
CDMTCS
Research
Report
Series

Solving the Bounded-Depth
Steiner Tree Problem using an
Adiabatic Quantum Computer

Kai Liu
Michael J. Dinneen

School of Department of Computer Science,
University of Auckland,
Auckland, New Zealand

CDMTCS-532
Feb 2019 (updated Oct 2019)

Centre for Discrete Mathematics and
Theoretical Computer Science

Solving the

Bounded-Depth Steiner Tree Problem

using an Adiabatic Quantum Computer

Kai Liu and Michael J. Dinneen

School of Computer Science, University of Auckland,
Auckland, New Zealand

Abstract. In this paper we propose quadratic unconstrained binary op-
timization (QUBO) formulation for the Bounded-Depth Steiner Tree
problem suitable for adiabatic quantum computers. The numbers of
qubits (dimension of QUBO matrices) required by our formulation is
O(|V |

3), where |V | represents the number of vertices. A D-Wave 2X
computer consisting of 1098 active qubits is evaluated for a selection of
known common graphs. Experimental results are shown and discussed.
Our results are applicable to the Bounded-Depth Minimum Spanning
Tree problem, as a special case.

Keywords: bounded-depth; Steiner tree; hop-constrained; QUBO for-
mulation; adiabatic quantum computing

1 Introduction

In the last seven years, D-Wave Systems developed the first comercial adiabatic
quantum computers from a 128-qubit model (announced in 2011) to a model
operating on 2048 qubits (early 2017). As a comparison, Intels first 8-byte SRAM
chip was released in 1969, and in 1976 the Intel 8048 was released which has a
64-byte internal (on-chip) RAM. While rapid development are observed in both
cases, the Moore’s law, which has been followed by classical computers for over
fifty years, cannot continue indefinitely. It is then of great interest to explore the
potential capabilities of the new technology.

A D-Wave adiabatic quantum computer can naturally solve either Ising or
Quadratic Unconstrained Binary Optimization (QUBO) problems. The QUBO
framework is a unifying model for many types of optimization problems. De-
spite the fact that the D-Wave machine is not a universal quantum computer, it
has been capable of generating e�cient and accurate solutions to several com-
putational problems. Several research groups have reported on practical work
to evaluate the performance of D-Wave systems [4, 6]. Several graph problems
were converted into QUBO or similar optimization problems and tested on the
D-Wave computer. Examples include graph isomorphism [6], vertex coloring [19,
16], broadcast-time [5] and spanning tree calculation [17] problems.

In this work, we solve the Bounded-Depth Steiner Tree problem using a D-
Wave quantum computer. The problem is restated as a D-Wave feasible QUBO

2 Liu and Dinneen

formulation and is then tested on a D-Wave computer. The proposed method
is also adapted for the Bounded-Depth Minimum Spanning Tree problem. Re-
sults of our experiment are presented and compared with classically obtained
verifications. Accordingly, the paper is organized as follows: Section 1 contains
the introduction. In Section 2, we present necessary definitions and describe
the Bounded-Depth Steiner Tree problem. Section 2.1 contains the QUBO for-
mulation with its proof of correctness. Section 3 talks about a special case of
Bounded-Depth Steiner Tree problem that is known as the Bounded-Depth Min-
imum Spanning Tree problem. Section 4 contains our experimental results and
Section 5 finishes with a conclusion.

2 Bounded-Depth Steiner Tree

If G = (V,E) is a graph and a tree T = (VT , ET) satisfies the conditions that
VT ✓ V , ET ✓ E, and u, v 2 VT for every (u, v) 2 ET , then, T is a subtree of G.
The minimum spanning tree is a subtree of a (edge-) weighted graph G = (V,E)
with a minimum total cost that spans all vertices. The Steiner Tree problem
specifies a set U ✓ V named terminal vertices that are to be connected by
the subtree while the other vertices, called Steiner vertices, may or may not be
contained in the subtree. A Steiner tree is a rooted tree, a tree with a specified
root vertex. It is also called an arborescence with all its edges point away from
the root. We add a depth bound to this problem which makes it a slight variant
of Steiner Tree problem: the Bounded-Depth Steiner Tree problem.

Definition 1 Considering an undirected weighted graph G = (V,E) with non-

negative weights cu,v associated with each edge (u, v) 2 E. Given a set U ⇢ V

of terminal vertices with vertex v0 2 U specified as the root vertex and a natural

number h, the Bounded-Depth Steiner Tree problem is to find a minimum

cost subtree T of G such that there exists a path in T from v0 to each vertex in

terminal set U and the distance not exceeding h.

As the Steiner tree problem arises in telecommunications networks design, the
importance of bounded-depth Steiner trees become relevant when a maximum
bound on transmission delay is a requirement [11]. More relevant real-world
optimization problems such as the lot-sizing problems in production planning
and phylogenetic trees in biology have been studied using this model [14, 2, 20].

2.1 QUBO formulation

Quadratic Unconstrained Binary Optimization (QUBO) is a mathematical prob-
lem of minimizing a quadratic objective function F (x) = x

T
Qx, where Q is a

real-valued symmetric matrix1 and x = (x1, x2, . . . , xn) is a vector of binary
variables. In this work, all QUBOs considered are of the following form

1 Some times this problem is stated for upper-triangular matrices; it is straightforward
to convert between these two equivalent forms.

Bounded-Depth Steiner Tree 3

x
⇤ = min

x

X
qijxixj , where xi, xj 2 {0,1}.

The problem is NP-hard in general. It has been extensively studied because it
is a unifying model for many combinatorial optimization problems that can be
formulated into QUBO form.
In this subsection, we present our QUBO formulation which requires O(h|V |

2)
binary variables in worst case and produces a QUBO matrix with a density of
O(h|V |

2).
The variables involved in this formulation are

– xv0,u,1 for each edge (v0, u) 2 E.

– xu,v,i and xv,u,i for each edge (u, v) 2 E with u, v 6= v0 and 2  i  h

When xu,v,i = 1, it means that edge (u, v) is contained in a directed optimal
solution tree such that u is closer to the root than v and vertex v is in depth i.
As v0 is specified as root, we assume that the arcs of the arbor essence are di-
rected away from v0. Therefore, we use a single variable xv0,u,1 to represent each
edge (v0, u) 2 E. In total, we need 2(h � 1)(|E| � degG(v0)) + degG(v0) binary
variables. In the worst case, |E| is O(|V |

2), the complexity is then O(h|V |
2) in

terms of variable size.

The objective function F (x) to be minimized is stated as follows.

F (x) = O(x) +A · P (x) (1)

where

P (x) = |V | · (P1(x) + P2(x)) + P3(x)

with

P1(x) =
X

v2U\{v0}

0

@1�
X

(u,v)2E

hX

i=1

xu,v,i

1

A
2

(2)

P2(x) =
X

v2V \U

hX

i=1

0

@
X

(u,v),(w,v)2E

xu,v,ixw,v,i

1

A (3)

P3(x) =
X

v2V \{v0}

0

@
X

(u,v)2E

hX

i=2

xu,v,i

0

@1�
X

(w,u)2E

xw,u,i�1

1

A

1

A

O(x) =
X

(u,v)2E

hX

i=2

cu,vxu,v,i +
X

(v0,u)2E

cv0,uxv0,u,1

4 Liu and Dinneen

and

A = ET max
(u,v)2E

(cu,v) + 1

The terms are interpreted as follows.

– P1(x) = 0 when every terminal vertex excluding the root, that is v 2 U\{v0},
has exactly one incoming arc and one assigned depth. Otherwise, P1(x) adds
a positive penalty to objective function.

– P2(x) = 0 when every Steiner vertex v 2 V \U has at most one incoming arc
and at most one assigned depth. Otherwise, P2(x) adds a positive penalty
to objective function.

– P3(x), on the other hand, penalize with a positive number if there exists
an arc (u, v) in solution tree such that u is not parent of v. We also ob-
serve that

P
(w,u)2E xw,u,i�1, which represents deg�(u) in T , may exceed

1 and make P3(x) negative. However, we claim that the combined sum
|V | · (P1(x) + P2(x)) + P3(x) is positive.

– The term O(x) sums up the cost of each edge that is present in an optimal
solution.

– A penalty scalar A is finally applied to P (x) that is essential to make this
formulation work correctly.

A digraph D = (V,A) is a pair of non-empty sets—set V of vertices and set
A of directed edges or arcs. The arc (u, v) is an outgoing arc of vertex u, and an
incoming arc of vertex v. The indegree of a vertex v 2 V , denoted by deg� (v),
counts the edges going into v, while the outdegree of a vertex v 2 V counts the
edges going out of v and is denoted by deg+ (v). The notation deg(v) is defined
as the sum of the indegree and the outdegreee of v:

deg(v) = deg+ (v) + deg� (v) (4)

Once the optimal solution of the generated QUBO is obtained, F (x⇤) gives
the minimum cost and x

⇤ encodes a corresponding minimum cost Steiner tree
satisfying the depth constraint. Note that feasible solution may not exist for
some instances of this problem. The scalar A can be used as a cut-o↵ integer to
decide whether a minimized value of the QUBO encodes a optimal solution or
not. We will show that in due course.

Bounded-Depth Steiner Tree 5

2.2 Proof of correctness

Observe that a variable assignment x 2 Z2(h�1)(|E|�degG(v0))+degG(v0)
2 for the

QUBO encodes a directed subgraph Sx = (Vx, Ax) ✓ G:

Vx =
h[

i=0

Vx,i

Ax =
h[

i=1

Ax,i

where

Vx,i = {v0} [{v 2 V | 9u 2 V \{v} such that xu,v,i = 1 or xv,u,i = 1}

Ax,i = {(u, v) | xu,v,i = 1 or xv,u,i = 1}

Lemma 1. Let x 2 Z2(h�1)(|E|�degG(v0))+degG(v0)
2 . Then Sx is a rooted Steiner

tree for terminal vertices U in G with depth constraint h if and only if P (x) = 0.

Proof. Given a graph G = (V,E), depth constraint h and v0 specified as the
root, we can represent a bounded-depth Steiner tree T for G as a sequence of
vertex sets {V0 = {v0}, V1, . . . , Vh} ⇢ P (V), which represents the vertices in
depth i, and arc sets A1, A2, . . . , Ah such that for every 1  i  h:

1. Each arc in Ai is an oriented edge of E.
2. Vi = {v | (u, v) 2 Ai, u 2 Vi�1, v 2 Vi}.
3. For any (u, v) 2 Ai, u 2 Vi�1 and v 2 Vi.
4. A terminal vertex v 2 U only appears in one of the vertex sets.
5. A Steiner vertex v 2 V \U appears in at most one of the vertex sets.
6. U ✓ (V0 [V2 [· · · [Vh).

With a binary vector x 2 Z2(h�1)(|E|�degG(v0))+degG(v0)
2 , we have

Vx,i = {v 2 V | xu,v,i = 1}, where 1  i  h

Ax,i = {(u, v) 2 E | xu,v,i = 1}, where 1  i  h

All the six criteria hold when P (x) = 0:

1. Each arc in Ax,i is an oriented edge of E.

This holds by the definition of variable xu,v,i.
2. Vx,i = {v | (u, v) 2 Ax,i, u 2 Vx,i�1, v 2 Vx,i}.

Suppose v 2 Vx,i, which means that xu,v,i = 1. If u = v0, then u 2 Vx,i�1

holds by the definition, v0 2 V0. If u 6= v0, suppose a contradiction u /2 Vx,i�1.
In such case, 1 �

P
(u,v)2E xw,u,i�1 = 1 which leads to P2(x) > 0. But

P2(x) = 0, so u 2 Vx,i�1.
3. For any (u, v) 2 Ax,i, u 2 Vx,i�1 and v 2 Vx,i.

If (u, v) 2 Ax,i, then we have xu,v,i = 1. Thus, u 2 Vx,i�1, v 2 Vx,i holds as
we illustrated in previous criteria.

6 Liu and Dinneen

4. A terminal vertex v 2 U only appears in one of the vertex sets.

For a contradiction suppose that we have a terminal vertex v 2 U appears
in more than one of the vertex sets or appears in none of the vertex sets but
P1(x) = 0. That is,

P
i xu,v,i > 2 or

P
i xu,v,i = 0, which implies P1(x) > 0,

a contradiction.
5. A Steiner vertex v 2 V \U appears in at most one of the vertex sets.

For a contradiction suppose that we have a Steiner vertex v 2 V \U appears
in more than one of the vertex sets but P2(x) = 0. That is,

P
i xu,v,i > 2,

which implies P2(x) > 0, a contradiction.
6. U ✓ (V0 [Vx,1 [· · · [Vx,h).

Suppose there exists a vertex v such that v 2 U and v /2 (V0[Vx,1[· · ·[Vx,h).
This suggests

P
(u,v)2E

P
i xu,v,i = 0 which leads to P1(x) > 0.

As noted in the term P3(x), if deg
�(u) � 2 for some w 2 V , P3(x) becomes

negative. Suppose for some vertex v 2 V \{v0}, there exists a vertex u where
deg�(u) � 1 and (u, v) 2 Ax. Let deg

�(u) incremented by 1. As a consequence,

P3(x) =
X

u2V \{v0}

deg+(u)(1� deg�(u))

is decreased by deg+(u) < |V |. On the other hand, if v 2 U ,

|V |P1(x) = |V |

X

u2U\{v0}

�
1� deg�(u)

�2

will increase by |V | at least. Otherwise,

|V |P2(x) = |V |

X

u2V \U

✓
deg�(u)

2

◆

will increase by at least |V |. Note that the third dimension variable i representing
its depth is ignored in the calculation as this operation has not e↵ect on the final
result. Thus, the combined sum P (x) = |V |(P1(x) + P2(x)) + P3(x) is positive.

Corollary 1. Let x 2 Z2(h�1)(|E|�degG(v0))+degG(v0)
2 , then F (x) � A if and only

if Sx is not an h-constrained Steiner tree of G.

Proof. If Sx is not an h-constrained Steiner tree, then by Lemma 1, P (x) 6= 0.
This implies P (x) � 1 since P (x) is a non-negative integer. Therefore, F (x) =
O(x) + A · P (x) � A. On the other hand, if Sx is a h-constrained Steiner tree
of G, we have P (x) = 0 and F (x) = O(x). Let T = (VT , ET) be a Steiner tree,
grounded on c(u, v) � 0 with (u, v) 2 ET and |V |� 1 = |ET |, we have:

F (x)  |ET | · max
(u,v)2E

(cu,v) + 1 < A.

Theorem 1. The QUBO formulation in (1) is correct.

Bounded-Depth Steiner Tree 7

Proof. If a graph G = (V,E) has a h-constrained minimum cost Steiner tree,

there exists an assignment x 2 Z2(h�1)(|E|�degG(v0))+degG(v0)
2 < A such that Sx

is a Steiner tree. Assume that x
⇤ is the optimal variable assignment of F (x),

then by Lemma 1,
F (x⇤) = minOx = minC(Sx).

and Sx⇤ is a minimum cost Steiner tree of graph G. Therefore, (1) is a QUBO
formulation of bounded-depth Steiner tree problem.

2.3 Example: the graph Butterfly

Consider the weighted Butterfly graph shown in Figure 1a. The vertex set is
V = {1, 2, 3, 4, 5}, the edge set is E = {(1, 4), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)}
and a cost for each edge: c1,4 = 1, c1,5 = 4, c2,3 = 3, c2,5 = 2, c3,5 = 10, c4,5 = 5.
With v0 = 1 specified as root and a terminal set U = {1, 3, 5}, we wish to find
the minimum spanning tree with di↵erent bounded-depth 2 and 3.
Figure 1b and Figure 1c depict the bounded-depth Steiner tree of Butterfly for
h = 2 and h = 3 respectively. Note that the vertex filled with gray color is root
vertex and dashed-lines denote the edges that are not in solution tree.

1 4

5

2 3

10

1

4

2

5

3

v0 = 1, U = {1, 3, 5}
(a) graph Butterfly

1 4

5

2 3

10

1

4

2

5

3

h = 2
(b) 2-constrained Steiner
tree

1 4

5

2 3

10

1

4

2

5

3

h = 3
(c) 3-constrained Steiner
tree

Fig. 1: A weighted Butterfly and solutions with di↵erent bounded-depth

The number of variables required for the two instances are 2(2�1)(6�2)+2 =
10 and 2(3�1)(6�2)+2 = 18. After processing the constants and linear terms,
we obtain the diagonal symmetric matrix Q1 and Q2 shown in Table 1 and
Table 2.
The optimal solutions for the two QUBO instances are:

x = [0, 1, 0, 0, 0, 0, 0, 0, 1, 0],

x = [0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0].

8 Liu and Dinneen

Table 1: QUBO matrix Q1 for graph Butterfly with h = 2
variables x1,4,1 x1,5,1 x2,3,2 x2,5,2 x3,2,2 x3,5,2 x4,5,2 x5,2,2 x5,3,2 x5,4,2

x1,4,1 1 0 0 0 0 0 -20.5 0 0 102.5
x1,5,1 0 -201 0 205 0 205 205 -20.5 -20.5 -20.5
x2,3,2 0 0 -161 0 0 0 0 0 205 0
x2,5,2 0 205 0 -162 0 205 205 0 0 0
x3,2,2 0 0 0 0 44 0 0 102.5 0 0
x3,5,2 0 205 0 205 0 -154 205 0 0 0
x4,5,2 -20.5 205 0 205 0 205 -159 0 0 0
x5,2,2 0 -20.5 0 0 102.5 0 0 43 0 0
x5,3,2 0 -20.5 205 0 0 0 0 0 -154 0
x5,4,2 102.5 -20.5 0 0 0 0 0 0 0 46

Table 2: QUBO matrix Q2 for graph Butterfly with h = 3
variables x1,4,1 x1,5,1 x2,3,2 x2,3,3 x2,5,2 x2,5,3 x3,2,2 x3,2,3 x3,5,2 x3,5,3 x4,5,2 x4,5,3 x5,2,2 x5,2,3 x5,3,2 x5,3,3 x5,4,2 x5,4,3

x1,4,1 1 0 0 0 0 0 0 0 0 0 -20.5 0 0 0 0 0 102.5 102.5
x1,5,1 0 -201 0 0 205 205 0 0 205 205 205 205 -20.5 0 -20.5 0 -20.5 0
x2,3,2 0 0 -161 205 0 0 0 -20.5 0 -20.5 0 0 0 0 205 205 0 0
x2,3,3 0 0 205 -161 0 0 -20.5 0 0 0 0 0 -20.5 0 205 205 0 0
x2,5,2 0 205 0 0 -162 205 0 0 205 205 205 205 0 -20.5 0 -20.5 0 -20.5
x2,5,3 0 205 0 0 205 -162 -20.5 0 205 205 205 205 -20.5 0 0 0 0 0
x3,2,2 0 0 0 -20.5 0 -20.5 44 0 0 0 0 0 102.5 102.5 0 0 0 0
x3,2,3 0 0 -20.5 0 0 0 0 44 0 0 0 0 102.5 102.5 -20.5 0 0 0
x3,5,2 0 205 0 0 205 205 0 0 -154 205 205 205 0 -20.5 0 -20.5 0 -20.5
x3,5,3 0 205 -20.5 0 205 205 0 0 205 -154 205 205 0 0 -20.5 0 0 0
x4,5,2 -20.5 205 0 0 205 205 0 0 205 205 -159 205 0 -20.5 0 -20.5 0 -20.5
x4,5,3 0 205 0 0 205 205 0 0 205 205 205 -159 0 0 0 0 -20.5 0
x5,2,2 0 -20.5 0 -20.5 0 205 102.5 102.5 0 0 0 0 43 0 0 0 0 0
x5,2,3 0 0 0 0 -20.5 0 102.5 102.5 -20.5 0 -20.5 0 0 43 0 0 0 0
x5,3,2 0 -20.5 205 205 0 0 0 -20.5 0 -20.5 0 0 0 0 -154 205 0 0
x5,3,3 0 0 205 205 -20.5 0 0 0 -20.5 0 -20.5 0 0 0 205 -154 0 0
x5,4,2 102.5 -20.5 0 0 0 0 0 0 0 0 0 -20.5 0 0 0 0 46 0
x5,4,3 102.5 0 0 0 -20.5 0 0 0 -20.5 0 -20.5 0 0 0 0 0 0 46

As expected, each of these two assignment gives the optimal solution Sx =
(Vx, Ex) where Ex = {(1, 5), (5, 3)} for h = 2 and Ex = {(1, 5), (5, 2), (2, 3)} for
h = 3.

3 Bounded-Depth Minimum Spanning Tree

The concept of Minimum Spanning Tree (MST) is a core part of graph theory.
Classic polynomial-time algorithms exist for the minimum spanning tree problem
such as well-known Prim’s algorithm and Kruskal’s algorithm [13, 18]. However,
with a depth constraint added, the problem becomes NP-hard [10, 9, 15].

The Bounded-Depth MST problem arises in the design of centralized telecom-
munication networks with quality of service constraints [21]. Various applications
can be found in [1].

Bounded-Depth Steiner Tree 9

Definition 2 Given an weighted graph G = (V,E) with a cost function c:

E 7! R and a natural number h, the Bounded-Depth Minimum Spanning
Tree problem is to find a minimum cost spanning tree T of G, such that there

exists a path in T from a specified root vertex v0 to any other vertex with at most

h edges.

From the earlier Definition 1, it is quite clear that the Bounded-Depth Min-
imum Spanning Tree problem is the special case of the bounded-depth Steiner
tree problem where the terminal set of Steiner tree is the set of all vertices (i.e.,
U = V). Based on this, we can adapt the formulation (1) for Bounded-Depth
MST problem. First, the variables involved in this QUBO formulation are the
same as these in 2.1. Then, we replace set U in Equation (2) by set V and re-
move the second penalty term (3) since V \U = ;. With other terms remained,
we obtain the following:

F (x) = O(x) +A · P (x) (5)

where

P (x) = |V | · P1(x) + P2(x)

with

P1(x) =
X

v2V \{v0}

0

@1�
X

(u,v)2E

hX

i=1

xu,v,i

1

A
2

P2(x) =
X

v2V \{v0}

0

@
X

(u,v)2E

hX

i=2

xu,v,i

0

@1�
X

(w,u)2E

xw,u,i�1

1

A

1

A

O(x) =
X

(u,v)2E

hX

i=2

cu,vxu,v,i +
X

(v0,u)2E

cv0,uxv0,u,1

and

A = (|V |� 1) · max
(u,v)2E

(cu,v) + 1

3.1 Example: a weighted graph C4

Consider the graph C4 in Figure 2a where vertex set V = {1, 2, 3, 4}, edge set
E = {(1, 2), (1, 3), (2, 4), (3, 4)} and a cost for each edge: c1,2 = 1, c1,3 = 3, c2,4 =
10, c3,4 = 4. Given a depth bound h = 2 and a dedicated root v0 = 1, we wish
to find the bounded-depth minimum spanning tree. A solution tree T = (V,ET)

10 Liu and Dinneen

1 2

3 4

10

3 1

4

v0 = 1

(a) graph C4

1 2

3 4

10

3 1

4

v0 = 1

(b) a MST of C4

1 2

3 4

10

3 1

4

h = 2

(c) a bounded-depth MST
of C4

Fig. 2: A weighted C4 and a solution

with ET = {(1, 2), (1, 3), (2, 4)}, as shown in Figure 2c, can be observed clearly.
Note that we use dashed line to mark these edges that are not in the solution.
The formulation requires 2 · (2� 1) · (4� 2) + 2 = 6 variables:

x = {x1,2,1, x1,3,1, x2,4,2, x3,4,2, x4,2,2, x4,3,2}

Then, we compute each term:

O(x) =
X

(u,v)2E

hX

i=2

cu,vxu,v,i +
X

(v0,u)2E

cv0,uxv0,u,1

= 10x1,2,1 + 3x1,3,1 + (x2,4,2 + x4,2,2) + 4(x3,4,2 + x4,3,2)

P1(x) =
X

v2V \{v0}

0

@1�
X

(u,v)2E

hX

i=1

xu,v,i

1

A
2

=
(1� (x1,2,1 + x4,2,2))

2 + (1� (x1,3,1 + x4,3,2))
2

+ (1� (x2,4,2 + x3,4,2))
2

=

1� 2(x1,2,1 + x4,2,2) + x
2
1,2,1 + x

2
4,2,2 + 2x1,2,1x4,2,2

+ 1� 2(x1,3,1 + x4,3,2) + x
2
1,3,1 + x

2
4,3,2 + 2x1,3,1x4,3,2

+ 1� 2(x2,4,2 + x3,4,2) + x
2
2,4,2 + x

2
3,4,2 + 2x2,4,2x3,4,2

P2(x) =
X

v2V \{v0}

0

@
X

(u,v)2E

hX

i=2

xu,v,i

0

@1�
X

(w,u)2E

xw,u,i�1

1

A

1

A

= x2,4,2(1� x1,2,1) + x3,4,2(1� x1,3,1)

A = (4� 1) · 10 + 1 = 31

Bounded-Depth Steiner Tree 11

There are some linear terms as well as some constants that we need to process
before we can encode them in a QUBO instance. As QUBO problem only allows
quadratic terms, all linear terms x in F (x) are replaced by x

2 grounding on the
fact x = x

2. Furthermore, all the constants are removed since it does not change
the optimality of the solution. After the processing we obtain the following:

F (x) =� 114x1, 2, 12 � 121x2
1,3,1 � 92x2

2,4,2 � 89x2
3,4,2 � 92x2

4,2,2 � 120x2
4,3,2

� 31x1,2,1x2,4,2 + 248x1,2,1x4,2,2 � 31x1,3,1x3,4,2 + 248x1,3,1x4,3,2

+ 248x2,4,2x3,4,2

With the coe�cients of each quadratic term in F (x) set to the corresponding
entry, the complete QUBO matrix is obtained, as shown in Table 3. An optimal
solution x

⇤ for this QUBO instance generated by a QUBO solver is

x
⇤ = [1, 1, 1, 0, 0, 0].

This encodes the optimal solution tree Sx = (V,Ex⇤) where V = {1, 2, 3, 4} and
Ex⇤ = {(1, 2), (1, 3), (2, 4)}.

Table 3: QUBO matrix for graph C4 with h = 2
variables x1,2,1 x1,3,1 x2,4,2 x3,4,2 x4,2,2 x4,3,2

x1,2,1 -114 0 -31 0 248 0
x1,3,1 -121 0 -31 0 248
x2,4,2 -92 248 0 0
x3,4,2 -89 0 0
x4,2,2 -92 0
x4,3,2 -120

4 Solving the Bounded-Depth Problems on a D-Wave

Machine

There is an issue arising from the fact that not all pairwise interactions between
qubits are physically connected on the D-Wave machine. As a consequence, a
guest graph (e.g. the QUBO matrices are viewed as graph adjacency matri-
ces) where computation takes place must be transformed into a subgraph of a
Chimera host graph (D-Wave architecture). To ensure connectivity of all logical
variables, a minor embedding of the guest graph into the host graph is neces-
sary [22]. The decision problem whether a graph contains another one as a minor
is a non-trivial task due to its NP-complete nature. However, if one fixes the host
graph (or family of hosts) we have several-known polynomial-time methods for
embedding cliques. For the Chimera graph architecture, any graph (including

12 Liu and Dinneen

cliques) of n vertices can be minor embedded onto a Chimera host graph if it
has O(n2) nodes (see [23]). For the computational experiments in this paper
a randomized heuristic minor embedding algorithm [3, 8] was employed to find
minor embeddings.

In the procedure of graph embedding, a logical variable (guest vertex) may
be mapped into one or more physical qubits (host vertices). The set of physical
qubits representing a logical variable is called a chain. Obviously, the existence of
big chains consumes additional physical qubits and hence reduce the maximum
problem sizes that can be solved. In the following experiments, we will see that
minimizing the chain size is an essential factor to the success probability as well.

4.1 Experimental results

In the initial experiment, we run two groups of test cases on D-Wave 2X for the
Bounded-Depth Steiner Tree problem, which consist of test cases for several small
weighted graphs (see Appendix A) with two di↵erent sets of depth constraints.
Each weighted graph, together with a nominated root (red vertex), a terminal
set (green vertices) and a depth constraint, comprise an instance of Bounded-
Depth Steiner Tree problem. We sum up the experimental results in Table 4 and
Table 5. Column h represents the depth constraints assigned to each case.

From the tables, we can see that the success probability decreases as the
number of physical qubits required increases. In Table 4, the selections of depth
constraint are relatively smaller comparing to the depth constraints in Table 5.
Recall that the QUBO objective function (1) requires more variables when the
depth constraint h becomes larger. In other words, more physical qubits are
needed after embedding as h increases resulting in the lower success rates. For
these QUBO instances whose embedding chain size is under three, we observe a
success rate at 100 percent. This observation applies in the experimental results
of Bounded-Degree Problems (MST and Steiner tree) as well, which again sug-
gests a better accuracy of the D-Wave computer when the topology of a problem
is closer to the host graph. The density, on the other hand, has no direct im-
pact on the success probability, which makes a di↵erence between empirical and
theoretical result.

The second group of test cases is created for Bounded-Depth Minimum Span-
ning Tree problem. They consist of ten K6 graphs with their edges labeled with
di↵erent weights ranging from 1 to 10. For each weighted K6 graph, the v0 = 0 is
specified as root (see Appendix B) and given depth constraints h = 2 and h = 3.
A total of 15000 trials are done for each test case, and the results are shown in
Table 6. The best valid solutions found are listed in column Minimum D-Wave.

We notice that the physical qubits required after embedding di↵ers from one
to another even for the cases having the same size of logical qubits. The di↵er-
ences are due to the heuristic minor embedding algorithm used. The algorithm
uses a randomized method during its initial stage and results in the slight fluc-
tuation of number of physical qubits required as well as the embedding chain
size [3]. Then, we observe a significant decline in the success probability as prob-
lem size becomes large. With depth bound h = 3, the physical qubits required

Bounded-Depth Steiner Tree 13

exceed 400, and the numbers of chain size are over 10. Only one of ten test cases
succeeds in finding a ground state energy among its 15000 trials.

Overall, the size of problems that can be solved is significantly limited by the
chip capacity and the distinctive architecture of D-Wave 2X. Thus, a quantum
advantage cannot be observed yet. In their experiment on finding maximum
cliques on the D-Wave quantum annealer, Chapuis et al [7]. generated some
large graphs that can be embedded into the hardware and reported a quantum
speedup. Their average chain size is relatively small which leads to consider-
able success. Thus, an e�cient graph minor embeddings into Chimera graphs
algorithm plays an essential role in the success of D-Wave quantum annealer.

Table 4: Results for the Bounded-Depth Steiner Tree 1

Graph Order Size h

Logical
Qubits

Physical
Qubits

Embedding
Max Chain Density

Success
Probability

Optimal
Answer

Bull 5 5 2 9 14 3 40 15000/15000 22
Butterfly 5 6 2 8 8 1 44.44 15000/15000 2

C4 4 4 2 6 6 1 52.38 15000/15000 5
C5 5 5 2 8 8 1 38.89 15000/15000 20
C6 6 6 3 18 41 3 26.9 15000/15000 21
C7 7 7 3 22 58 5 22.92 15000/15000 23
C8 8 8 4 38 137 5 18.35 40/15000 41
C9 9 9 4 44 141 5 15.25 254/15000 34
C10 10 10 5 66 320 6 12.71 1/15000 33
C11 11 11 5 74 390 7 11.6 0/15000 49
C12 12 12 6 102 621 12 8.72 0/15000 12

Diamond 4 5 2 8 12 2 41.67 15000/15000 10
Grid2x3 6 7 3 22 65 5 27.67 3212/15000 7
Grid3x3 9 12 4 57 341 9 16.33 0/15000 16

Hexahedral 8 12 4 57 422 13 17.48 0/15000 17
House 5 6 2 10 12 2 32.73 15000/15000 8
K2,3 5 6 2 9 10 2 33.33 15000/15000 12
K3,3 6 9 3 27 120 6 26.46 18/15000 18
K3 3 3 2 4 4 1 80 15000/15000 10
K4 4 6 2 9 16 3 48.89 15000/15000 9
K5 5 10 2 16 36 3 38.24 11136/15000 12
Q3 8 12 4 57 404 11 17.42 0/15000 20

Wagner 8 12 4 57 400 9 17.12 0/15000 9

5 Conclusion

The main contribution of this paper is the development of QUBO formulations
with small number of required variables for the Bounded-Depth Steiner Tree
and Bounded-Depth Minimum Spanning Tree problems. We have accompanied

14 Liu and Dinneen

Table 5: Results for the Bounded-Depth Steiner Tree 2

Graph Order Size h

Logical
Qubits

Physical
Qubits

Embedding
Max Chain Density

Success
Probability

Optimal
Answer

Bull 5 5 5 33 176 11 15.18 7/15000 15
Butterfly 5 6 5 20 43 3 4.72 10019/15000 2

C4 4 4 4 14 39 4 4.42 11979/15000 5
C5 5 5 5 26 93 6 8.11 1642/15000 18
C6 6 6 6 42 229 8 15.12 13/15000 19
C7 7 7 6 52 310 11 13.85 0/15000 20
C8 8 8 5 50 245 7 13.79 5/15000 41
C9 9 9 5 58 277 7 10.04 3/15000 34
C10 10 10 6 82 687 19 9.2 0/15000 33
C11 11 11 6 92 570 15 11.31 0/15000 49
C12 12 12 6 102 753 18 6.59 0/15000 12

Diamond 4 5 4 20 102 7 7.8 88/15000 8
Grid2x3 6 7 6 52 409 14 16.7 1/15000 7
Grid3x3 9 12 5 75 612 16 12.46 0/15000 16

Hexahedral 8 12 5 75 712 15 14.7 0/15000 17
House 5 6 5 34 199 8 14.7 23/15000 8
K2,3 5 6 5 27 132 8 12.34 729/15000 12
K3,3 6 9 6 63 817 25 16.58 0/15000 18
K3 3 3 3 6 9 2 1.09 15000/15000 10
K4 4 6 4 21 116 7 8.35 734/15000 9
K5 5 10 5 52 811 23 22.99 1/15000 12
Q3 8 12 5 75 786 22 15.97 0/15000 20

Wagner 8 12 5 75 746 17 14.82 0/15000 9

our research into the testing and analysis for the performance of a D-Wave 2X
adiabatic quantum computer.

The final computational results imply that the probability of finding the
ground state energy is a↵ected by the quality of graph embedding. Higher suc-
cess rates are observed for the instances with smaller embedding chain size. The
hardware structure of all current generations of D-Wave adiabatic quantum com-
puters (including the latest generation D-Wave 2000Q) are all Chimera graphs.
Accordingly, it becomes valuable to explore more e↵ective QUBO formulations
that reduce qubits required and find graph minor embedding algorithms that can
minimize chain size to maximize the success probability of the quantum anneal-
ing. The experiment results suggest the potential for growth on the capability
of D-Wave. The latest D-Wave computer doubles the number of available qubits
of D-Wave 2X and is claimed to work at a lower temperature, which implies a
better success probability. A model with more qubits will also increase the size
of the maximal complete guest graphs that can be embedded by a factor of 2 but
remain the same runtime on D-Wave. Since the May 2011 release of their first
device, D-Wave is doubling the number of qubits every two years which may lead
to a quantum version of Moore’s Law. Grounded on this assumption, the e↵orts

Bounded-Depth Steiner Tree 15

Table 6: Results for Bounded-Depth MST

Graph Order Size h

Logical
Qubits

Physical
Qubits

Embedding
Max Chain Density

Success
Probability

Minimum
D-Wave

Optimal
Answer

K6�1 6 15 2 25 90 4 23.08 145/15000 9 9
K6�2 6 15 2 25 85 5 23.08 198/15000 25 25
K6�3 6 15 2 25 84 5 23.08 799/15000 13 13
K6�4 6 15 2 25 92 5 23.08 565/15000 17 17
K6�5 6 15 2 25 71 5 23.08 288/15000 21 21
K6�6 6 15 2 25 96 7 23.08 131/15000 23 23
K6�7 6 15 2 25 89 9 23.08 672/15000 23 23
K6�8 6 15 2 25 89 7 23.08 729/15000 18 18
K6�9 6 15 2 25 96 5 23.08 333/15000 17 17
K6�10 6 15 2 25 80 4 23.08 216/15000 18 18

K6�1 6 15 3 45 413 14 25.6 0/15000 10 7
K6�2 6 15 3 45 468 16 25.6 0/15000 27 24
K6�3 6 15 3 45 438 14 25.6 0/15000 16 12
K6�4 6 15 3 45 435 15 25.6 0/15000 14 13
K6�5 6 15 3 45 414 12 25.6 1/15000 18 18
K6�6 6 15 3 45 487 16 25.6 0/15000 24 21
K6�7 6 15 3 45 479 16 25.6 0/15000 21 19
K6�8 6 15 3 45 424 18 25.6 0/15000 21 14
K6�9 6 15 3 45 459 15 25.6 0/15000 18 16
K6�10 6 15 3 45 443 14 25.6 0/15000 20 14

on this quantum system are encouraging. Recently announced by D-Wave Sys-
tems, future models will use a denser Pegasus graph architecture, which should
help with the embedding and reliability of QUBO computations [12].

Acknowledgement

This work was supported in part by the Quantum Computing Research Initia-
tives at Lockheed Martin.

References

1. Ravindra K Ahuja, Thomas L Magnanti, James B Orlin, et al. Network flows:

theory, algorithms, and applications, volume 1. Prentice hall Englewood Cli↵s, NJ,
1993.

2. Omer Angel, Abraham D Flaxman, and David B Wilson. A sharp threshold for
minimum bounded-depth and bounded-diameter spanning trees and steiner trees
in random networks. Combinatorica, 32(1):1–33, 2012.

3. Jun Cai, William G. Macready, and Aidan Roy. A practical heuristic for finding
graph minors. ArXiv e-prints, June 2014. 2014arXiv1406.2741C.

4. Cristian S Calude, Elena Calude, and Michael J Dinneen. Guest column: Adiabatic
quantum computing challenges. ACM SIGACT News, 46(1):40–61, 2015.

16 Liu and Dinneen

5. Cristian S Calude and Michael J Dinneen. Solving the broadcast time problem
using a D-Wave quantum computer. In Advances in Unconventional Computing,
pages 439–453. Springer, 2017.

6. Cristian S Calude, Michael J Dinneen, and Richard Hua. QUBO formulations
for the graph isomorphism problem and related problems. Theoretical Computer

Science, 701:54–69, 2017.
7. Guillaume Chapuis, Hristo Djidjev, Georg Hahn, and Guillaume Rizk. Finding

maximum cliques on the D-Wave quantum annealer. Journal of Signal Processing
Systems, pages 1–15, 2018.

8. D-Wave. Programming with QUBOs. Technical Report 09-1002A-B, D-Wave
Systems, Inc., 2013. Python Release 1.5.1-beta4 (for Mac/Linux).

9. Geir Dahl. The 2-hop spanning tree problem. Operations Research Letters, 23(1-
2):21–26, 1998.

10. Luis Gouveia. Using the miller-tucker-zemlin constraints to formulate a minimal
spanning tree problem with hop constraints. Computers & Operations Research,
22(9):959–970, 1995.

11. Luis Gouveia and Thomas L Magnanti. Network flow models for designing
diameter-constrained minimum-spanning and steiner trees. Networks, 41(3):159–
173, 2003.

12. Mark W Johnson. Future hardware directions of quantum annealing,
2018. Qubits Europe 2018 D-Wave Users Conveference, Munich, Germany
https://www.dwavesys.com/sites/default/files/mwj dwave qubits2018.pdf.

13. Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1):48–50,
1956.

14. Chin Lung Lu, Chuan Yi Tang, and Richard Chia-Tung Lee. The full steiner tree
problem. Theoretical Computer Science, 306(1):55 – 67, 2003.

15. Prabhu Manyem and M Stallmann. Some approximation results in multicasting.
North Carolina State University, 1996.

16. Anuradha Mahasinghe Michael J. Dinneen and Kai Liu. Finding the chromatic
sums of graphs using a d-wave quantum computer. The Journal of Supercomputing,
pages 1–18, 2019.

17. Mark A Novotny, Q L Hobl, J S Hall, and K Michielsen. Spanning tree calculations
on D-Wave 2 machines. In Journal of Physics: Conference Series, volume 681(1),
page 012005. IOP Publishing, 2016.

18. Robert Clay Prim. Shortest connection networks and some generalizations. Bell

Labs Technical Journal, 36(6):1389–1401, 1957.
19. Olawale Titiloye and Alan Crispin. Quantum annealing of the graph coloring

problem. Discrete Optimization, 8(2):376–384, 2011.
20. Stefan Voß. The steiner tree problem with hop constraints. Annals of Operations

Research, 86:321–345, 1999.
21. Kathleen A Woolston and Susan L Albin. The design of centralized networks

with reliability and availability constraints. Computers & Operations Research,
15(3):207–217, 1988.

22. Zhongchen Yang and Michael J Dinneen. Graph minor embeddings for D-Wave
computer architecture. Report CDMTCS-503, Centre for Discrete Mathemat-
ics and Theoretical Computer Science, University of Auckland, Auckland, New
Zealand, November 2016.

23. P. (Amanda) Yao and Richard Hua. Finding maximum-sized native clique embed-
dings: Implementing and extending the block clique embedding algorithm. Report

Bounded-Depth Steiner Tree 17

CDMTCS-523, Centre for Discrete Mathematics and Theoretical Computer Sci-
ence, University of Auckland, Auckland, New Zealand, March 2018.

18 Liu and Dinneen

A Test graphs for Bounded-Depth Steiner Tree

Bull Butterfly C10

C11 C12 C4

C5 C6 C7

C8 C9 Diamond

Bounded-Depth Steiner Tree 19

Grid2⇥3 Grid3⇥3 Hexahedral

House K2,3 K3,3

K3 K4 K5

Q3 Wagner

20 Liu and Dinneen

B Test graphs for Bounded-Depth MST

K6�1 K6�2

K6�3 K6�4

K6�5 K6�6

Bounded-Depth Steiner Tree 21

K6�7 K6�8

K6�9 K6�10

22 Liu and Dinneen

C C++ program to generate QUBO

1 // QUBO formulat ion f o r Bounded�Depth S t e i n e r Tree
#inc lude <iostream>

3 #inc lude <f stream>

#inc lude <vector>
5 #inc lude <sstream>

#inc lude <cmath>
7 #inc lude <map>
#inc lude <algor ithm>

9

#de f i n e FIRST 0
11 #de f i n e MIDDLE 1

#de f i n e LAST 2
13

us ing namespace std ;
15 void p r in t mat r i x (double ⇤⇤Q, i n t n) ;

void read graph (i n t n , vec to r <pair<int , int> > &ad j a c e n t l i s t ,
vec to r <int> &setU , map<pair<int , int >, int> &weight) ;

17 const long generate qubo (double ⇤⇤&Q, i n t node s i z e , vector<
pair<int , int> > a d j a c e n t l i s t ,

vec to r <int> setU , map<pair<int , int >,
int> weight , i n t hop cons t ra in t) ;

19

i n t main (i n t argc , char ⇤argv [])
21 {

i n t node s i z e =0, hop cons t ra in t =0;
23 double ⇤⇤Q;

vec to r <pair<int , int> > a d j a c e n t l i s t ;
25 vec to r <int> setU ;

map<pair<int , int >, int> weight ;
27 i f (argc != 2) cout << ”Correct usage : ” << argv [0] <<” <

Hop cons t ra in t>” << endl ;
e l s e hop cons t ra in t = (i n t) s t r t o l (argv [1] , nu l l p t r , 1 0) ;

29 cin>>node s i z e ;

31 read graph (node s i z e , a d j a c e n t l i s t , setU , weight) ;

33 const long N = generate qubo (Q, node s i z e , a d j a c e n t l i s t ,
setU , weight , hop cons t ra in t) ;
cout<<N<<endl ;

35 pr in t mat r i x (Q,N) ;
f o r (i n t i =0; i<N; i++)

37 de l e t e [] Q[i] ;
d e l e t e [] Q;

39 re turn 0 ;
}

41

Bounded-Depth Steiner Tree 23

const long generate qubo (double ⇤⇤&Q, i n t node s i z e , vector<
pair<int , int> > a d j a c e n t l i s t ,

43 vec to r <int> setU , map<pair<int , int >,
int> weight , i n t hop cons t ra in t)

{

45 // s e t nominated root as 0
i n t nominated root = setU [0] ;

47

map<vector<int >, int> edge2matrix ;
49

// s e t V/U
51 vec to r <int> setV U ;

f o r (i n t i =0; i<node s i z e ; i++){
53 i f (s td : : f i nd (setU . begin () , setU . end () , i) == setU . end

()) {
setV U . push back (i) ;

55 }

}

57

// i n i t v a r i a b l e s e uv , i , and index o f each va r i a b l e in Q
matrix

59 i n t cnt=0;
f o r (vector<pair<int , int> > : : i t e r a t o r i t e r a t o r =
a d j a c e n t l i s t . begin () ; i t e r a t o r != a d j a c e n t l i s t . end () ; ++
i t e r a t o r) {

61 i f ((⇤ i t e r a t o r) . second == nominated root) cont inue ;
// v a r i a b l e s x {v0 , u} 1

63 i f ((⇤ i t e r a t o r) . f i r s t == nominated root) {

i n t myints [] = { i t e r a t o r�>f i r s t , i t e r a t o r�>second
, 1 } ;

65 vector<int> var (myints , myints + s i z e o f (myints) /
s i z e o f (i n t)) ;

edge2matrix [var] = cnt ;
67 cnt++;

} e l s e // v a r i a b l e s x {u , v} i , where 2 <= i <=
hop cons t ra in t

69 {

f o r (i n t i =2; i<=hop cons t ra in t ; i++)
71 {

i n t myints [] = { i t e r a t o r�>f i r s t , i t e r a t o r�>
second , i } ;

73 vector<int> var (myints , myints + s i z e o f (myints
) / s i z e o f (i n t)) ;

edge2matrix [var] = cnt ;
75 cnt++;

}

77 }

}

79

24 Liu and Dinneen

// v a r i a b l e s needed : N = 2(H�1) (|E | � Deg G(v 0)) + Deg G(
v 0)

81 const long N = edge2matrix . s i z e () ;

83 // i n i t i a l i z e Q matrix
Q = new double ⇤ [N] ;

85 f o r (i n t i =0; i<N; i++)
{

87 Q[i] = new double [N] ;
f o r (i n t j =0; j<N; j++) Q[i] [j] = 0 ;

89 }

91 /⇤ ⇤⇤⇤⇤⇤⇤⇤⇤ F { I , 1} ⇤⇤⇤⇤⇤⇤⇤⇤ ⇤/
f o r (i n t i =0; i<setU . s i z e () ; i++)

93 {

i n t v = setU [i] ;
95 i f (v == nominated root) cont inue ;

f o r (map<vector<int >, int > : : i t e r a t o r i t i=edge2matrix .
begin () ; i t i != edge2matrix . end () ; ++i t i)

97 {

i f (i t i �> f i r s t [MIDDLE] != v) cont inue ;
99 i n t idx1 = i t i �>second ;

f o r (map<vector<int >, int > : : i t e r a t o r i t j=edge2matrix
. begin () ; i t j != edge2matrix . end () ; ++i t j)

101 {

i f (i t j �> f i r s t [MIDDLE] != v) cont inue ;
103 i f (i t i �>second != i t j �>second)

{

105 i n t idx2 = i t j �>second ;
Q[idx1] [idx2]=Q[idx1] [idx2] + node s i z e ;

107 }

e l s e
109 {

Q[idx1] [idx1]=Q[idx1] [idx1] � node s i z e ;
111 }

}

113 }

}

115 i f (DEBUG)
{

117 p r i n t f (”\n⇤⇤⇤⇤⇤⇤⇤⇤⇤ F { I , 1} ⇤⇤⇤⇤⇤⇤⇤⇤⇤\n”) ;
p r in t mat r i x (Q, N) ;

119 }

121 /⇤ ⇤⇤⇤⇤⇤⇤⇤⇤ F { I , 2} ⇤⇤⇤⇤⇤⇤⇤⇤ ⇤/
i n t u , v ;

123 f o r (i n t i = 0 ; i<setV U . s i z e () ; i++){
v=setV U [i] ;

125 f o r (map<vector<int >, int > : : i t e r a t o r i t i=edge2matrix .
begin () ; i t i != edge2matrix . end () ; ++i t i) {

Bounded-Depth Steiner Tree 25

i f (i t i �> f i r s t [MIDDLE] != v) cont inue ;
127 f o r (map<vector<int >, int > : : i t e r a t o r i t j=edge2matrix

. begin () ; i t j != edge2matrix . end () ; ++i t j) {

i f (i t j �> f i r s t [MIDDLE] != v | | i t i �> f i r s t [
FIRST] >= i t j �> f i r s t [FIRST]) cont inue ;

129 Q[i t i �>second] [i t j �>second]=Q[i t i �>second] [i t j
�>second] + node s i z e ;

}

131 }

}

133

/⇤ ⇤⇤⇤⇤⇤⇤⇤⇤ F { I , 3} ⇤⇤⇤⇤⇤⇤⇤⇤ ⇤/
135 f o r (v=0; v<node s i z e ; v++){

i f (v == nominated root) cont inue ;
137 f o r (map<vector<int >, int > : : i t e r a t o r i t i=edge2matrix .

begin () ; i t i != edge2matrix . end () ; ++i t i)
{

139 i f (i t i �> f i r s t [MIDDLE] != v) cont inue ;
i f (i t i �> f i r s t [LAST] < 2) cont inue ;

141 u=i t i �> f i r s t [FIRST] ;
i n t idx1 = i t i �>second ;

143 Q[idx1] [idx1]++;
f o r (map<vector<int >, int > : : i t e r a t o r i t j=edge2matrix

. begin () ; i t j != edge2matrix . end () ; ++i t j)
145 {

i f (i t j �> f i r s t [MIDDLE] != u) cont inue ;
147 i f (i t j �> f i r s t [LAST] != (i t i �> f i r s t [LAST]�1))

cont inue ;
i n t idx2 = i t j �>second ;

149 Q[idx1] [idx2]��;
}

151 }

}

153

/⇤ ⇤⇤⇤⇤⇤⇤⇤⇤ P I ⇤⇤⇤⇤⇤⇤⇤⇤ ⇤/
155 i n t maxWeight = 0 ;

f o r (map<pair<int , int >, int > : : i t e r a t o r i t=weight . begin () ; i t
!=weight . end () ; ++i t)

157 i f (maxWeight < i t�>second) {maxWeight = i t�>second ;}
i n t P I = (node s i z e �1) ⇤ maxWeight +1;

159 f o r (i n t i =0; i<N; i++)
{

161 f o r (i n t j =0; j<N; j++)
Q[i] [j] = Q[i] [j] ⇤ P I ;

163 }

165 /⇤ ⇤⇤⇤⇤⇤⇤⇤⇤ O I ⇤⇤⇤⇤⇤⇤⇤⇤ ⇤/
f o r (map<vector<int >, int > : : i t e r a t o r i t=edge2matrix . begin () ;
i t != edge2matrix . end () ; ++i t)

167 {

26 Liu and Dinneen

u = i t�> f i r s t [FIRST] ;
169 v = i t�> f i r s t [MIDDLE] ;

Q[i t�>second] [i t�>second] = Q[i t�>second] [i t�>second]
+ weight [make pair (u , v)] ;

171 }

re turn N;
173 }

175 void p r in t mat r i x (double ⇤⇤Q, const i n t n)
{

177 f o r (i n t i =0; i<n ; i++)
{

179 f o r (i n t j =0; j<n ; j++)
p r i n t f (”%4d ” , (i n t)Q[i] [j]) ;

181 p r i n t f (”\n”) ;
}

183 }

185 void read graph (const i n t n , vec to r <pair<int , int> > &
ad j a c e n t l i s t , vec to r <int> &setU , map<pair<int , int >, int>
&weight)

{

187 vec to r <pair<int , int> > adjacent tmp ;
map <pair<int , int >, int> adjacent ;

189 s t r i n g l i n e ;
i n t l ineCnt=�1;

191 f o r (i n t i =0; i<n+1; i++)
{

193 std : : g e t l i n e (cin , l i n e) ;
i s t r i n g s t r e am i s s (l i n e) ;

195 i n t a ;
whi l e (i s s >> a)

197 {

adjacent [make pair (l ineCnt , a)] = 1 ;
199 adjacent tmp . push back (make pair (l ineCnt , a)) ;

}

201 l ineCnt++;
}

203

l ineCnt=0;
205 f o r (i n t i =0; i<n ; i++)

{

207 std : : g e t l i n e (cin , l i n e) ;
i s t r i n g s t r e am i s s (l i n e) ;

209 i n t a ;
whi l e (i s s >> a) weight [adjacent tmp [l ineCnt++]] = a ;

211 }

f o r (map <pair<int , int >, int > : : i t e r a t o r i t=adjacent . begin () ;
i t != adjacent . end () ; ++i t) {

213 a d j a c e n t l i s t . push back (i t�> f i r s t) ;

Bounded-Depth Steiner Tree 27

}

215 std : : g e t l i n e (cin , l i n e) ;
i s t r i n g s t r e am i s s (l i n e) ;

217 i n t a ;
whi l e (i s s >> a) setU . push back (a) ;

219 }

Listing 1.1: qubo formulation.cpp

	CDMTCS532cover
	main

