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Abstract

In this paper we present for the first time quantum annealing solutions for densest
k-subgraph problems which have many applications in computational biology. Our
solutions are formulated as solutions for Quadratic Unconstrained Binary Optimisa-
tion and Integer Programming problems, proved to be equivalent with the densest
k-subgraph problems and then tested on an D-Wave 2X machine. The QUBO formu-
lations are optimal in terms of the number of logical qubits, but require the highest
number of physical qubits after embedding. Experimental work reported here suggests
that the D-Wave 2X model cannot handle problems of this difficulty. The next genera-
tion of D-Wave hardware architecture—the Pegasus architecture—is much denser than
the current one, so dense QUBOs will be easier to embed. The experimental work also
suggests that the current built-in post-processing optimisation method does not work
very well for some problems and the default setting (post-processing optimisation on)
should be avoided (or at least tested before being turned on).

1 Introduction

Information in computational biology is increasingly represented with graphs, e.g., protein
interactions, metabolic pathways, gene regulation, gene annotation, RNA-seq reads, etc.
This means that many problems in processing biological information can be represented and
solved using graph theory, see for example [17, 30, 9]. Also, many graph problems have been
studied in membrane computing, see [28].

Adiabatic quantum computing (AQC) is a model of quantum computing based on the
propensity of physical systems—classical or quantum—to minimise their free energy, specif-
ically the free energy minimisation in a quantum system. This model is implemented by the
D-Wave series of quantum machines [26, 6, 11, 27].
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A D-Wave quantum machine solves a generic Quadratic Unconstrained Binary Optimi-
sation (QUBO) problem, an NP-hard mathematical problem consisting in the minimisation
of a quadratic objective function

z = xTQx,

where x = [x0, x1, . . . , xn−1] is a n-vector of binary variables and Q is an upper-triangular
n× n matrix:

x∗ = min
x

∑
i≤j

xiQ(i,j)xj, where xi ∈ {0, 1}.

In this paper we propose QUBO efficient formulations for problems involving finding
various dense subgraphs of a given graph which have many applications in computational
biology [17, 30, 9].

2 Notation

The set of positive reals is denoted by R+. Let G = (V,E) be a simple undirected graph
with vertices V and edges E. The number of vertices of a graph G is called the order of
G and the number of edges is called the size of G. The order and size of a graph G are
typically denoted by n and m respectively.

Given a graph of order n, we denote the vertices by V = {v0, v1, . . . , vn−1}. An edge
between vertices vi and vj is denoted by {vi, vj} and for convenience, we assume without loss
of generality that i < j. A vertex u in V is adjacent to a vertex v in V whenever {u, v} ∈ E.
The set of adjacent vertices of u, denoted by N(u), is called the neighbours of u. In this
paper we only consider simple graphs which are graphs without self-loops (i.e., for all v ∈ V ,
{v, v} /∈ E) or parallel edges.

Let G = (V,E) be a graph and C a subset of V . The subgraph induced by C, denoted
G(C) = (V (C), E(C)), is the graph having C as vertices and all the edges connecting pairs
of vertices in C in E (i.e., {vi, vj} ∈ E(C) if {vi, vj} ∈ E and {vi, vj} ⊆ C). The set C is a
clique if the induced graph G(C) is complete (i.e., G(C) has size (|C| · (|C| − 1)/2)).

The density of the graph G is defined by

DENS(G) =
|E|

|V | · (|V | − 1)/2
.

Given a constant γ ∈ (0, 1], a subset C of vertices is called a γ-quasi-clique or, simply, a
γ-clique, if C induces a subgraph with the edge density of at least γ. A γ-clique C is maximal
if there is no other γ-clique C ′ which strictly contains C. A γ-clique C is maximum if there
is no other γ-clique C ′ with higher density. Finding the maximum clique of a graph G is an
NP-hard problem (the decision version is NP-complete) [4].
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3 QUBO formulations for the (Edge-Weighted) Dens-

est k-Subgraph Problems

We first state formally the problem.

Densest k-Subgraph Problem:

Instance: A graph G = (V,E), n = |V |, m = |E|, positive integer k ≤ n.
Question: Find a V ′ ⊆ V with |V ′| = k such that

DENS(G(V ′)) = max{DENS(G(V ′′)) | V ′′ ⊆ V and |V ′′| = k}.

The Densest k-Subgraph Problem is a well studied problem in complexity theory [24]
which is related to several other important computational problems such as the Maximum
Clique Problem, which asks for the largest completely connected subgraph. The Densest
k-Subgraph Problem is at least at hard as the Maximum Clique Problem and thus NP-hard
for general graphs (i.e., the output is a k-clique of density 1 if it exists). Furthermore, the
Densest k-Subgraph Problem remains NP-hard even when the input is restricted to bipartite
graphs [10] and planar graphs [23].

The Edge-Weighted Densest k-Subgraph Problem, which is a generalisation of the Dens-
est k-Subgraph Problem, has many applications in computational biology; see [17, 30, 9].
Here, every edge in the graph is assigned a real weight value by an edge weight function W .
Without loss of generality, we assume the weights are normalised, so W : E → [−1, 1]. The
goal is to find a subset of vertices V ′ ⊆ V that maximises not the density of G(V ′), but the
sum of edge weights instead.

Edge-Weighted Densest k-Subgraph Problem:

Instance: A graph G = (V,E), n = |V |, m = |E|, positive integer k ≤ n and an edge
weight function W : E → [−1, 1].

Question: Find a V ′ ⊆ V with |V ′| = k such that
∑
{vi,vj}∈E(V ′)W ({vi, vj})

= max{
∑
{vi,vj}∈E(V ′′)W ({vi, vj}) | V ′′ ⊆ V and |V ′′| = k}.

Note that the above two problems do not have unique solutions.

Now we present a QUBO formulation for this edge-weighted problem. Given a graph
G = (V,E) with |V | = n vertices, |E| = m edges and a positive integer k ≤ n, the QUBO
formulation requires n binary variables labelled xi for 0 ≤ i < n, one for each vertex vi ∈ V .
The binary variables are denoted by the binary vector x = [x0, x1, . . . , xn−1].

The objective function to be minimised is:

F (x) = α

(
n−1∑
i=0

xi − k

)2

−
∑
{i,j}∈E

W ({i, j})xixj, for sufficiently large α ∈ R+. (1)

Assume that x∗ is an optimal solution with x∗ its corresponding variable assignment and
take V ′ = {vi | xi = 1, 0 ≤ i < n− 1} as a solution to the Densest k-Subgraph Problem. We

3



define a ‘decoder’ function D(x) : Zn
2 → 2V and D(x) = {vi | xi = 1, 0 ≤ i ≤ n − 1}. Note

|D(x)| = k.

The basic idea is that the term α
(∑n−1

i=0 xi − k
)2

in (1) ensures that exactly k vertices
are chosen at the end and −

∑
{i,j}∈E W ({i, j})xixj maximises the weight sum of edges in

the induced subgraph. We get the following:

Theorem 1. Suppose G = (V,E) is a graph of order n, size m and a normalised edge-
weight function W : E → [−1, 1]. Assume that x∗ and x∗ are an optimal solution and its
corresponding variable assignment of objective function (1), respectively. If V ′ = D(x∗),
then G(V ′) is the induced subgraph of k vertices with maximum

∑
{i,j}∈E(V ′)W ({i, j}). The

total edge-weight sum of G(V ′) is exactly −x∗.

Proof. Let x∗ and x∗ be the optimal solution and its corresponding variable assignment
in (1).

We first show that α
(∑n−1

i=0 xi − k
)2

= 0. Assume for the sake of a contradiction that(∑n−1
i=0 xi − k

)2 6= 0. Then we must have
∑n−1

i=0 xi 6= k. Based on this we show that one
can construct a new variable assignment y such that F (y) < F (x∗), which contradicts the
optimality of x∗.

There are two cases to analyse: 1)
∑n−1

i=0 xi = c > k, and 2)
∑n−1

i=0 xi = c < k.

In the former case, let b = c − k. As there are exactly c variables in x∗ with value 1,
we select any b of them, say x0, x1, . . . , xb−1 (note that we can always re-label all variables
as we can permute the vertices of G if necessary). If we set all of these variables to 0, then∑n−1

i=0 xi − k = 0 which means that the value of α
(∑n−1

i=0 xi − k
)2

will be reduced by αb2, so
it will be possible to construct a new variable vector y with F (y) < F (x∗). Now, for each
vertex vi where 0 ≤ i < b, the vertex vi is connected to at most c− 1 vertices in the induced
subgraph G(D(x∗)). Since W ({i, j}) ≤ 1, setting the corresponding variables x0, . . . , xb−1
to 0 will reduce the value of

∑
{i,j}∈E W ({i, j})xixj by at most b(c − 1). Accordingly, if

αb2 > b(c− 1), then the overall value of F (x) will decrease. Note that αb2 > b(c− 1) implies
αb > c − 1 and since c ≤ n and b > 1, setting α = n is sufficient for this condition. By
symmetry, we can also construct a new variable vector y for the latter case.

Finally, assume α
(∑n−1

i=0 xi − k
)2

= 0, hence in this case |D(x∗)| = k (i.e., the induced
subgraph G(D(x∗)) has exactly exactly k vertices). Consequently, −

∑
{i,j}∈E W ({i, j})xixj

maximises the sum of edge weights in the induced subgraph G(D(x∗)).

Since the Edge-Weighted Densest k-Subgraph Problem is the generalised version of the
unweighted version, formula (1) can be used to solve the unweighted problem as well. For
fixed k, k · (k− 1)/2 is a constant and hence maximising DENS(G(V ′)) is the same as max-
imising the number of edges in G(V ′). Therefore, if W ({i, j}) is a constant function, then
formula (1) solves the Densest k-Subgraph Problem. Note that a negative edge weight in
this case does not make much sense in terms of the problem and therefore we assume the
edge-weight function is strictly positive. Consequently, we have:
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Figure 1: Example of a bipartite graph; this graph was also used as an example in [30].

Corollary 2. Suppose G = (V,E) is a graph with order n, size m and a constant edge-
weight function W : E → (0, 1]. Assume that x∗ and x∗ are an optimal solution and its
corresponding variable assignment of objective function (1), respectively. If V ′ = D(x∗),
then G(V ′) is the induced subgraph of k vertices with maximum DENS(G(V ′)).

Proof. Note that the proof of Theorem 1 only requires W ({i, j}) ≤ 1 and hence the result
holds.

3.1 An example

In this subsection, we give an example of a QUBO constructed by our method. Let G =
(V,E) be the graph shown in Figure 1 where V = {0, 1, · · · , 9} and

E = {{0, 6}, {1, 5}, {1, 6}, {1, 7}, {2, 6}, {2, 7}, {2, 8}, {2, 9}, {3, 7}, {3, 8}, {3, 9}, {4, 8}}.

Suppose W : E → (0, 1] a constant function where W (e) = 1 for all e ∈ E and k = 5.
Based on the objective function (1), with α set to n = 10, the complete QUBO is given
in Table 1. A Python program to compute the QUBO can be found in Appendix B. This
QUBO has a unique optimal solution x∗ = [0, 0, 1, 1, 0, 0, 0, 1, 1, 1] which corresponds to the
vertex subset S = {2, 3, 7, 8, 9} and it can be verified (e.g., by brute-force computation) that
G(S) is a subgraph of order 5 with maximum density.
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Table 1: QUBO matrix for graph of Figure 1.

variables x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

x0 -90 20 20 20 20 20 19 20 20 20

x1 0 -90 20 20 20 19 19 19 20 20

x2 0 0 -90 20 20 20 19 19 19 19

x3 0 0 0 -90 20 20 20 19 19 19

x4 0 0 0 0 -90 20 20 20 19 20

x5 0 0 0 0 0 -90 20 20 20 20

x6 0 0 0 0 0 0 -90 20 20 20

x7 0 0 0 0 0 0 0 -90 20 20

x8 0 0 0 0 0 0 0 0 -90 20

x9 0 0 0 0 0 0 0 0 0 -90

4 Integer Programming Solution for the Densest k-

Subgraph Problem

In this section we present a 0-1 Integer Programming (IP) formulation for the Densest k-
Subgraph Problem. Various different formulations exist for (slight variations) of the problem
and our solution is quite similar to the Mixed Integer Programming formulation given in [2]1.
The difference is that the formulation in [2] assumes all edge weights are non-negative (hence
it does not compute the correct answer with negative edge weights).

Our formulation requires exactly n+m binary variables: one for each vertex in the graph
and one for each edge in the graph. We define xi for each vi ∈ V and yi,j for each {i, j} ∈ E
where xi ∈ {0, 1} and yi,j ∈ {0, 1}. If xi = 1, then we choose vi to be in the subset V ′. For
convenience we denote the collection of variables xi by x. The complete formulation is as
follows:

Maximise
∑
{i,j}∈E

W ({i, j}) yi,j (2)

subject to ∑
0≤i<n

xi = k, (3)

yi,j ≤ xi for each {i, j} ∈ E, (4)

1This particular formulation is actually a 0-1 IP formulation as well.
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yi,j ≤ xj for each {i, j} ∈ E, (5)

yi,j + 1− xi − xj ≥ 0 for each {i, j} ∈ E. (6)

Note that the terms W ({i, j}) are constants so the objective function (2) satisfies the
conditions of a 0-1 Integer Programming formulation.

Theorem 3. Suppose G = (V,E) is a graph of order n, size m and an edge-weight function
W : E → [−1, 1]. Assume that x∗ and x∗ are an optimal solution and its corresponding
variable assignment of objective function (2), respectively. If V ′ = D(x∗), then G(V ′) is the
induced subgraph of k vertices with maximum

∑
{i,j}∈E(V ′)W ({i, j}). The total edge-weight

sum of G(V ′) is exactly −x∗.

Proof. The constraint (3) ensures that exactly k vertices are chosen in V ′, so it is sufficient
to prove the theorem by showing that yi,j = 1 if and only if xi = 1 and xj = 1. This is indeed
the case because the constraints (4) and (5) ensure the value of yi,j cannot be 1 unless both
xi and xj have value of 1 and the constraints (6) enforce the condition that if both xi and
xj have value 1 then yi,j must have value 1 as well.

To conclude, for every V ′ ⊆ V with |V ′| = k, for each edge {i, j} in E(G(V ′)) the
corresponding variable yi,j will have a value of 1 and therefore (2) will maximise the sum of
edge weights in the induced subgraph.

5 Specified Subset Edge-Weighted Densest k-Subgraph

Problem

In gene annotation networks [30] the vertices and edges of the graphs represent DNA genes
and features of some (group of) organisms; if the goal is to identify a specific set of genes
or to find the set of genes related to a specified set of features, a general solution of the
Edge-Weighted Densest k-Subgraph Problem might not provide the relevant solution. These
cases can be modelled by the following problem:

Specified Subset Edge-Weighted Densest k-Subgraph Problem:

Instance: A graph G = (V,E), n = |V |, m = |E|, positive integer k ≤ n, a subset of
vertices S ⊆ V and an edge-weight function W : E → [−1, 1].

Question: Find a V ′ ⊆ V with S ⊆ V ′ and |V ′| = k such that
∑
{vi,vj}∈E(V ′)W ({vi, vj})

= max{
∑
{vi,vj}∈E(V ′′)W ({vi, vj}) | S ⊆ V ′′, V ′′ ⊆ V and |V ′′| = k}.

In this variation of the Edge-Weighted Densest k-Subgraph Problem the input includes a
subset S which the output V ′ must contain. The QUBO formulation given in Section 3 can
be modified slightly to solve this problem. Assume S = {v0, v1, . . . , vc−1} (we can relabel
vertices if needed). By setting all variables corresponding to S, that is, {x0, x1, . . . , xc−1},
to 1, we can guarantee that S is contained in the output subset V ′. Note that the term k in
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Formula (1) has to be replaced by k − c since we are now only choosing k − c vertices from
V \ S. The complete objective function is:

F (x) = α

(
n−1∑
i=c

xi − (k − c)

)2

−
∑

{i,j}∈E and i,j /∈S

W ({i, j})xixj

−
∑

{i,j}∈E and i∈S, j /∈S

W ({i, j})xj. (7)

Note that since we label the vertices in S by the first c integers, we will not have an edge
{i, j} where i /∈ S and j ∈ S (recall that we assume i < j). Equation (7) does not consider
edges between vertices in S, that is, edges {i, j} where i, j ∈ S. For a fixed set S, the edges
between vertices in S are also fixed and so

∑
{i,j}∈E, i,j∈S W ({i, j}) will be constant, so it

will have no effect on the minimisation of F (x).

Theorem 4. Suppose G = (V,E) is a graph of order n, size m, S a subset of V where
|S| = c < k, a normalised edge-weight function W : E → [−1, 1]. Assume that x∗ and x∗ are
an optimal solution and its corresponding variable assignment of objective function (7), re-
spectively. If V ′ = D(x∗)∪S, then G(V ′) is the induced subgraph of k vertices with maximum∑
{i,j}∈E(V ′)W ({i, j}). The total edge-weight sum of G(V ′) is −x∗+

∑
{i,j}∈E, i,j∈S W ({i, j}).

Theorem 4 follows directly from Theorem 1 and the construction of Equation (7) and so
the proof is omitted.

5.1 The example revisited

Recall the example given in Section 3.1, let us consider the same graph here and let S =
{0, 1, 2, 3}. Once again, the goal is to find a maximum edge-weighted induced subgraph of
order 5, and the subgraph has to include vertices 0, 1, 2 and 3. All other parameters are same
as the example given in Section 3.1. Based on Formula (7), the complete QUBO is given in
Table 2. Note that S only contains vertices from one partition of the bipartite graph and
we are only selecting one additional vertex, so it is quite obvious that the new vertex has to
be chosen from the other partition (i.e., {5, 6, 7, 8, 9}). Choosing either vertex 6 or 7 in this
case would produce the maximal number of edges and it can be verified computationally
that both x∗1 = [0, 0, 1, 0, 0, 0] and x∗2 = [0, 0,−0, 1,−0, 0], which correspond to the selection
of vertices 6 and 7, respectively, are optimal solutions of the QUBO given in Table 2.

6 Experimental work

We conducted several experiments to empirically measure the viability of the QUBO for-
mulation of the Densest k-Subgraph Problem given in Section 3 on a D-Wave 2X quantum
annealer. We will first provide an overview of how the experiments were set up followed
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Table 2: QUBO matrix for sample graph with fixed S = {0, 1, 2, 3}.

variables x4 x5 x6 x7 x8 x9

x4 -10 20 20 20 19 20

x5 0 -11 20 20 20 20

x6 0 0 -13 20 20 20

x7 0 0 0 -13 20 20

x8 0 0 0 0 -12 20

x9 0 0 0 0 0 -12

by a presentation and discussion of the results. Some of our programs and scripts given in
the appendix uses external packages such as Sage Mathematics [31], NetworkX [18] and the
D-Wave System API [15]. We also assume all graphs are represented using the standard
adjacency list format (for example see Section C).

6.1 Experiment setup and test cases

As mentioned in Section 3, the Densest k-Subgraph Problem remains NP-hard even when
the input is restricted to bipartite graphs. Because the importance of bipartite graphs in
computational biology (e.g., see [30]), we generated random test cases which are all bipartite
graphs. There are several different ways to generate random graphs: in this paper we used
the random model from [3]. In this model, each edge is chosen independently with probability
p for 0 < p < 1. This means that if G = (V,E) is a bipartite graph and V = V1 ∪ V2 is the
vertex partition, then for vi ∈ V1 and v2 ∈ V2, the probability of {vi, vj} ∈ E is p.

The NetworkX software package provides a function to generate these test cases, see
Script A. The function takes three parameters: the number of vertices in both partitions
and an edge probability p. Both partitions have the same size so if the order of the graph
is n, each partition has exactly n/2 vertices (assuming n is even). The edge probability p is
set to 0.8 since denser instances of the problem are harder in general. We also require the
graph to be connected as otherwise it can be reduced to multiple smaller instances of the
Densest k-Subgraph Problem.

We randomly generated twenty bipartite graphs of order 30. See Section E for an example
drawing of graph 1 and the auxiliary data of [8] for further details of all test cases. These
graphs have about the largest instances that can be solved on a D-Wave 2X. We also set k
to n/2 = 15 because these are the hardest cases for the Densest k-Subgraph Problem since(
n
k

)
yields the highest number of different combinations when k = n/2. Each graph is also

associated with a set of randomly generated edge weights (in range [0, 1)) using the built-in
pseudo-random number generator of Python (see Script A). The weights are rounded to 2
decimal place due to the limited precision of the D-Wave hardware.

Since the quantum annealers manufactured by D-Wave do not support arbitrary qubit
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interactions, a given QUBO instance have to be ‘embedded’ in the hardware structure of
the quantum device before the device can be used to solve it. This embeddings process is
highly dependent on the hardware structure. The family of D-Wave computers uses the
Chimera graphs which are M ×N blocks of interconnected complete bipartite graphs KL,L.
The specific model we have used (D-Wave 2X) has M = N = 12 and L = 4; more details
of the hardware structure and the embedding process can be found in [1]. In general, the
denser the QUBO instance is, the more physical qubits are required to embed the instance.
Previous experimental work such as [1, 7, 16] and theoretical results [5] suggest that the
embedding of a QUBO instance of n variables requires O(n2) physical qubits. This is espe-
cially true here since formula (1) requires every pair of variables to interact, so the variable
interactions form a complete graph of order n (Kn) which is the hardest case possible (from
the perspective of embedding). In theory, one can embed complete graphs up to order 48
in the D-Wave 2X model and a polynomial time algorithm to generate such embeddings is
given in [5]. Moreover, the particular D-Wave 2X we worked with has 54 inactive qubits and
extra faulty couplers in-between active qubits, so the aforementioned algorithm [5] is not
applicable in this case here. Consequently, we have used the heuristic algorithm provided
by the D-Wave software package [15] to compute the embeddings for our test cases. Since
all of our test cases have the same interaction structure, the same embedding was used for
all test cases—this also saved considerable classical computer time since computing different
embeddings is time consuming. The QUBO instance has to be converted to its equivalent
Ising form since the D-Wave model works only with problems in Ising formulation; the D-
Wave software package [15] has functions that support this transformation process. For more
details see [22] and [11].

6.2 Parameter settings

After embedding the QUBO instance in the D-Wave hardware, the annealing cycle be-
gins, that is, the quantum annealing is used to solve the embedded problem instance. The
D-Wave 2X system provides many different options and settings (see [12]) and it is difficult
to determine the optimal settings for a particular problem. For our experiments we used
the same parameter settings as described in [20] which follow the standard guidelines in the
manuals such [11] and [12]. One difference between our settings and the ones used in [20] is
that we repeated the experiment twice: the first time with the post-processing optimisation
option turned on (default) and the second time with the option turned off, see Section 6.4
for details. The process of quantum annealing is probabilistic and in general it is not pos-
sible to calculate the probability of obtaining an optimal solution, so experimental work is
used to empirically approximate this probability via repetitions, see [1]). Finally, we set the
annealing cycle to repeat a total of 1, 000 times for each test case which generates 1, 000
samples (not all samples are unique). Since the D-Wave hardware can sometimes be incon-
sistent (e.g., due to the machine maintenance and re-calibration cycles), we repeated the
entire experiment three times and all the results are given in Tables 5 and 6. See Section 6.4
for more details.
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6.3 Classical solvers

We have also implemented several classical algorithms for the Densest k-Subgraph Problem
in order to empirically compare the performance of the D-Wave 2X. These includes a Sage
program that solves the IP formulation (2) as well as a straightforward randomised algorithm.
The Sage program is given in Appendix C and D. The Sage program uses the GLPK solver
which is an exact solver for IP. The IP formulation (2) requires O(n2) variables since there
are at most O(n2) edges in a graph. The largest instance of the problem solved with the
script in Appendix C was a graph with 40 vertices and more than 1, 000 edges which took
more than 30 minutes, which is quite a long time, on a 8-core Intel(R) Core(TM) i7-4790K
CPU running Fedora 29 Another reason for choosing test cases of order 30 was the difficulty
to verify the correctness quantum solutions with classical computations.

Appendix D describes the simple randomised algorithm. At each iteration we generated
a random subset of V of size fifteen and we computed the total edge-weight sum of the
induced subgraph. The final returned value is the vertex subset that yields the highest total
edge-weight sum.

6.4 Experiment results and discussion

We also used the Sage solver to verify that all test cases had unique optimal solutions. In
theory, the probability of a test case having more than one optimal solutions is very low
but not impossible (i.e., for example a test case with at least two subgraphs of order fifteen
with the same edge-weight sum). Since having a unique optimal solution would make the
analysis in Section 6.4 a lot simpler, we modified the Sage Program C to verify the optimal
solution of each test case is unique. The GLPK solver itself does not support the function
of enumerating all optimal solutions and so we modified the program. Let G = (V,E) be
a graph and suppose we have used Script C to find (one of) its optimal solution; let W ′

and V ′ = {v0, v1, · · · , v14} be the optimal objective value (edge-weight sum of the induced
subgraph) and set of vertices of the optimal solution. If we add another constraint of the
form ∑

vi∈V ′

xvi ≤ k − 1

to the IP formula (2) then the GLPK solver is now not allowed to select V ′ as the vertex
set again. Hence, if we now compute the optimal objective value W ′′ and compare with W ′,
the optimal solution is unique if and only if W ′′ 6= W ′. We verified via this approach that
all test cases had unique optimal solutions.

Table 3 is the optimal solution of the IP formulations computed by Sage. Table 4 presents
the best results obtained with the randomised algorithm (Program D) after 1, 000 iterations.
We have also measured the quality of the best answer from the randomised algorithm by
two additional metrics. Let G′ = (V ′, E ′) and G′′ = (V ′′, E ′′) be the optimal solution
computed by Sage (i.e., induced subgraph with maximum edge-weight sum) and the best
answer produced by the randomised algorithm respectively. The optimal solution ratio is

calculated as
∑

e∈E′′ W (e)∑
e∈E′ W (e)

so it shows how close the weighted edge sum produced by the random

11



algorithm is to the actual optimal answer. The other metric is the Jaccard similarity index,
a commonly used measurement in statistics that measures how close (or similar) two given

sets are. In our case, the Jaccard index is calculated as |V
′∩V ′′|

|V ′∪V ′′| and so it measures how close
the set of vertices found by the randomised algorithm is to the actual optimal set.

As can be seen in this table, the randomised algorithm consistently computes solutions
that are about 85% of an optimal value, a rather surprising result considering the simplicity
the algorithm. In theory, the expected number of vertices in a random subgraph of k vertices
is
(
k
2

)
2m

n(n−1) , where m and n are the size and order of the graph respectively. Let i and j be

the ith and jth random vertex choices. Since there are two ways to pick an edge {u, v} ∈ E
(i.e., i = u and j = v or i = v and j = u), the chance of an edge being chosen is 2m/n(n−1).
Furthermore, since there are

(
k
2

)
different combinations, the assertion follows. For the test

graphs (Program A) the expected number of edges in each graph is exactly 15∗15∗0.8 = 180
(since there are fifteen vertices in each partition and edge probability is 0.8). Together with
the fact that we have used normalised edge weights in range (0, 1], the expected edge weight
sum in a random graph is

(
15
2

)
180
30·29 ≈ 21.72 which is already about 60% of the true optimal

values. The average Jaccard index value for all the test cases is 52% so the best vertex set is
somewhat different from the optimal set. This is expected as well, since the edge weights are
uniformly distributed so there should be many induced subgraphs with similar edge-weight
sum.

Recall that for the D-Wave 2X experiment, we repeat the annealing cycle 1, 000 times
for each test case and therefore generating 1, 000 samples per test case. In general, there is
no guarantee that all 1, 000 samples corresponds to valid solutions, so we discarded samples
which do not correspond to exactly fifteen vertices. The valid answer with the highest edge-
weight sum for each test case is given in Tables 5 and 6. We have also computed the optimal
solution rate and the Jaccard similarity value for the best answer and we repeated the entire
experiment three times. For example, the test case labelled 1.2 in Table 5 is the result on
graph 1 (see Section E for drawings of test graphs) of the second repetition of the experiment
with post-processing optimisation turned off.

As can be seen in Tables 5 and 6, the answers obtained with quantum annealing are
significantly worse than the answers generated by the randomised algorithm: the average
optimal solution ratio is 41% and 71% with and without post-processing optimisation re-
spectively. There is also a decrease in the Jaccard similarity value when compared with the
randomised algorithm, the average is 25% and 37% for with and without post-processing
settings respectively.

We suspect the main reason for the poor performance of D-Wave is due to the quality of
the embedding used. To test this hypothesis we define the average map size of an embedding

as
no. of physical qubits
no. of logical qubits

(i.e., how many physical qubits does each logical qubit corresponds

to), a commonly used metric in measuring the quality of embeddings. Previous experimen-
tal studies such as [19, 29]2 have shown that embeddings with shorter and uniform map
size provide better solution quality. The particular embedding we have computed uses 440

2These publications refer to the map size as ‘chain length’ which could be somewhat misleading since the
set of physical qubits do not necessarily form a path.
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physical qubits so the average map size is 440
30
≈ 14.7, a relatively high value. Furthermore,

the minimum and maximum map sizes are 8 and 21 respectively, which is far from uniform.
The study in [29] benchmarked the effects of large map size (long chains) on a D-Wave 2
quantum computer (the predecessor of the D-Wave 2X), and experimentally estimated the
probability of obtaining the correct answer with map size of 14 to be less than 60%: in our
test cases we have 30 ‘chains’, hence the probability of all chains working correctly is less
than 0.0000221% (if we assume each chain operates independently).

Another observation is the fact that the quality of the results is clearly worse when the
post-processing optimisation option is turned on. There is no test case where turning on
the post-processing optimisation option actually improved the optimal solution rate. Since
the samples (with optimisation on and off) are from two different runs, it is possible that
the samples from the runs when the optimisation option is turned on was so bad that it
was beyond “repair” by the classical algorithm (due to an unknown reason): however, his
hypothesis is highly unlikely since the same trend exists in every test case. It seems odd that
the post-processing optimisation produces worse results for our test cases. Indeed, the post-
processing optimisation algorithm is just a classical algorithm running after the annealing
cycles to improve the results, so one should expect that the final results to be at least as
good as the results with the option turned off. One possible explanation is that our test cases
are the hardest cases for this classical algorithm. The exact details of the post-processing
optimisation algorithm is not available, but a high-level (rather vague) pseudo-code of the
algorithm is given in [13]. The user manual [13] states that the algorithm is based on [25]
and [21]. Both [13] and [25] assume and rely on the fact that the logical interaction graph
(i.e., QUBO matrix) is rather sparse so it has low tree-width, a condition which is not
satisfied by our test cases. Based on formula (1), our QUBO are all complete graphs and so
always have tree-width n − 1. Our test cases seem to be somewhat of the type of an ‘edge
case’ to the post-processing optimisation algorithm which is causing this poor performance
(or maybe even working incorrectly). Finally, we stress that we could not determine the
exact reason since the exact algorithm is not available.

7 Conclusion and Related Problems

In this paper we have presented for the first time QUBO and IP formulations for the (Edge-
Weighted) Densest k-Subgraph Problem as well as a QUBO formulation for the Specified
Subset Edge-Weighted Densest k-Subgraph Problem. Given a graph G = (V,E) of order n,
there are 2n possible subgraphs and so one needs at least O(lg 2n) = O(n) binary variables
to represent all possible solutions. Our QUBO formulations are optimal in terms of the
number of logical qubits required, which is not typical for QUBO formulations (for example,
see [1, 7]). However, the performance of D-Wave is heavily affected by the high map size
of logical qubits and our constructions require the highest number of physical qubits after
embedding: it seems that the D-Wave 2X model cannot handle problems of this difficulty.
D-Wave next generation of hardware architecture, known as the Pegasus architecture [14],
is much denser (the degree of each vertex is more than doubled) than the current Chimera
graph, so dense QUBOs will be easier to embed. This feature should mitigate some of the

13



Table 3: Sage optimal solutions.
Test cases Maximum weight sum

1 33.89
2 34.22
3 31.41
4 31.49
5 30.07
6 34.61
7 33.24
8 34.19
9 35.61
10 31.75
11 30.12
12 31.27
13 33.95
14 32.17
15 32.65
16 31.69
17 34.91
18 31.21
19 32.39
20 33.07

negative effects we are seeing here with the embedding.

We have also shown (via experimental work) that the current built-in post-processing
optimisation method does not work very well for some problems and the default setting
(post-processing optimization on) should be avoided (or at least tested before being turned
on).

Finally, we note that there is another variation of the Densest k-Subgraph Problem called
the Distance Restricted Densest k-Subgraph Problem [30]. The input of the problem has an
additional distance restriction function D : V ×V → N and a new constraint that for all pairs
of vertices u and v in the selected subset S, the distance between u and v in G(V ) has to
be at most D((u, v)). This distance restricted version of the problem is obviously NP-hard
if an arbitrary function D is allowed. It is more difficult to develop practical QUBO or IP
formulations for this distance restriction version of the problem since the standard methods
do not seem to easily encode the distance metric constraint. Indeed, the distance between
u and v can only be determined after the set S is fixed and it is not practical to consider
all possible paths between u and v in G in general. We plan to study this problem in more
detail in the future.
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Table 4: Randomised algorithm solutions.
Test cases Best answer Ratio over optimal solution Jaccard index

1 28.83 0.85 0.43
2 29.76 0.87 0.58
3 27.25 0.87 0.67
4 27.73 0.88 0.5
5 26.2 0.87 0.25
6 30.16 0.87 0.58
7 29.48 0.89 0.5
8 32.02 0.94 0.67
9 29.68 0.83 0.5
10 27.17 0.86 0.5
11 26.72 0.89 0.43
12 27.44 0.88 0.36
13 29.29 0.86 0.58
14 28.2 0.88 0.36
15 27.94 0.86 0.58
16 27.17 0.86 0.67
17 29.76 0.85 0.58
18 26.31 0.84 0.5
19 29.17 0.9 0.5
20 30.02 0.91 0.58
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Table 5: D-Wave solutions with no post-processing.
Test cases Best answer Ratio over optimal solution Jaccard index

1.1 20.55 0.61 0.25
1.2 24.07 0.71 0.5
1.3 28.2 0.83 0.5
2.1 25.37 0.74 0.43
2.2 26.25 0.77 0.5
2.3 23.66 0.69 0.43
3.1 21.59 0.69 0.36
3.2 23.33 0.74 0.36
3.3 23.73 0.76 0.3
4.1 25.51 0.81 0.3
4.2 24.29 0.77 0.25
4.3 24.03 0.76 0.3
5.1 22.05 0.73 0.25
5.2 23.5 0.78 0.25
5.3 22.64 0.75 0.3
6.1 24.46 0.71 0.43
6.2 24.53 0.71 0.43
6.3 22.75 0.66 0.43
7.1 20.43 0.61 0.3
7.2 22.65 0.68 0.36
7.3 24.13 0.73 0.43
8.1 21.59 0.63 0.3
8.2 25.45 0.74 0.43
8.3 25.89 0.76 0.3
9.1 24.25 0.68 0.25
9.2 27.89 0.78 0.5
9.3 28.29 0.79 0.43
10.1 24.29 0.77 0.3
10.2 24.98 0.79 0.43
10.3 22.35 0.7 0.36
11.1 0.0 0.0 0.0
11.2 20.43 0.68 0.5
11.3 23.35 0.78 0.5
12.1 22.61 0.72 0.25
12.2 23.07 0.74 0.43
12.3 23.52 0.75 0.43
13.1 26.39 0.78 0.3
13.2 28.44 0.84 0.43
13.3 27.05 0.8 0.58
14.1 0.0 0.0 0.0
14.2 24.94 0.78 0.58
14.3 26.64 0.83 0.3
15.1 23.27 0.71 0.36
15.2 26.51 0.81 0.43
15.3 26.35 0.81 0.36
16.1 0.0 0.0 0.0
16.2 26.22 0.83 0.5
16.3 24.88 0.79 0.5
17.1 19.95 0.57 0.36
17.2 27.9 0.8 0.5
17.3 27.69 0.79 0.5
18.1 22.59 0.72 0.43
18.2 21.84 0.7 0.43
18.3 22.54 0.72 0.43
19.1 24.62 0.76 0.36
19.2 28.09 0.87 0.43
19.3 27.39 0.85 0.2
20.1 24.63 0.74 0.43
20.2 24.83 0.75 0.36
20.3 24.66 0.75 0.3
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Table 6: D-Wave solutions with post-processing.
Test cases Best answer Ratio over optimal solution Jaccard index

1.1 0.0 0.0 0.0
1.2 22.55 0.67 0.43
1.3 28.2 0.83 0.5
2.1 0.0 0.0 0.0
2.2 22.19 0.65 0.25
2.3 23.66 0.69 0.43
3.1 0.0 0.0 0.0
3.2 21.36 0.68 0.36
3.3 23.73 0.76 0.3
4.1 0.0 0.0 0.0
4.2 22.51 0.71 0.3
4.3 24.03 0.76 0.3
5.1 0.0 0.0 0.0
5.2 17.97 0.6 0.36
5.3 22.54 0.75 0.36
6.1 0.0 0.0 0.0
6.2 24.53 0.71 0.43
6.3 22.75 0.66 0.43
7.1 0.0 0.0 0.0
7.2 21.65 0.65 0.36
7.3 22.3 0.67 0.43
8.1 0.0 0.0 0.0
8.2 25.45 0.74 0.43
8.3 23.48 0.69 0.3
9.1 0.0 0.0 0.0
9.2 25.38 0.71 0.43
9.3 27.64 0.78 0.36
10.1 0.0 0.0 0.0
10.2 16.36 0.52 0.36
10.3 22.28 0.7 0.36
11.1 0.0 0.0 0.0
11.2 19.75 0.66 0.5
11.3 25.23 0.84 0.58
12.1 0.0 0.0 0.0
12.2 0.0 0.0 0.0
12.3 23.52 0.75 0.43
13.1 0.0 0.0 0.0
13.2 28.44 0.84 0.43
13.3 23.1 0.68 0.36
14.1 0.0 0.0 0.0
14.2 23.95 0.74 0.58
14.3 26.64 0.83 0.3
15.1 0.0 0.0 0.0
15.2 22.79 0.7 0.25
15.3 21.21 0.65 0.3
16.1 0.0 0.0 0.0
16.2 24.54 0.77 0.5
16.3 24.88 0.79 0.5
17.1 0.0 0.0 0.0
17.2 24.83 0.71 0.5
17.3 23.43 0.67 0.36
18.1 0.0 0.0 0.0
18.2 20.58 0.66 0.36
18.3 21.19 0.68 0.36
19.1 0.0 0.0 0.0
19.2 24.43 0.75 0.2
19.3 27.39 0.85 0.2
20.1 0.0 0.0 0.0
20.2 24.51 0.74 0.43
20.3 23.95 0.72 0.3
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A Python Script to Generate Random Bipartite Graphs

#! usr / bin /env python2

import sys , random
from networkx . a lgor i thms import b i p a r t i t e as b i
import networkx as nx

n = i n t ( sys . argv [ 1 ] . s t r i p ( ) )
n 1 = n/2
n 2 = n − n 1

whi le True :
G = bi . random graph ( n 1 , n 2 , 0 . 8 )
i f nx . i s c o n n e c t e d (G) :

break

p r in t G. order ( )
f o r i in G. nodes ( ) :

f o r j in G. ne ighbors ( i ) :
p r i n t j ,

p r i n t

e d g e w e i g h t d i c t = {}
f o r (u , v ) in G. edges ( ) :

w = round ( random . random ( ) ,2 )
e d g e w e i g h t d i c t [ u , v ] = w
e d g e w e i g h t d i c t [ v , u ] = w

pr in t e d g e w e i g h t d i c t

listings/generate test cases.py
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B Python Script to Generate QUBOs

#! / usr / bin /env python2
#usage : generate QUBO . py < a l i s t

import sys , math
import networkx as nx

de f read graph ( ) :
n=i n t ( sys . s td in . r e a d l i n e ( ) . s t r i p ( ) )
G=nx . empty graph (n , c r e a t e u s i n g=nx . Graph ( ) )
f o r u in range (n) :

ne ighbors=sys . s td in . r e a d l i n e ( ) . s p l i t ( )
f o r v in ne ighbors : G. add edge (u , i n t ( v ) )

re turn G

def generate qubo (G, W, k ) :
n = G. order ( )
a = n
Q = {}
e = {}

f o r i in range (n) :
f o r j in range (n) :

Q[ i , j ] = a

f o r i in range (n) :
Q[ i , i ] −= 2∗a∗k

f o r ( i , j ) in G. edges ( ) :
Q[ i , j ] −= W[ i , j ]

# upper−t r i a n g u l i z a t i o n
f o r i in range (n) :

f o r j in range (n) :
i f i > j :

Q[ j , i ] += Q[ i , j ]
Q[ i , j ] = 0

# output QUBO
f o r i in range (n) :

f o r j in range (n) :
p r i n t Q[ i , j ] ,

p r i n t

G = read graph ( )
n = G. order ( )
W = eva l ( sys . s td in . r e a d l i n e ( ) . s t r i p ( ) )
generate qubo (G, W, n/2)

listings/generate QUBO.py
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C Sage Script to Solve the Edge-Weighted Densest

k-Subgraph Problem

#! / usr / bin /env sage
#usage : sage dense subgraph IP . py < a l i s t

import sys , networkx as nx

de f read graph ( ) :
n=i n t ( sys . s td in . r e a d l i n e ( ) . s t r i p ( ) )
G=nx . empty graph (n , c r e a t e u s i n g=nx . Graph ( ) )
f o r u in range (n) :

ne ighbors=sys . s td in . r e a d l i n e ( ) . s p l i t ( )
f o r v in ne ighbors : G. add edge (u , i n t ( v ) )

re turn G

G=read graph ( )
n=G. order ( )
k = n/2

p=MixedIntegerLinearProgram ( s o l v e r=”GLPK” , maximization=True )
x=p . new var iab l e ( binary=True )
#p . s e t b i n a r y ( x )
c = x [ 0 ]
f o r i in range (1 , n ) :

c = c + x [ i ]
p . add cons t ra in t ( c == k )
f o r ( i , j ) in G. edges ( ) :

c = x [ i , j ] + 1 − x [ i ] − x [ j ]
p . add cons t ra in t ( c >= 0)
p . add cons t ra in t ( x [ i , j ] <= x [ i ] )
p . add cons t ra in t ( x [ i , j ] <= x [ j ] )

W = eva l ( sys . s td in . r e a d l i n e ( ) . s t r i p ( ) )
#pr in t W
p . s e t o b j e c t i v e (sum(W[ i , j ] ∗ x [ i , j ] f o r ( i , j ) in G. edges ( ) ) )
#p . show ( )
t ry :

sz=p . s o l v e ( )
except sage . numerica l . mip . MIPSolverException as e :

p r i n t e
e l s e :

pass
opt we ight = p . g e t o b j e c t i v e v a l u e ( )
va r va lue = p . g e t v a l u e s ( x )

p r i n t opt we ight
p r i n t va r va lue

listings/dense subgraph IP.sage
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D Randomized Algorithm to Solve the Edge-Weighted

Densest k-Subgraph Problem

#! / usr / bin /env python2

import random , sys
import networkx as nx

de f read graph ( ) :
n=i n t ( sys . s td in . r e a d l i n e ( ) . s t r i p ( ) )
G=nx . empty graph (n , c r e a t e u s i n g=nx . Graph ( ) )
f o r u in range (n) :

ne ighbors=sys . s td in . r e a d l i n e ( ) . s p l i t ( )
f o r v in ne ighbors : G. add edge (u , i n t ( v ) )

re turn G

G = read graph ( )

number o f repeat = 1000
best weight sum = 0
b e s t v e r t e x s e t = [ ]
n = G. order ( )
W = eva l ( sys . s td in . r e a d l i n e ( ) . s t r i p ( ) )

f o r i in range ( number o f repeat ) :
S = random . sample ( range (n) ,n/2)
induced subgraph = G. subgraph (S)
weight sum = 0
f o r ( j , k ) in induced subgraph . edges ( ) :

weight sum += W[ j , k ]
i f weight sum > best weight sum :

best weight sum = weight sum
b e s t v e r t e x s e t = S

pr in t b e s t v e r t e x s e t
p r i n t best weight sum

listings/dense subgraph random.py

E Drawings of Test Graphs
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