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Abstract 19 

Force enhancement (FE) is a phenomenon that is present in skeletal muscle. It is characterised by 20 

progressive forces upon active stretching — distinguished by a linear rise in force — and enhanced 21 

isometric force following stretching (residual force enhancement; RFE). In skeletal muscle, non-cross-22 

bridge structures may account for this behaviour. So far, it is unknown whether differences between 23 

non-cross-bridge structures within heart and skeletal muscle result in deviating contractile behaviour 24 

during and after eccentric contractions. Thus, we investigated the force response of intact cardiac 25 

trabeculae during and after isokinetic eccentric muscle contractions (10 % of maximum shortening 26 

velocity) with extensive magnitudes of stretch (25 % of optimum muscle length). The different 27 

contributions of cross-bridge and non-cross-bridge structures to the total muscle force were revealed by 28 

using an actomyosin inhibitor. 29 

For cardiac trabeculae, we found that the force-length dynamics during long stretch were similar to the 30 

total isometric force-length relation. This indicates that no (R)FE is present in cardiac muscle. This 31 

finding is in contrast to the results obtained for skeletal muscle, in which (R)FE is present. Our data 32 

support the hypothesis that titin stiffness does not increase with activation in cardiac muscle. This 33 

contributes to an improved understanding of heart function. 34 

 35 
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1. BACKGROUND 41 

Force-producing mechanisms such as the cross-bridge [XB] and sliding filament theory have proved to 42 

be similar in cardiac and skeletal muscle tissues [1,2]. Yet cardiac and skeletal muscle exhibit different 43 

contractile behaviour. These differences have been attributed to variations in the underlying non-cross-44 

bridge (non-XB) structures. During systole, the heart muscle contracts concentrically only. The 45 

physiological working range is restricted to comparatively short sarcomere lengths (SL) that correspond 46 

in skeletal muscle to a working range associated with the ascending limb of the force-length relation 47 

(FLR) [2]. In cardiac muscle, the passive FLR is an exponential function originating at sarcomere 48 

lengths (SL) of about 1.9 µm (below the optimal length) [3,4]. In contrast, skeletal muscles have 49 

relatively small passive forces, which start to rise at SL around 2.5 µm (beyond the optimal length) (Fig. 50 

1b) [5]. Skeletal muscle also exhibit a much larger working range [6], and operate as motor, spring or 51 

brake during locomotion [7,8]. Skeletal muscles generate higher active forces following stretch (residual 52 

force enhancement; RFE), if compared to the muscles’ corresponding isometric force at constant length. 53 

This fact has been known for about 60 years [9] and has been confirmed on single sarcomeres [10], 54 

myofibrils [11], muscle fibres [12], single muscles [13] and multi-joint movements [14]. Hereby, 55 

maximal RFE-effects of up to 200 % F0  have been reported [15]. More recently, experiments on single 56 

muscle fibres extracted from the M. extensor digitorum longus (EDL) of the rat revealed that there also 57 

exists force enhancement (FE) during long eccentric stretches. This finding shows that skeletal muscle 58 

fibres behave like a linear spring over nearly the entire FLR (Fig. 1 (b), inset) [16]. To our knowledge, 59 

this phenomenon of linear behaviour during long eccentric muscle contractions has not been investigated 60 

using intact cardiac tissue preparations. 61 

Despite the large number of experimental studies and a variety of attempts to explain force enhancement 62 

in skeletal muscle, there is still a scientific debate regarding detailed molecular mechanisms and, 63 

therefore, no generally accepted model exists [17–20]. Titin [21], a huge filamentous protein, seems to 64 

play a crucial role in contributing to the enhanced force response during and following stretch 65 

contractions in skeletal muscle. Several model approaches [22–26] have been suggested, explaining 66 

force enhancement in skeletal muscle — based on an adjustable titin spring — which were supported 67 

by experimental evidence for titin-actin interactions upon muscle activation [27–33]. There exists also 68 

contradictory studies, that observed essentially no contribution of an adjustable titin spring [32,34] or 69 

even a reduction in titin-based stiffness with increased Ca2+ concentrations [30,31]. These investigations, 70 

however, have been done primarily on cardiac muscle tissue. In literature, one observes a lack of sharp 71 

differentiation between the distinct muscle tissue types. Hence, a transferability of results due to 72 

structural differences and methodological issues is doubtful. Further, the controversy might be due to a 73 

mixture/mismatch of experimental observations gathered from cardiac and skeletal tissue preparations. 74 

To date, there is only one study investigating RFE in cardiac myofibrils [35]. However, they use 75 
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permeabilised preparations obtained from homogenised papillary muscle samples [35]. Results revealed 76 

no residual force enhancement in permeabilised cardiac papillary myofibrils. 77 

Therefore, a structurally and physiologically based understanding of the influence of non-XB structures 78 

on cardiac muscle force is pending. The force response upon myocardial muscle stretching, which occurs 79 

during cardiac filling, is characterised by two distinct phenomena: by an instantaneous increase in twitch 80 

force, the so-called Frank-Starling mechanism [36] and by a several minute lasting slow increase in 81 

twitch, the so-called Slow Force Response [37]. There is extensive evidence that titin mediates these 82 

phenomena in cardiac muscle. Although, the underlying molecular mechanisms, in particular during 83 

long eccentric contractions of myocardium, remain(s) unknown [38,39]. 84 

Comparing the mechanical response of skeletal [16] and cardiac muscle exposes differences in the 85 

underlying microstructure, in the force-producing mechanisms, and in the functioning of the respective 86 

muscles.  Hence, the aim of our study was to investigate total force generation in intact cardiac trabeculae 87 

during isokinetic eccentric contractions in order to examine whether a calcium-dependent, adjustable 88 

spring element, i.e., titin, is present.  89 

Since potential titin–actin interactions in skeletal muscle [40] will result in enhanced forces after active 90 

muscle lengthening, we further aimed to investigate, if RFE exists in cardiac muscle tissue or if it does 91 

not.  92 

To achieve these goals, we used a custom-built work-loop calorimeter [41,42] to perform in vitro 93 

isokinetic ramp experiments on functionally intact cardiac trabeculae obtained from adult rats and 94 

stretched the muscle over the whole physiological working range of the FLR. To characterise the 95 

contribution of cross-bridge and non-cross-bridge structures to force production, we used the actin-96 

myosin inhibitor Blebbistatin. Findings deduced from such experiments not only improve our 97 

understanding of the underlying processes leading to force generation, but also have a significant impact 98 

on (multi-body) simulation studies of human or animal movement [43].  99 

2. METHODS 100 

A total of 11 intact trabeculae from 6 rat hearts were transferred to the measurement device and mounted 101 

between two platinum hooks connected to a custom laser interferometer-based force transducer and a 102 

linear length motor [41]. A detailed description of the experimental setup, handling and preparation of 103 

cardiac trabeculae is given in the electronic supplementary material (text S1 and S2). All experiments 104 

were conducted in accordance with protocols approved by the University of Auckland Animal Ethics 105 

Committee.  106 

2.1 Experimental protocol 107 

All experiments were performed at room temperature (22 °C). To study the link between force responses 108 

and eccentric ramp contractions at constant Ca2+ concentrations, stable tetanic contractions were 109 
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implemented in accordance with a previously established protocol proposed by Amiad Pavlov and 110 

Landesberg (2016) [44]. Fully-fused tetanic contraction of the cardiac trabecula was achieved by using 111 

a high electrical stimulation frequency (10 Hz) with pulse amplitude of 5 V and pulse width of 5 ms (in 112 

the presence of 10 mmol l-1 caffeine and an elevated Ca2+ concentration of 5 mmol l-1 in the ‘modified 113 

Tyrode solution’) [42]. Caffeine was added to induce the release of sarcoplasmic calcium [45] 114 

facilitating a tetanic contraction.  115 

To investigate the isometric FLR, each trabecula underwent a series of 6-7 isometric contractions. 116 

Starting from L0 (the muscle length associated with the maximally developed isometric force F0), the 117 

length was decreased by increments of 0.05L0 up to a minimal muscle length of 0.75L0 (cf. Fig. 1 (a), 118 

diamonds). At the minimum length, Lmin, the active force was negligible. At each length, the force was 119 

allowed to reach a steady state, which was typically obtained 40 s after commencing stimulation. Steady 120 

state of force was assumed, if the force changed less than 5 % over a period of 10 s. To avoid muscle 121 

damage induced by excessive lengthening, the trabeculae were not stretched beyond the optimal muscle 122 

length [46]. At optimal muscle length, we assumed a sarcomere length of 2.2 µm [47]. Beyond this 123 

length, the passive force development, which is mainly attributed to a contribution from extracellular 124 

structures such as collagen (and intracellular titin), will rise significantly [48–50] (Fig. 1 (a), grey dotted 125 

line). 126 

After finishing the isometric ramp protocol as described above, the trabecula was then subjected to 127 

eccentric ramp perturbations comprising two interventions. The first intervention was designed to 128 

investigate the dynamic force response during an isokinetic stretch of large magnitude, i.e., from the 129 

minimum muscle length to the optimal muscle length in the ‘modified Tyrode solution’. The second 130 

intervention involved partitioning the non-cross-bridge contribution to force development from that of 131 

a cross-bridge. 132 

During the eccentric ramp perturbation experiment (first intervention), the trabecula was lengthened 133 

with and without stimulation from a minimal muscle length of 0.75L0 to an optimal muscle length of 134 

1.0L0. All stretches were performed at a velocity of 10 % of the maximum shortening velocity, vmax: = 135 

2.00L0 s
-1, which corresponds to 12 µm s-1 - 14 µm s-1. This is consistent with the maximal unloaded 136 

shortening velocity for rat ventricular trabeculae [51,52]. To investigate the individual force responses 137 

in cardiac muscle during the steady-state, isometric phase post isokinetic ramps (residual force 138 

enhancement; RFE), we continued to apply the stimulation for at least 120 s after the end of the stretch 139 

contractions. To calculate RFE, we measured the difference between the redeveloped and the 140 

corresponding purely isometric force (prior to the active stretch) at the same length and at 70 s and 80 s 141 

after the end of each ramp.  142 

The second intervention of the eccentric ramp perturbation experiment was a repeat of the first 143 

intervention but in the presence of 15 µmol l−1 Blebbistatin dissolved in a polar aprotic solvent — 0.4 % 144 
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DMSO in the ‘modified Tyrode solution’. This photosensitive chemical is a selective inhibitor of myosin 145 

II ATPase that hampers the myosin myofilament from interacting with the actin filament, thereby 146 

inhibiting phosphate release and XB-based force development [35]. The Blebbistatin concentration does 147 

not alter the Ca2+ sensitivity of the contractile filaments [53] nor the excitation–contraction coupling 148 

[54]. Further, it does not affect titin mobility [35].  149 

To conserve structural, mechanical, and functional integrity as well as preventing fatigue of trabeculae, 150 

tetani were induced approximately every 40 s during the isometric FLR studies, i.e., between length 151 

changes, and about every 80 s between eccentric ramp perturbations. This follows a previously described 152 

protocol [44]. For calculating force degradation, isometric reference contractions were performed at L0 153 

before and after the ramp experiments.  154 

  155 
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2.2 Data processing and statistics 156 

LabVIEW software (National Instruments) was used for data acquisition. For data analysis, a custom-157 

written MATLAB (The MathWorks, Nattick, MA, USA) program was used. Data were expressed as 158 

mean ± standard deviation (SD) unless stated otherwise. For statistically analysing force values, we 159 

converted them to stresses (P) with respect to the muscle cross-sectional area (CSA). Unless stated 160 

otherwise, they were expressed in absolute values and in kPa or normalised to the individual maximal 161 

muscle stress (P/P0). Length values were expressed relative to the optimal muscle length (L/L0). The 162 

two-tailed paired Student’s t-test was used to identify significant differences between mean stress values 163 

and to compare the calculated individual RFE values to the corresponding isometric reference values 164 

prior to the active stretch experiments. A significance level of p < 0.05 was used for all analyses. 165 

Statistical analyses were realised using SPSS 25 (IBM Corp, Armonk, NY, USA). 166 

3. RESULTS 167 

3.1 Stress production in eccentric contractions 168 

Fig. 1 (a) provides for cardiac trabeculae a direct comparison between the total isokinetic stress-length 169 

relation during eccentric stretch (dark blue line) and the steady-state total isometric stress-length relation 170 

(black dashed line). For cardiac muscles, both traces show a nonlinear behaviour. Further, they are not 171 

statistically different from each other (marked as ‘ns’) when comparing individual stress values at 172 

distinct lengths of 0.75 L0, 0.8 L0, 0.85 L0, 0.9 L0, and 0.95 L0 (see table 1). During eccentric contraction 173 

experiments, the isometric stress decreased in successive activations at an average rate of 1.5 % per 174 

activation.  175 

3.2 Isometric stress-length characteristics 176 

The total isometric stress-length relation of cardiac muscle was examined between approximately 1.6 177 

µm and 2.2 µm SL (Fig. 1 (a), black dashed line). This range closely corresponds to the ascending limb 178 

of the stress-length relation of skeletal muscle (cf. Fig. 1 (b) inset) [2,55]. As demonstrated by previous 179 

investigations [2,4,56], the excised rat heart trabeculae featured a monotonically increasing FLR. This 180 

is in contrast to the typical slope change between the shallow and steep slope regions at the ascending 181 

limb of the FLR in striated skeletal muscles [16,55]. In cardiac muscle, the mean total stress was at 0.75 182 

L0 about 3 % of the maximal isometric stress, P0, accompanied with zero passive stress (Fig. 1 (a), grey 183 

dotted line). The intercept with the x-axis, where active stress is assumed to be zero, remains at about 184 

0.70 L0, which corresponds to sarcomere lengths of about 1.6 µm [1,4]. The mean total stress at the 185 

optimal muscle length, L0 ≈ 2.2 µm, was 22.98 kPa ± 7.67 kPa, whereas the passive stress was 6.31 kPa 186 

± 3.39 kPa (mean ± SD). The proportion of passive stresses with respect to total isometric stresses at L0 187 

was about 35 % P0 [57]. At physiological muscle lengths from (0.7 to 1.0)L0, which corresponds to 188 

1.6 µm - 2.2 µm SL [4,58], the passive stress is in cardiac muscle tissues mainly modulated by titin 189 
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[35,59]. For muscle lengths larger than 1.0L0, e.g. due to acute heart failure [59], passive stiffness 190 

predominantly increases due to collagen fibres (pathological stiffness in diseased hearts) [50,59]. 191 

 3.3 Effects of cross-bridge kinetics on eccentric stress generation 192 

Blebbistatin successfully inhibited active isometric muscle stress and leads to marginal levels of XB-193 

based stress production at L0 (Fig. 2). A summary of the in vitro results of all isokinetic stretch 194 

experiments carried out herein is shown in Fig. 3. For different extensions applied to intact cardiac 195 

trabeculae (boundary conditions), the relative total stress response, i.e., the individual trabeculae stresses 196 

normalised with respect to the corresponding P0, were plotted against relative muscle length. The dark 197 

blue line in Fig. 3 reflects the total stress response during the isokinetic stretch (at a rate of 10 % vmax 198 

from 0.75 L0 to L0). The light blue line depicts the total stress response under Blebbistatin conditions 199 

(inhibited XB contribution). The red solid line represents the passive stress-length trace without 200 

stimulation. Compared to the control contraction without Blebbistatin (Fig. 3; dark blue line), one can 201 

observe a reduction in stress during the eccentric ramp experiment stretching, i.e., from 0.75 to 1.0L0 202 

(Fig. 3; light blue line). The reduced stress obtained through administering Blebbistatin was not 203 

statistically different from the passive stress (Fig. 3; red solid line).  204 

3.4 Isometric stress development after eccentric isokinetic ramp experiments 205 

Fig. 2 shows a representative plot of an eccentric ramp experiment measuring the existence of residual 206 

force enhancement in cardiac muscle (dark blue solid line). For this case, an intact trabecula was set to 207 

a pre-determined muscle length (0.75 L0) before being activated (at t = 0 s). Note that the total muscle 208 

stress at length 0.75 L0 was almost zero (see also Fig. 1 (a)). As the stimuli caused the trabecula to 209 

contract, the stretch of the trabeculae returned to 1.0 L0 before isometrically holding it until the maximal 210 

steady-state isometric stress was reached. If compared to the isometric reference contraction at L0, the 211 

cardiac trabecula showed virtually no increased stress in the steady-state phase after finishing the ramp 212 

perturbation and thus showed no RFE (electronic supplementary material, table T1). After performing 213 

the ramp experiments, the stretching of the trabecula was repeated, however, in the presence of 15 µmol 214 

l−1 Blebbistatin. This was done to separate XB and non-XB contributions. After the end of the stretch 215 

contraction, the cardiac trabecula showed no RFE (no statistical significance; electronic supplementary 216 

material, table T1) during the steady-state phase (Fig. 2, light blue solid line) if compared to the isometric 217 

reference contraction at the same length (Fig. 2, grey dotted line). 218 

4. DISCUSSION 219 

This study presents the first investigation of the mechanical behaviour of intact cardiac trabeculae during 220 

and following extensive isokinetic eccentric ramp contractions. Our experiments reveal two 221 

characteristic features: (i) in cardiac muscle and for length values from (0.75 to 0.95) L/L0, there is no 222 

significant difference between the eccentric isokinetic stress-length relation and the total isometric 223 
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stress-length relation. Further, (ii) (residual) force enhancement is not present in cardiac muscle. These 224 

results are in strong contrast to those obtained in skeletal muscle during and following stretch 225 

contractions [10,13,35]. The underlying experimental findings suggest that there exists in functionally 226 

intact, activated cardiac muscle no additional contribution to overall force development by a spring-like 227 

element such as titin. These findings stimulate interpretation and speculation. Various studies, which 228 

are backed with experimental data, suggest that the mechanical properties of myocardium are affected 229 

by the interaction of actin and titin [30,34,60,61] (for recent reviews see [20,62]). Moreover, these 230 

titin(PEVK)–actin interactions might be diminished by the S100A1/Ca2+ complex [32,63], where 231 

S100A1 is a soluble calcium-binding protein. Based on this ample evidence, it can be hypothesised that 232 

the underlying observations can be deduced from an inverse relationship of titin-actin binding that 233 

occurs upon muscle activation by S100A1/Ca2+. Consequently, the results of the present study support 234 

the following assumptions: (1) upon cardiac muscle activation, the stiffening of single titin molecules 235 

result only in a negligible titin-related effect and (2), the diminishing or the release of titin-actin 236 

interactions in cardiac muscle is a function of varying Ca2+ concentrations and, thus, no increase in titin-237 

based stiffness and force during eccentric ramp contractions can be observed.  238 

Despite these speculations, the experimental observations presented in this study reveal that cardiac 239 

muscle has, in its intact form, a force-producing mechanism that is distinct from that of skeletal muscle. 240 

This mechanism exhibits largely enhanced forces during extensive lengthening contractions [16] and 241 

substantial RFE [10,13,64] — effects that are well acknowledged and a main determinant of active force 242 

production of skeletal muscle [20,65]. 243 

4.1 Comparison with skeletal muscle  244 

4.1.1 Structural properties of titin 245 

The differences in contractile behaviour observed between cardiac and skeletal musculature could be 246 

attributed to their functional and morphological variations. One variation may reside in the (I-band) 247 

structure of the sarcomeric, filamentous spring protein titin, which spans half a sarcomere from the Z-248 

disc to the M-line. Titin firmly anchors to myosin in the A-band region and then runs freely across the 249 

I-band region of the sarcomere until it attaches to actin (approximately 50 nm – 100 nm away from the 250 

Z-band) before finally entering the Z-band. Thereby it forms a ‘permanent’ bridge between actin and 251 

myosin [66]. In skeletal muscle, the I-band titin consists of a proximal and distal immunoglobulin 252 

domain, a PEVK region (abundant in the amino acids proline (P), glutamate (E), valine (V) and lysine 253 

(K)), and a N2A region [67]. Cardiac titin is known to express two isoforms, namely an N2B isoform, 254 

which predominantly exists in small mammals such as rat and rabbit, and an N2BA isoform, which 255 

occurs in large mammals such as bovine. The N2B isoform is much shorter than the N2BA or the N2A 256 

isoform [68]. Through alternative splicing of the I-band titin, cardiac and skeletal muscles express titin 257 

springs with varying lengths (primarily of the PEVK domain), which correlate with the passive 258 



10 
 

properties of different muscle types [62,66,69]. In addition, the ratio of N2BA/N2B expression varies in 259 

heart tissue between the atria and ventricles and has been tributed to various heart diseases [59,62]. 260 

Moreover, if compared to skeletal muscle titin, titin within heart tissue has short IG and PEVK segments 261 

exhibiting less E-rich domains [62,70,71]. In addition to these structural differences, skeletal muscles 262 

are more prone to show an increase of titin-induced force during and after stretch contractions than 263 

cardiac muscle [35,61] (cf. section ‘4.1.2’). Differences in the isometric stress-length relation between 264 

cardiac and skeletal muscle were discussed in text S3 (see electronic supplementary material). 265 

4.1.2 Potential titin contribution to total force development during stretch 266 

The observed nonlinear stress behaviour of intact cardiac trabeculae during extensive muscle 267 

lengthening contractions (Fig. 1 (a), blue solid line) is in contrast to the linear stress behaviour in skeletal 268 

muscles during comparable lengthening experiments, e.g. in single myofibres (cf. Fig. 1 (b); [16]) or 269 

whole muscle preparations [72]. Specifically, experimental observations on striated skeletal muscle 270 

tissue demonstrated that single muscle fibres taken from the rat EDL muscle have a linear spring-like 271 

behaviour during long eccentric contractions (nearly over the entire physiological FLR; cf. Fig. 1 (b), 272 

inset). Within this work, we also demonstrated that both XBs and non-XBs nonlinearly contribute to the 273 

resulting linear total muscle stress response. Active isokinetic stretching of permeabilised skeletal 274 

muscles fibres from 0.75L0 to 1.0L0 revealed an increase in stress by about 60% (Fig. 1 (b)). This clearly 275 

exceeds the maximum active stresses produced by XBs at these lengths. Statistical analyses yielded 276 

highly significant differences between eccentric and isometric stress-length traces under active 277 

conditions (pCa 4.5) in permeabilised muscle fibres (cf. Fig. 1 (b); [16]). Explanatory approaches 278 

[22,24,25,73], in which titin plays a crucial role in contributing to the progressive force response during 279 

active stretch contractions, seem to overcome significant deviations between experimental observations 280 

in skeletal muscle [10,16] and predictions from the sliding filament and cross-bridge theories.  281 

In skeletal muscles, two of the main concepts by which titin might contribute to increased forces during 282 

and following stretches are: (1) the stiffening of the single titin molecules due to muscle activation [70] 283 

and (2) the reduction of the titin’s free spring length due to titin–actin interactions [24]. Further, titin–284 

actin binding seems possible in skeletal muscle when calcium is present [40]. In skeletal muscle, such 285 

attachments may occur between myosin binding sites of the actin filament [27,74] and the titin’s PEVK 286 

[28,29] or N2A [75] region (or with some other structure within the sarcomere). However, the impact 287 

of Ca2+ on titin-actin binding appears to be inconclusive and thus requires further examination by a 288 

systematic re-evaluation of existing findings under different boundary conditions, especially considering 289 

structural and biochemical differences between different muscle types (skeletal, heart, smooth muscles).  290 

4.1.3 Chemical cross-bridge inhibition during stretch 291 

Numerous experimental investigations on skeletal muscle observed enhanced forces during eccentric 292 

contractions [16,64]. There are several hints that these enhanced forces are due to increased non-XB 293 
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forces. A series of experiments, in which XB-formation is hampered by actomyosin inhibitors, enabled 294 

the estimation of non-XB contributions to force enhancement. Labeit et al. (2003) [70] observed 295 

increased (≈20 %) non-XB-based (titin) forces in activated permeabilised mice muscle fibres (pCa 4.0, 296 

XBs inhibited by the use of 2,3-butanedione monoxime (BDM)) compared to passively (pCa 9.0) 297 

stretched myofibres. These results have been confirmed by other studies using Blebbistatin [16,65,76]. 298 

Furthermore, by performing active stretch experiments at very long sarcomere lengths (no actin–myosin 299 

overlap; thereby excluding XB formation), Leonard and Herzog (2010) [15] measured higher forces 300 

than during passive stretches, indicating the presence of titin-based forces. This distinct manner reveals 301 

no difference between active force production when XBs are inhibited and purely isokinetic passive 302 

stretching (Fig. 3, compare light blue with red line). This is in contrast to the behaviour of cardiac 303 

trabeculae during eccentric contractions. A possible explanation for the differences between cardiac and 304 

skeletal muscles might be the property of cardiac (PEVK-) titin-actin binding diminishing with 305 

increasing Ca2+, thereby decreasing titin-based stiffness and force [30–32,62]. 306 

5. CONCLUSION 307 

The presented results for intact trabeculae are consistent with the results of the only study that 308 

investigates RFE in cardiac myofibril with permeabilised preparations [35]. In [35], homogenisation of 309 

pieces of papillary muscle yielded isolated myofibrils that were activated by increasing Ca2+ 310 

concentrations within the solutions. The focus of [35] was on investigating the steady state force 311 

response of permeabilised cardiac myofibrils after isokinetic eccentric muscle contractions (10 µm s−1) 312 

with different stretch magnitudes (SLs ranging from 1.80 µm to 2.29 µm). The results of both studies 313 

confirm that residual force enhancement is not present in the heart — neither in control conditions (Fig. 314 

2, compare dark blue line with black dashed line) nor during XB-inhibition (Fig. 2, compare light blue 315 

line with grey dashed line). Anyhow, there is no systematic study investigating the effect of varying 316 

stretch amplitudes and starting lengths on (residual-) force enhancement in intact cardiac preparations. 317 

Hence, since the stretch amplitude is believed to be an important parameter for improving our 318 

understanding of the underlying mechanism(s) of (R)FE [9], different initial lengths and degrees of 319 

stretch should be considered in future studies that aim to examine the effect of titin on enhanced force 320 

responses in myocardial tissue. Notably, the current finding in cardiac muscle is in sharp contrast to 321 

previous results in skeletal muscle [10,11,13,61] (see text S4 in electronic supplementary material for 322 

further information of the functional relevance of force enhancement). 323 

Moreover, both approaches (of the current study and those of [35]) indirectly support the claim that the 324 

increase in force upon muscle activation and stretching of skeletal muscle is directly associated with 325 

titin isoforms [20]. Conversely, the data of this study support the hypothesis that titin stiffness does not 326 

increase with activation in cardiac muscle. This conclusion is backed by ample evidence suggesting that 327 

titin-actin interaction in cardiac tissue (PEVK) decreases with increasing concentrations of calcium 328 
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[30,31] or remains unaffected [32,34,60]. This finding is in contrast to observations in skeletal muscle 329 

[40].  330 

Differences in titin structure and titin-actin behaviour between cardiac and skeletal muscle might be 331 

responsible for the observed deviations in active eccentric contractions (Fig. 1). Due to the lack of RFE 332 

and the absence of increased non-XB-based stiffness and forces in cardiac muscle during active stretch, 333 

our findings indirectly support the theory that there is an inverse effect of an adjustable titin spring 334 

contributing to titin-based stiffness in cardiac muscles [24]. However, mechanical properties of titin 335 

continually adapt to cover prevailing conditions of cardiac contractile performance. This, in particular 336 

phosphorylation-mediated regulation, is complex and can be modulated by various protein kinases 337 

[77,78]. This modulation depends on the location where protein kinase phosphorylates the elastic titin 338 

regions [78]. For instance, phosphorylation of the cardiac N2B region increases the persistence length 339 

of the elastic titin spring, which results in reduced overall titin-based stiffness and force. In contrast, 340 

phosphorylation of the PEVK region reduces the effective free spring length yielding increased stretch-341 

dependent stiffness and force, respectively [78]. Titin phosphorylation seem to occur in response to 342 

physical exercise, whereby changes are expected to reduce overall cardiac titin stiffness [79].  343 

Hence, it is expected that titin makes a complex contribution to several phases of the cardiac cycle. Titin 344 

stiffness is closely related to ventricular function, whereas titin compliance has been shown to improve 345 

diastolic function [59]. Thus, the reduced passive force in long sarcomeres (during diastole) as a result 346 

of decreased titin-based stiffness plays a dominant role and is likely to be beneficial. More specifically, 347 

increased titin-based compliance results in enhanced exercise capacity [79,80] as it will counter the 348 

elevated diastolic pressure and enhance diastolic filling. Hence, the underlying findings underline the 349 

physiological relevance and the beneficial effect of titin on maintaining global cardiac functionality, 350 

e.g., as a function of physical activity [81].  351 

The findings of the present study add another aspect to the overwhelming published evidence suggesting 352 

that decreased titin stiffness causes reduced length dependent activation (LDA). LDA is an integral part 353 

and the cellular basis of the Frank-Starling mechanism, responsible for the elevated cardiac output in 354 

response to increased preload [81,82].  355 

In summary, our data supports, although indirectly, several hypotheses based on experimental findings 356 

which suggest that during the cardiac cycle the interaction between titin and actin varies. It has been 357 

shown that this interaction can be modulated by S100A1, a soluble calcium-binding protein found at 358 

high concentrations in the myocardium [20]. Hence, titin-actin interaction seems to be strong during 359 

diastolic filling when the level of the Ca2+/S100A1 complex is low, but considerably weaker during 360 

systole when Ca2+/S100A1 is high [30–32,34]. 361 

 362 

 363 
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Table Legends 606 

Table 1. Mean stress values + SDs normalised to P0 of purely isometric and eccentric isokinetic 607 

contractions at distinct lengths (0.75, 0.8, 0.85, 0.9, and 0.95 L/L0). ns means not significant (p < 0.05). 608 

n is the number of samples. 609 

 610 

  611 
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Figure Legends 612 

Fig. 1. Isokinetic eccentric stretch contractions in (a) cardiac and (b) skeletal muscle. Blue solid lines 613 

indicate mean stress responses during an active isokinetic eccentric stretch. The shaded regions indicate 614 

the standard deviations. For comparison, the total isometric stress-length relation (black dashed line) 615 

and passive isometric stress–length relation (grey dotted line) are shown. Diamonds and crosses express 616 

mean values of total and passive isometric muscle stresses, respectively. (a) Bars indicate corresponding 617 

standard deviations for lengths from 0.75 to 1.0 L/L0, except for mean values at 1.0 L0 of total isometric 618 

stress-length dependency, as the stress is normalised to maximum isometric stress (P/P0). The length is 619 

normalised to optimum muscle length (L/L0, lower abscissa) or given as sarcomere length [µm] (upper 620 

abscissa), respectively. Mean values of cardiac muscles from the total isometric contraction (diamonds) 621 

were fitted to a 3rd order polynomial function (black dashed line), whereas those from the passive 622 

isometric contraction (crosses) were fitted using an exponential function (grey dotted line). A total of n 623 

= 11 cardiac trabeculae were examined for all measurements. In all ramp experiments, the stretch 624 

velocity was 10% vmax yielding the blue solid line. The observed nonlinear stress response (blue solid 625 

line) in cardiac muscle was not statistically different (marked as ‘ns’) from the corresponding total 626 

isometric stress values at distinct lengths of 0.75 L0, 0.8 L0, 0.85 L0, 0.9 L0, and 0.95 L0 (see table 1). (b) 627 

For systematic comparison of contractile behaviour between cardiac and skeletal muscles during 628 

isokinetic eccentric stretching, measurements, obtained under similar experimental conditions as in the 629 

cardiac experiments for skinned skeletal fibres from EDL (extensor digitorum longus) muscles are 630 

shown. In contrast with cardiac muscle, the characteristic linear spring behaviour (blue solid line) in 631 

skeletal muscle statistically exceeds (p < 0.001, as indicated by asterisks) the maximum total stresses 632 

over nearly the entire physiological working range (inset; unshaded region). Data reproduced from [16].  633 

Fig. 2. Examination of residual force enhancement in cardiac muscle with and without cross-bridge 634 

inhibition. Raw data of representative normalised stress-time (upper graph) and normalised length-time 635 

traces (lower graph) (n = 1) underlying isokinetic length changes with ramp amplitudes of 0.25 L0 at 636 

constant velocity of 10% vmax. Notably, with the onset of stimulation at t = 0 s, the intact trabecula 637 

contracted maximally and produced about 3% active muscle stress [P/P0] at 0.75 L0 (dark blue line; see 638 

table 1). This is in agreement with other studies reporting almost no active muscle force at 0.7 L0 - 0.75 639 

L0 [4,37,56,58]. There is no residual force enhancement (RFE) in intact cardiac trabecula following 640 

active stretching under control conditions (dark blue solid line; no cross-bridge inhibition [without 641 

Blebbistatin]) nor under Blebbistatin conditions (light blue solid line; with cross-bridge inhibition). The 642 

black dotted line indicates the isometric reference contraction. The grey dotted line indicates the 643 

isometric reference contraction underlying cross-bridge inhibition. Note that isometric contractions 644 

exhibited an initial, transient force peak (at about 10s), which is typical for caffeine-induced tetanic 645 

contractions of intact heart muscle [42,45,83].  646 
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Fig. 3. Stress–length relations obtained from isokinetic stretches at different contractile conditions. Mean 647 

(solid lines) and SD (shaded regions around solid lines) of n = 11 cardiac trabeculae undergoing active 648 

control (dark blue line) and cross-bridge inhibited (using Blebbistatin; light blue line) contractions. The 649 

red line represents the passive eccentric stress response (in the absence of stimulation). No statistical 650 

difference (marked as ‘ns’) between the light blue line and the red line is observed. 651 


