
of x and y is one of the three involutions u, d (g+1)/2, ud (g+1)/2, and at least one of them is
not d (g+1)/2. By replacing u by ud (g+1)/2 if necessary (via an automorphism of G), we may
suppose at least one of x and y is u. Now if x = y then x = y = u, and z = (d 2xy)−1 = d−2.
Similarly, if (x, y) = (u, d (g+1)/2) or (d (g+1)/2, u), then z = d(g−3)/2u, which has order
(g + 1)/2 for all g ≡ 3 mod 4, while if (x, y) = (u, ud (g+1)/2), then z = d (g−3)/2, which has
order (g+1)/2 only when g ≡ 7 mod 8 (but order (g+1)/4 when g ≡ 3 mod 8). These give
the three or four possibilities for the generating vector (θ(d1), θ(x1), θ(x2), θ(x3)) listed in
the statement of the theorem, and all others are equivalent to one of them.

In the first case, where (θ(d1), θ(x1), θ(x2), θ(x3)) = (d, u, u, v−2), the pre-image θ−1(〈u〉)
of the orientation-preserving cyclic subgroup 〈u〉 has signature (0; +; [2, 2g+2. . . , 2]; {−}), by
[11, Theorems 2.2.4 and 2.1.3] and the Riemann-Hurwitz formula. This implies that the
surface S = U/ ker θ can be represented as the double covering S → S/〈u〉 of the Riemann
sphere, ramified over 2g + 2 points; in other words, the surface S is hyperelliptic.

Finally, we deal with the exceptional case where g = 23. For this, we know from the
proof of Theorem 4.5 that an abelian group G of order 2(g + 1) = 48 can act with signa-
ture (1;−; [2, 2, (g+ 1)/2]; {−}), or with signature (1;−; [2, 3, 4]; {−}). In the former case,
G ∼= C2 × Cg+1 = C2 × C24, and up to equivalence there are four possibilities for the gen-
erating vector (θ(d1), θ(x1), θ(x2), θ(x3)), as given earlier. So now consider the latter case.
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Here the subgroup G+ has order 24 and is generated by (x, y, z) = (θ(x1), θ(x2), θ(x3)), of
orders 2, 3 and 4 respectively, and so G+ ∼= C2 × C3 × C4

∼= C2 × C12. Also d = θ(d1) has
order 24, because d 2 = (xyz)−1 has order 12, and therefore G ∼= C2 × C24 = C2 × Cg+1,
as before. Next, the element y has order 3 and so y = d±8, and it follows that both
x and z lie outside 〈d〉, so G = 〈x〉 × 〈d〉, and then z = (d 2xy)−1 = xd−2±8 = xd 6 or
xd 14, but the latter is impossible since it has order 12, not 4, so y = d−8 = d 16 and
z = xd 6. This gives an action that is unique up to equivalence, with generating vector
(θ(d1), θ(x1), θ(x2), θ(x3)) = (d, x, d 16, xd 6), as required.

We can now summarise the situation for essential actions of abelian groups in the
following.

Corollary 4.7

(a) Mab(g) = 2g for every even g 6= 16, while Mab(16) = 36.

(b) Mab(g) = 2g + 6 for every g ≡ 1 mod 4.

(c) Mab(g) = 2g + 2 for every g ≡ 3 mod 4.

Now we turn to the case where the abelian group preserves orientation. Just like in the
previous section, we let G be the full automorphism group of the surface, and consider the
largest order of an abelian subgroup H of G+. Once again, H is a proper subgroup of G,
and G+ contains all the involutions of G.

By Theorems 4.1, 4.3 and 4.5 (or Corollary 4.7), there exist examples of such an
orientation-preserving abelian group H of order g for all positive even g 6= 16, order 18 for
g = 16, order g + 3 for all g ≡ 1 mod 4 (and g ≥ 5), and order g + 1 for all g ≡ 3 mod 4.
Thus M+

ab(g) ≥ g for all g ≥ 2. We complete this section by considering the sharpness of
the latter bound.

Theorem 4.8 For every element g in a very large and possibly infinite set of positive even
integers, the maximum order of an abelian group of orientation-preserving automorphisms
of a pseudo-real surface of genus g is g.

Proof : First, let A be the set of all positive even integers g of the form p + 1, where p
is an odd prime with the property that p + 2 has no prime divisor congruent to 1 mod 4,
so that Aut(Cp+2) has no elements of order 4. This is a very large and possibly infinite
set. Its ten smallest members are 6, 8, 18, 20, 30, 32, 42, 48, 62 and 68, and it contains
19969 members less than 106, and 10345920 members less than 109. Proving it is infinite,
however, would be about as difficult as proving the Twin Primes Conjecture.

Now let g be any element of A, with p = g − 1 > 29. Then since g is even, we know
that Cg is the orientation-preserving subgroup of C2g in its action on a pseudo-real surface
of genus g with signature (1;−; [2, 2, g]; {−}).

Next, suppose that H is a larger abelian group of orientation-preserving automorphisms
of some pseudo-real surface S of genus g, and let G be the full automorphism group of S.
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Then |H| > g, so |G| > 2g, and so G acts with one of the three signatures denoted by (1)
to (3) in the proof of Theorem 3.9. We will consider these three cases again, in turn.

Case (1): Signature (2;−; [m]; {−})
Here the Riemann-Hurwitz formula gives |G| = 2m(g− 1)/(m− 1) = 2mp/(m− 1), so

|G+| = mp/(m − 1), and then since G+ must have an element of order m, it follows that
m − 1 divides p, so m − 1 = 1 or p, giving m = 2 or p + 1. In the latter case, however,
|G| = 2m and so |H| ≤ m = p + 1 = g, contradiction. Thus m = 2, which gives |G| = 4p
and |G+| = 2p, and hence also |H| = 2p, and G+ = H. Moreover, since H is abelian of
twice odd prime order, it is cyclic. Accordingly, the same argument as in case (1) of the
proof of Theorem 3.9 applies, to show that the group G admits an automorphism that
inverts each of d and e, and hence that the surface S is not pseudo-real.

This contradiction shows that case (1) is impossible.

Case (2): Signature (1;−; [j, k]; {−})
Here G is generated by elements d, x and y such that d 2xy = xj = yk = 1.
First suppose that H = G+, so that G+ itself is abelian. Then some automorphism α of

G+ inverts every element of G+. Also d 2 lies in G+ and so centralises every element of G+,
and hence conjugation by d−1 has the same effect on G+ (and on inverses of elements of G+)
as conjugation by d. As also (d−1)2xαyα = (d−1)2x−1y−1 = d−2x−1y−1 = xyx−1y−1 = 1,
we find that α extends to an automorphism α∗ of G that takes d to d−1. But now since
the automorphism α∗ inverts each of d and x, it follows from Proposition 2.1 that S is not
pseudo-real, contradiction. Hence H is a proper subgroup of G+, and G+ is not abelian.

Thus |G| = 2|G+| ≥ 4|H| > 4g > 4(g− 1), and so either j = 2 and k > 2, or j = 3 and
k = 3, 4 or 5. If (j, k) = (3, 3) then |G| = 6(g − 1) = 6p, which is not divisible by 4, while
if (j, k) = (3, 4) or (3, 5), then |G| = (24/5)(g−1) = 48p/5 or |G| = (30/7)(g−1) = 60p/7,
both of which are impossible since p > 7. Hence j = 2.

Now the Riemann-Hurwitz formula gives |G| = (4k/(k− 2))(g− 1) = 4kp/(k− 2), and
|G| must be divisible by 2k since the element y of order k lies in G+, but also |G| cannot
be 2k (for otherwise G+ is cyclic, generated by y), and therefore k − 2 strictly divides 2p,
so k − 2 = 1, 2 or p. This gives us three sub-cases to consider, which we will denote by
(2a) to (2c).

In sub-case (2a), we have k−2 = 1, so k = 3, andG acts with signature (1;−; [2, 3]; {−}).
Here |G| = 4kp/(k− 2) = 12p, so |G+| = 6p, and then since p > 12, we know that G has a
cyclic normal Sylow p-subgroup P of order p, with quotient G/P of order 12. Accordingly,
the pre-image of P in the associated NEC group Γ is a normal subgroup N of index 12,
contained also as a normal subgroup of index 6 in Γ+. A Magma computation shows that
there is just one such normal subgroup N contained in Γ+, and for this one, the quotient
Γ/N is isomorphic to C12, and so Γ+/N ∼= C6.

Also |G+| > |H| > g − 1 = p > 7, and therefore |H| = 2p or 3p, and so H contains
P , and it follows that the pre-image of H in Γ is a subgroup of index 6 or 4 in Γ, and
index 3 or 2 in Γ+, and contains N . A further Magma computation, however, shows
there is just one such subgroup of index 6 and just one such subgroup of index 4 in Γ, the
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abelianisations of which have orders 32 and 27. Hence Γ+ has no abelian quotient of order
2p or 3p, contradiction, and therefore sub-case (2a) is impossible.

In sub-case (2b), we have k = 4, and G acts with signature (1;−; [2, 4]; {−}). Here
|G| = 8p and p > 9, so G has a cyclic normal Sylow p-subgroup P of order p, with quo-
tient G/P of order 8. Accordingly, the pre-image of P in the associated NEC group Γ
is a normal subgroup N of index 8, contained also as a normal subgroup of index 4
in Γ+. A Magma computation shows that there are five such normal subgroups in Γ.
Next, also 4p = |G+| > |H| > g − 1 = p > 4, and therefore |H| = 2p, and so H con-
tains P , and hence the pre-image of H in Γ is a subgroup of index 4 in Γ, and index
2 in Γ+, and containing N . A further Magma computation shows there are five con-
jugacy classes of subgroups of index 4 in Γ contained in Γ+, but in all but one case,
the abelianisation of the subgroup has order 32 or 64, and so the subgroup cannot have
a cyclic quotient of order 2p. The exception is the (normal) subgroup of index 4 gen-
erated by x1x2, x2x1 and x1d1x1d

−1
1 , which implies that H is generated by (a, b, c) =

(xy, yx, xdxd−1), where d, x and y are the images of d1, x1 and y1. This subgroup
contains only three of the above possibilities for N , the images of which in G are gen-
erated by {xdxd−1, xyd−2, y2, d−1yxd−1, d 2yx}, {xdy−1d−1, xyd−2, y2, d−1yxd−1, d 2yx} and
{xy, yx, dyxd−1, xdyxd−1x, xdxdxd−1xd−1}. But each of these images in G contains y2

(= (yx)(xy)), and it follows that y2 ∈ P and therefore y has order 2 or 2p (and not 4),
contradiction. Hence sub-case (2b) is impossible.

Finally, in sub-case (2c), we have k = p+ 2, and G has order 4p+ 8 = 4(p+ 2) and acts
with signature (1;−; [2, p + 2]; {−}), with |G+| = 2p + 4 = 2(p + 2) and |H| = p + 2 = k.
Without loss of generality we might as well suppose that H is the cyclic subgroup generated
by y. A Magma computation in the NEC group Γ associated with the action of G on S
shows that there is just one subgroup of index 4 in Γ contained in Γ+, and it follows that
H is normal in G and can be generated by (a, b, c) = (y, yx, yd). Moreover, just as in case
(2) of the proof of Theorem 3.9, conjugation by each of d and x has the following effects
on these elements: ad = c, bd = abc−1 and cd = b, and ax = b, bx = a and cx = ac−1b.
In particular, conjugation by d 2 interchanges a with b. Next, by choice of p we know
that |H| = k = p + 2 has no prime divisor congruent to 1 mod 4, and hence H has no
automorphism of order 4, so d 2 must centralise H. This implies that yx = b = ad

2
= a = y,

and so x centralises y, but then xy is an element of order 2k = 2(p + 2), contradicting
the assumption that H is the largest abelian subgroup of G+. Hence also sub-case (2c) is
impossible, and this rules out signature (1;−; [j, k]; {−}) completely.

Case (3): Signature (1;−; [2, j, k]; {−})
In this case, the Riemann-Hurwitz formula gives |G| = 4jk(g− 1)/(3jk− 2j− 2k), and

then because |H| > g, we need |G| > 2g > 2(g − 1), so that 2jk > 3jk − 2j − 2k, and
therefore (j − 2)(k − 2) = jk − 2j − 2k + 4 < 4. It follows that either j = 2, or j = 3 and
k = 3, 4 or 5 (just as before). If j = 3, however, then |G| = 12p/5, 24p/11 or 60p/29, and
all of these are impossible because the prime p is not 5, 11 or 29. Hence j = 2.

We now have |G| = 8k(g−1)/(4k−4) = 2kp/(k−1), and so |H| divides kp/(k−1). In
particular, k− 1 divides kp, but is coprime to k and hence divides p. Thus k− 1 = 1 or p,
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and so k = 2 or p+ 1. In the latter case, however, |G| = 2k = 2(p+ 1) = 2g and therefore
|H| divides |G+| = g, which is too small. Hence j = k = 2, and |G| = 2kp/(k − 1) = 4p,
so |H| divides |G+| = 2p. But |H| > g > p, and it follows that |H| = 2p = |G+|.

Also the group G acts with signature (1;−; [2, 2, 2]; {−}) on S, and hence we know that
G is generated by elements d, x, y and z such that 1 = d 2xyz = x2 = y2 = z2 = 1, and
that G+ is generated by x, y, z, xd, yd and zd (with d 2 = (xyz)−1). These six elements
all have order 2, however, and so they cannot generate an abelian group of order 2p, a
contradiction.

This completes the proof.

We can now summarise the situation for abelian group actions in the following.

Corollary 4.9

(a) Mab(g) ≥ 2g for all g ≥ 2, and this bound is sharp for every even g 6= 16;

(b) M+
ab(g) ≥ g for all g ≥ 2, and this bound is sharp for a large number of even g ≥ 2.

5 The general case

In this final section, we consider lower bounds on the order M(g) of the largest arbitrary
group of automorphisms of a pseudo-real surface of given genus g ≥ 2, akin to the Accola-
Maclachlan bound for general compact Riemann surfaces, [1, 18]. Here we need not do
anything in the orientation-preserving case, because the maximum order of an orientation-
preserving automorphism group of a pseudo-real surface of genus g ≥ 2 is always M(g)/2.

We begin with the following easily-proved fact.

Proposition 5.1 If G is a split metacyclic flnite group CrosC2, generated by two elements
a and b of orders 2 and r respectively such that a−1ba = bs, then G has an automorphism
that inverts each of the two generators a and b.

Proof : The elements a−1 and b−1 satisfy the same defining relations for G as the elements
a and b, because a−1 and b−1 have the same orders 2 and r, and ab−1a−1 = a−1b−1a =
(bs)−1 = (b−1)s. Hence there exists an automorphism of G taking (a, b) to (a−1, b−1).

Next, we give lower bounds on M(g) for all g ≥ 2, according to the parity of g.

Theorem 5.2

(a) M(g) ≥ 2g for every even integer g ≥ 2;

(b) M(g) ≥ 4(g − 1) for every odd integer g ≥ 3.
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Proof : Part (a) follows immediately from Theorem 3.2. For part (b), let Γ be a maximal
NEC group with signature (1;−; [2, 2, 2]; {−}), and for any positive integer n, let G be the
semi-direct product C4no2n−1C2 of order 8n, generated by two elements u and v of orders
2 and 4n such that u−1vu = v2n−1. Then we may construct an epimorphism from Γ to G,
taking (d1, x1, x2, x3) to (uv, u, u, v2n). To see this, note the images of d1 and x1 generate
G, that each of u and v2n has order 2, and that the relation d 2

1x1x2x3 = 1 is preserved
since (uv)2 = (vu)v = v2n. Also the subgroup generated by the images of d 2

1 , x1, x2, x3
and their conjugates by d1 is the index 2 subgroup H generated by u and v2, noting that
uv = v−1uv = uv2n+1v = uv2n+2 and the element v2n is central in G. Hence G acts with
signature (1;−; [2, 2, 2]; {−}) on a Riemann surface S, with genus g = 2n+ 1 given by the
Riemann-Hurwitz formula. Next, we note that uv has order 4, since (uv)2 = (vu)v = v2n.
So now if w is any element of G lying outside H = 〈u, v2〉, necessarily of the form v2j+1 or
v2juv for some j, then the order of w is divisible by 4. Hence all involutions of G lie in H,
and it follows from Proposition 2.2 that S is pseudo-real and G = Aut(S). In particular,
|G| = 8n = 4(g − 1), and this completes the proof.

Next, we show that the bound in part (b) of Theorem 5.2, is sharp for a very large and
possibly infinite set of odd genera g ≥ 3.

Specifically, we take G as the set of all integers g of the form 2p+ 1 where p is a prime
such that p ≡ 3 mod 8 and p ≡ 2 or 5 mod 9 (so that p ≡ 11 or 59 mod 72), and also
p 6≡ 5 mod 7, and p+1 is not divisible by 11, 23, 47 or any prime q such that q ≡ 1 mod 3
or q ≡ 1 mod 4. The smallest 10 integers in this set G are 2567, 3143, 4007, 6023, 14087,
15815, 17255, 19847, 20135 and 30215, and then there are a further 188 such integers less
than 106, plus a further 91895 of them less than 109. But again, however, proving that
this set is infinite would be about as difficult as proving the Twin Primes Conjecture.

Theorem 5.3 M(g) = 4(g − 1) for all g ∈ G.

Proof : Assume the contrary. Then some finite group G of order greater than 4(g− 1) has
a faithful action on a pseudo-real surface of genus g, where g ∈ G. Also an easy argument
using the Riemann-Hurwitz formula shows that G must act with signature (1;−; [2, k]; {−})
for some k ≥ 3, or (1;−; [3, k]; {−}) for some k < 6.

For the former signature (1;−; [2, k]; {−}), we have |G| = 4k(g−1)/(k−2) = 8kp/(k−2),
and as G must contain an element of order k that sits inside the orientation-preserving
subgroup G+ of index 2 in G, we find that |G| is divisible by 2k. Hence k − 2 divides 4p,
so k − 2 = 1, 2, 4, p, 2p or 4p. Accordingly k = 3, 4, 6, p + 2, 2p + 2 or 4p + 2, and then
|G| = 24p, 16p, 12p, 8(p + 2), 8(p + 1) or 8p + 4 = 4(2p + 1). This gives us six cases to
consider, which we will call (a) to (f). Similarly, for the latter signature (1;−; [3, k]; {−}),
we have |G| = 6k(g − 1)/(2k − 3) = 12kp/(2k − 3), and again |G| is divisible by 2k, so
2k − 3 divides 6p. But 2 ≤ k < 6, and it follows that k = 2 or 3 (since p 6∈ {5, 7}), and
then |G| = 24p or 12p, respectively. The case where k = 2 (and |G| = 24p) gives signature
(1;−; [3, 2]; {−}), which is equivalent to signature (1;−; [2, 3]; {−}), and so we are left with
the possibility that k = 3 (and |G| = 12p), which we will call case (g).

27



We will eliminate each of the seven cases (a) to (g) in turn, using properties of the
prime p (for which g = 2p + 1) as needed. In all seven cases, we let d, x and y be the
images in G of the canonical generators d1, x1 and x2 of the associated NEC group Γ with
signature (1;−; [2, k]; {−}) or (1;−; [3, k]; {−}) under some smooth epimorphism θ : Γ→ G.
Accordingly, G+ is generated by d 2, x and xd, with y = (d 2x)−1. Sometimes it is helpful
to use the facts that [d 2, xd] = d−3xd 2xd = [d 2, x]d and [xd, x] = d−1xdxd−1xdx = [d, x]2.

In cases (a) to (c), because p is large we find by Sylow theory that G has a cyclic
normal subgroup N of order p, and then G/N has a faithful action with the same signature
(1;−; [2, k]; {−}) on a surface of smaller genus (which might not be pseudo-real). In those
cases, standard group theory shows that G/CG(N) is isomorphic to a subgroup of Aut(N),
which is cyclic of order p − 1 since N ∼= Cp. In particular, |G/CG(N)| divides p − 1,
which is congruent to 10 mod 12 and hence is not divisible by 3 or 4. On the other hand,
|G/CG(N)| divides |G : N | = 24, 16 or 12, and it follows that |G/CG(N)| = 1 or 2. Thus
CG(N) = G or is a subgroup of index 2 in G. The same also holds in case (g), since in this
case |G/CG(N)| divides both p − 1 and |G : N | = 12. On the other hand, in cases (d) to
(f) we use properties of p to show that G has a cyclic normal subgroup N of some order
other than p, and proceed similarly.

Case (a): Signature (1;−; [2, 3]; {−})
Here |G| = 24p, and G has a cyclic normal subgroup N of order p, which must be

the image under the epimorphism from Γ to G of a normal subgroup of index 24 in Γ.
A Magma computation, however, shows that this NEC group Γ has only one normal
subgroup of index 24, and in the quotient (isomorphic to G/N), the images of the canonical
generators d1, x1 and x2 have orders 6, 2 and 3, and hence d = θ(d1) has order 6 or 6p,
neither of which is divisible by 4, contradiction.

Case (b): Signature (1;−; [2, 4]; {−})
Here |G| = 16p, and G has a cyclic normal subgroup N of order p, which must be

the image under the epimorphism from Γ to G of a normal subgroup of index 16 in Γ.
Also the images of x1 and x2 in G/N must have orders 2 and 4 (since |N | = p), and
because p ≡ 11 mod 12 we know that p − 1 is even but not divisible by 4, and therefore
gcd(|G/N |, |Aut(N)|) = gcd(16, p− 1) = 2.

Now let H = CG(N). Then G/H is isomorphic to a subgroup of order at most 2 in
Aut(N), and so H has index 1 or 2 in G. An easy exercise (considering homomorphisms
onto C2) shows that either H = G, or H = G+ = 〈d 2, x, xd〉, or H = 〈d, dx〉 or 〈dx, xd〉.

Next, a Magma computation shows that the NEC group Γ has seven normal subgroups
of index 16, but only two of them have the property that the images of x1 and x2 in the
quotient have the required orders 2 and 4. The corresponding two quotients of order 16
are isomorphic to C8×C2 and the semi-direct product C8 o5 C2, and the images of d1 and
d1x1 have order 8 in both cases, while the images of [d1, x1] and [d 2

1 , x1] are trivial in the
first case (obviously) and have orders 2 and 1 in the second (because if u and v are the
images in C8o5C2 of d1 and x1 respectively, then u2 = v8 = 1 and u−1vu = v5, so (vu)2 =
vvu = v6 = v−2, and therefore [v, u] = v−1vu = v4, and [v2, u] = v−2(v2)u = v8 = 1). Hence
either G/N is isomorphic to C8 × C2, with the images of d, dx, [d, x] and [d 2, x] having
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orders 8, 8, 1 and 1, or G/N is isomorphic to C8o5C2, with the images of d, dx, [d, x] and
[d 2, x] having orders 8, 8, 2 and 1.

Now suppose that H = 〈d, dx〉. Then d has order divisible by 8, and centralises the
cyclic normal subgroup N of order p, so H itself is cyclic (of order 8p). Moreover, since
H is generated by d and its conjugate dx, it follows that H is generated by d. Hence
G = 〈d, x〉 ∼= 〈d〉o〈x〉 ∼= C8poC2. By Proposition 5.1, however, this gives an automorphism
of G inverting each of d and x, and so by Proposition 2.1, the surface S is not pseudo-real.

Similarly, if H = 〈dx, xd〉, then since the order of dx is divisible by 8, and x−1(xd)x =
dx, we find that H is cyclic and generated by dx, so G = 〈d, x〉 ∼= 〈dx〉o 〈x〉 ∼= C8p o C2.
This time Proposition 5.1 gives an automorphism of G that inverts each of dx and x,
and then the composite of this with conjugation by x takes x to x−1 and d = (dx)x to
x(dx)−1 = d−1, which gives the same contradiction as above.

Thus H = G or H = 〈d 2, x, xd〉 = G+, and in either case, H contains d 2, x and xd.
Next, we observe that N is a central subgroup of index |H : N | = 8 or 16 in H, and

so |H : Z(H)| divides 16. Hence by Schur’s centre-by-finite theorem (see [19, 10.1.4]), the
exponent of H ′ divides 16. It follows that the orders of [d 2, x] and [xd, x] = [d, x]2 divide
16, and so the order of [d, x] divides 32.

If G/N is isomorphic to C8×C2, we have [x, d] ∈ N and so [x, d] has order 1 or p, and it
follows that [x, d] = 1. But in that case G = 〈d, x〉 is abelian and so 1 = y4 = (d 2x)4 = d 8,
which makes the order of G divide 16, contradiction.

On the other hand, if G/N is isomorphic to C8o5C2, then both [d, x]2 and [d 2, x] have
order 1 or p, and hence both [d, x]2 and [d 2, x] are trivial. Consequently, also the elements
[d 2, xd] = [d 2, x]d and [xd, x] = [d, x]2 are trivial, and so the three generators d 2, x and xd

of G+ commute with each other, and therefore G+ is abelian. But now since G+ has order
8p and is generated by d 2 and the two involutions x and xd, the order of d 2 has to be
divisible by p, and moreover, since we already know that the order of d is divisible by 8, it
follows that d has order 8p. But again this implies that G = 〈d, x〉 ∼= 〈d〉o 〈x〉 ∼= C8poC2,
and so from Proposition 5.1 we obtain another contradiction.

Case (c): Signature (1;−; [2, 6]; {−})
This is similar to case (a). Here |G| = 12p, and G has a cyclic normal subgroup N

of order p, which must be the image under the epimorphism from Γ to G of a normal
subgroup of index 12 in Γ. Moreover, the images of x1 and x2 in G/N must have orders 2
and 6, since |N | = p is coprime to 2 and 6. A computation with Magma, however, shows
that this NEC group Γ has only one normal subgroup of index 12 with the property that
the images of x1 and x2 in the quotient have orders 2 and 6, and for that one, the image
of d1 has order 6, which is not divisible by 4, contradiction.

Case (d): Signature (1;−; [2, p+ 2]; {−})
Here |G| = 8(p+2), and so y generates a cyclic subgroup N of odd order p+2 and index

8. As g ∈ G we know that p 6≡ 1 mod 3 and p 6≡ 5 mod 7, and therefore |N | = p+ 2 is not
divisible by 3 or 7. In particular, no non-trivial divisor of |G : N | = 8 can be congruent to
1 modulo a prime divisor of |N |, and it follows that every Sylow subgroup of N is normal
in G. Thus N itself is normal in G, and we can proceed as in the above cases.
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Under the epimorphism θ : Γ→ G, the subgroup N of G must be the image of a normal
subgroup of index 8 in Γ, with the images of x1 and x2 in G/N having orders 2 and 1
(since |G/N | = 8 but |N | = o(x2) = p + 2 is odd). If we drop the relation xp+2

2 = 1 from
the presentation for Γ, however, we have the group 〈 d1, x1, x2 | d 2

1x1x2 = x 2
1 = 1 〉, and

a computation with Magma shows that this group has exactly five normal subgroups of
index 8, and for all of them, the order of the image of x2 is either 2 or 4, contradiction.

Case (e): Signature (1;−; [2, 2p+ 2]; {−})
In some ways this is the most challenging of the seven cases, but in fact it is substantially

similar to case (b). Here |G| = 8(p+1), and y generates a cyclic subgroup of order 2(p+1),
which is congruent to 24 mod 48, so the image of x242 generates a cyclic subgroup N of odd
order (p+ 1)/12, and index 96.

Our choice of the set G ensures that no divisor of 96 is congruent to 1 modulo a prime
divisor of (p + 1)/12, and it follows that every Sylow subgroup of N is normal in G, and
hence N itself is normal in G. Furthermore, Aut(N) is a direct product of cyclic groups
of the form Cqr−1(q−1) where q is a prime and qr is a maximal prime-power divisor of
|N | = (p + 1)/12, and then since q ≡ 2 mod 3 and q ≡ 3 mod 4 (by the definition of G),
we find that Aut(N) has no elements of order 3 or 4, so |G/CG(N)| = 1 or 2 as before.

But also N is contained in the cyclic subgroup of G generated by y, and so H = CG(N)
contains y = (d 2x)−1. It follows that if |G : H| = 2, then H 6= 〈d, dx〉, for otherwise
H contains d−2y−1 = x and then H = 〈d, dx, x〉 = G, and similarly H 6= 〈dx, xd〉, for
otherwise H contains (dx)y = d−1 and again H = 〈d, dx, x〉 = G. Hence either H = G or
H = G+ = 〈d 2, x, xd〉, and in both cases, H contains d 2, x and xd.

Next, if we drop the relation x2p+2
2 = 1 from the presentation for Γ, we have the group

〈 d1, x1, x2 | d 2
1x1x2 = x 2

1 = 1 〉 as in case (d), and another computation with Magma
shows that this group has exactly 77 normal subgroups of index 96, but only two of them
have the property that the images of x1 and x2 in the quotient have orders 2 and 24.

These two quotients of order 96 are isomorphic to C48×C2 and the semi-direct product
C48 o25 C2, with the images of d1 and d1x1 having order 48 in both cases, and also (just
as in case (b)) with the images of [d1, x1] and [d 2

1 , x1] being trivial in the first case and
having orders 2 and 1 in the second. Hence either G/N is isomorphic to C48 × C2, with
the images of d, dx, [d, x] and [d 2, x] having orders 48, 48, 1 and 1, or G/N is isomorphic
to C48 o25 C2, with the images of d, dx, [d, x] and [d 2, x] having orders 48, 48, 2 and 1.

On the other hand, N is a central subgroup of index |H : N | = 48 or 96 in H, and so
|H : Z(H)| divides 96, and hence by Schur’s centre-by-finite theorem, the exponent of H ′

divides 96. It follows that the orders of [d 2, x] and [xd, x] = [d, x]2 divide 96, and so the
order of [d, x] divides 192.

If G/N is isomorphic to C48 × C2, then [x, d] ∈ N and so the order of [d, x] divides
(p + 1)/12, which is coprime to 2 and 3, and so [d, x] is trivial. But then G = 〈d, x〉 is
abelian, and so again admits an automorphism that inverts each of d and x, contradiction.
On the other hand, if G/N is isomorphic to C48 o25 C2, then the orders of [d, x]2 and
[d 2, x] divide (p + 1)/12, and so both [d, x]2 and [d 2, x] are trivial, and hence also the
elements [d 2, xd] = [d 2, x]d and [xd, x] = [d, x]2 are trivial. Again this shows that the three
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generators d 2, x and xd of G+ commute with each other, so G+ is abelian. Moreover,
since G+ has order 4(p+ 1) and is generated by d 2 and the two involutions x and xd, the
order of d 2 has to be divisible by (p+ 1)/12, and since we already know that the order of
d is divisible by 48, we find that d has order 48(p + 1)/12. Once again this implies that
G = 〈d, x〉 ∼= 〈d〉o 〈x〉 ∼= C4(p+1) o C2, and Proposition 5.1 gives another contradiction.

(Note: It is tempting to try to drop the part of the definition of G that requires no prime
divisor of p+ 1 to be congruent to 1 mod 3 or to 1 mod 4. Without it, however, in case (e)
we get groups of order 8(p + 1) = 4(g + 1) that satisfy all the usual conditions, but with
H = CG(N) having index 4 in G, and some of these are not extendable to larger groups
on the same surface. Accordingly, for those examples the lower bound on the genus g is
not sharp, and so this part of the definition of G cannot be ignored.)

Case (f): Signature (1;−; [2, 4p+ 2]; {−})
Here |G| = 8p+4 = 4(2p+1), and y2 generates a cyclic subgroup N of odd order 2p+1

and index 4. Then since 2p+1 is not divisible by 3, every Sylow subgroup of N is normal in
G (since it is already central in N), and hence N itself is normal in G, and we can proceed
as before. Under the epimorphism θ : Γ → G, the subgroup N must be the image of a
normal subgroup of index 4 in Γ, with the the images of x1 and x2 in G/N having orders 2
and 2. If we drop the relation x4p+2

2 = 1 from the presentation for Γ, however, we have the
group 〈 d1, x1, x2 | d 2

1x1x2 = x 2
1 = 1 〉 once more, and a computation with Magma shows

that this group has exactly three normal subgroups of index 4, but for two of them, the
orders of the images of x1 and x2 are 1 and 2, and 2 and 1, while for the third, the order
of the image of d1 is 2 and so the order of the image of d1 in G cannot be divisible by 4,
another contradiction.

Case (g): Signature (1;−; [3, 3]; {−})
This case is a little different from the others, but easier. Here |G| = 6(g − 1) = 12p,

and again G has a cyclic normal subgroup N of order p, which must be the image under
the epimorphism from Γ to G of a normal subgroup of index 12 in Γ, and be contained in
the index 2 subgroup G+. A Magma computation, however, shows that this NEC group
Γ has only two normal subgroups of index 12, but neither of them is contained in the index
2 subgroup Γ+, and hence for both of them, the image of the subgroup Γ+ has index 1
(not 2) in the quotient G, yet another contradiction.

As we have eliminated all seven cases, this completes the proof.

Remark 5.4 In contrast, for even genus g we are not able to say much more about the
bound M(g) ≥ 2g. It is sharp for g = 2 and g = 8, but not for other small even values of g,
as can be seen in the Appendix (described in the next section). On the other hand, for every
prime p ≡ 1 mod 4 we can construct an essential action with signature (1;−; [2, 2, 2]; {−})
of a semi-direct product Cp o C4 on a pseudo-real surface of even genus g = p + 1, and
this gives M(g) ≥ 4(g − 1) for infinitely many even values of g. These actions, however,
do not cover an infinite sequence of consecutive even values for g, and so do not give an
improved bound that works for all but finitely many even g. We leave this matter as an
open question.
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6 Some computations

Using the capabilities of Magma [4] to find all quotients of a given finitely-presented
group up to a given order and check for automorphisms of a finite group G, it is possible
to determine actions of all groups of small order on pseudo-real surfaces of small genus
g > 1, and hence to determine M(g) for small values of g.

When testing whether a particular smooth quotient G of Γ is the (full) automorphism
group of a pseudo-real surface, we must check two things: one is that the image in G of
the subgroup Γ+ is a subgroup of index 2 in G (which we may denote by G+), and the
other is that the action of G on the surface is not extendable to that of a larger group.
These can be checked relatively easily, using the information provided for cases (a) to (d)
in Section 2.2.

In a table in the Appendix we give a list of the values of M(g) for all g between 2 and
128, including also the signatures for the actions of the corresponding groups of largest
order. Note that this considerably extends the determination of M(g) for 2 ≤ g ≤ 10 that
easily follows from the work by Michela Artebani, Saúl Quispe and Cristian Reyes in [2].
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Departamento de Matemáticas Fundamentales, Facultad de Ciencias, UNED,
c/ Senda del Rey s/n, 28040 Madrid, Spain
Email: eb@mat.uned.es

Javier Cirre:
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Appendix

The table below gives the largest order M(g) of group actions on pseudo-real Riemann
surfaces of given genus g, for 2 ≤ g ≤ 128 :

g M(g) Signature(s) of group actions of largest order

2 4 (1;−; [2, 2, 2]; {−})
3 8 (1;−; [2, 2, 2]; {−})
4 20 (1;−; [2, 5]; {−})
5 16 (1;−; [2, 2, 2]; {−})
6 20 (1;−; [2, 2, 2]; {−})
7 24 (1;−; [2, 2, 2]; {−})
8 16 (1;−; [2, 2, 8]; {−})
9 40 (1;−; [2, 10]; {−})
10 72 (1;−; [2, 4]; {−})
11 40 (1;−; [2, 2, 2]; {−})
12 52 (1;−; [2, 13]; {−})
13 48 (1;−; [2, 2, 2]; {−})
14 156 (1;−; [2, 3]; {−})
15 56 (1;−; [2, 2, 2]; {−})
16 100 (1;−; [2, 5]; {−})
17 128 (1;−; [2, 4]; {−})
18 136 (1;−; [2, 4]; {−})
19 144 (1;−; [2, 4]; {−})
20 60 (1;−; [5, 6]; {−})
21 80 (1;−; [2, 2, 2]; {−}), (1;−; [4, 4]; {−}), (2;−; [2]; {−})
22 84 (1;−; [3, 6]; {−})
23 88 (1;−; [2, 2, 2]; {−})
24 100 (1;−; [2, 25]; {−})
25 144 (1;−; [2, 6]; {−})
26 300 (1;−; [2, 3]; {−})
27 104 (1;−; [2, 2, 2]; {−})
28 116 (1;−; [2, 29]; {−})
29 168 (1;−; [2, 6]; {−})
30 116 (1;−; [2, 2, 2]; {−})
31 120 (1;−; [2, 2, 2]; {−})
32 80 (1;−; [8, 10]; {−})
33 256 (1;−; [2, 4]; {−})
34 140 (1;−; [2, 35]; {−})
35 272 (1;−; [2, 4]; {−})
36 148 (1;−; [2, 37]; {−})
37 288 (1;−; [2, 4]; {−})
38 444 (1;−; [2, 3]; {−})
39 160 (1;−; [2, 40]; {−})
40 180 (1;−; [2, 15]; {−})
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g M(g) Signature(s) of group actions of largest order

41 224 (1;−; [2, 7]; {−})
42 328 (1;−; [2, 4]; {−})
43 168 (1;−; [2, 2, 2]; {−})
44 180 (1;−; [2, 45]; {−})
45 176 (1;−; [2, 2, 2]; {−})
46 216 (1;−; [2, 12]), (1;−; [3, 4]; {−})
47 184 (1;−; [2, 2, 2]; {−})
48 136 (1;−; [4, 17]; {−})
49 384 (1;−; [2, 4]; {−})
50 588 (1;−; [2, 3]; {−})
51 400 (1;−; [2, 4]; {−})
52 272 (1;−; [2, 8]; {−})
53 624 (1;−; [2, 3]; {−})
54 220 (1;−; [2, 55]; {−})
55 432 (1;−; [2, 4]; {−})
56 200 (1;−; [4, 5]; {−})
57 336 (1;−; [2, 6]; {−})
58 228 (1;−; [3, 6]; {−})
59 240 (1;−; [2, 60]; {−})
60 244 (1;−; [2, 61]; {−})
61 240 (1;−; [2, 2, 2]; {−}), (1;−; [4, 4]; {−}), (2;−; [2]; {−})
62 732 (1;−; [2, 3]; {−})
63 248 (1;−; [2, 2, 2]; {−})
64 260 (1;−; [2, 65]; {−})
65 768 (1;−; [2, 3]; {−})
66 312 (1;−; [3, 4]; {−})
67 272 (1;−; [2, 68]; {−})
68 180 (1;−; [5, 18]; {−})
69 544 (1;−; [2, 4]; {−})
70 216 (1;−; [3, 36]; {−})
71 336 (1;−; [2, 12]; {−})
72 292 (1;−; [2, 73]; {−})
73 576 (1;−; [2, 4]; {−})
74 876 (1;−; [2, 3]; {−})
75 296 (1;−; [2, 2, 2]; {−})
76 500 (1;−; [2, 5]; {−})
77 456 (1;−; [2, 6]; {−})
78 220 (1;−; [5, 10]; {−})
79 320 (1;−; [2, 80]; {−})
80 204 (1;−; [6, 17]; {−})
81 640 (1;−; [2, 4]; {−})
82 648 (1;−; [2, 4]; {−})
83 656 (1;−; [2, 4]; {−})
84 340 (1;−; [2, 85]; {−})
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g M(g) Signature(s) of group actions of largest order

85 504 (1;−; [2, 6]; {−})
86 408 (1;−; [2, 12]; {−})
87 344 (1;−; [2, 2, 2]; {−})
88 356 (1;−; [2, 89]; {−})
89 440 (1;−; [2, 10]; {−})
90 712 (1;−; [2, 4]; {−})
91 720 (1;−; [2, 4]; {−})
92 468 (1;−; [2, 9]; {−})
93 368 (1;−; [2, 2, 2]; {−})
94 380 (1;−; [2, 95]; {−})
95 376 (1;−; [2, 2, 2]; {−})
96 388 (1;−; [2, 97]; {−})
97 768 (1;−; [2, 4]; {−})
98 1164 (1;−; [2, 3]; {−})
99 400 (1;−; [2, 100]; {−})
100 404 (1;−; [2, 101]; {−})
101 1200 (1;−; [2, 3]; {−})
102 404 (1;−; [2, 2, 2]; {−})
103 816 (1;−; [2, 4]; {−})
104 420 (1;−; [2, 105]; {−})
105 1248 (1;−; [2, 3]; {−})
106 336 (1;−; [3, 24]; {−})
107 424 (1;−; [2, 2, 2]; {−})
108 436 (1;−; [2, 109]; {−})
109 864 (1;−; [2, 4]; {−})
110 1308 (1;−; [2, 3]; {−})
111 440 (1;−; [2, 2, 2]; {−})
112 468 (1;−; [2, 39]; {−})
113 896 (1;−; [2, 4]; {−})
114 904 (1;−; [2, 4]; {−})
115 480 (1;−; [2, 40]; {−})
116 500 (1;−; [2, 25]; {−})
117 480 (1;−; [2, 60]; {−})
118 1404 (1;−; [2, 3]; {−})
119 480 (1;−; [2, 120]; {−})
120 408 (1;−; [4, 6]; {−})
121 720 (1;−; [3, 3]; {−}), (1;−; [2, 6]; {−})
122 968 (1;−; [2, 4]; {−})
123 488 (1;−; [2, 2, 2]; {−})
124 820 (1;−; [2, 5]; {−})
125 744 (1;−; [2, 6]; {−})
126 1000 (1;−; [2, 4]; {−})
127 1008 (1;−; [2, 4]; {−})
128 312 (1;−; [6, 52]; {−})
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