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Abstract—Needle-free jet injection allows delivery of a liquid
drug through the skin in the form of a narrow fluid jet traveling
at high speed, minimizing the risks of accidents. Doing this in a
controlled way requires an actuator with exceptionally high force
density. We propose the use of linear permanent magnet flux-
switching motors for this task, and describe their characteristics
relative to the needs of jet injection. This paper will introduce a
design process which involves the use of artificial neural networks
as a means of response surface modelling, combined with non-
linear constraint optimization, to deduce a motor design that
satisfies all of the challenging linear motor requirements for
needle-free jet injection applications.

Index Terms—Drug delivery, design optimization, electrome-
chanical systems, actuators, linear permanent magnet flux switch-
ing motor, finite element modelling, ANN, deep learning, machine
learning.

I. INTRODUCTION

N eedle free jet injection (NFJI) is a safe and efficient
method of transdermal drug delivery, which can be

realized by forcing a fluid jet between 76µm and 360µm
in diameter to penetrate the skin at a jet speed (v) typically
faster than 100m/s [1]. Mechanically-powered jet injectors
offer limited control over the injection depth and jet velocity,
resulting in occasional bruising and other adverse effects [2].
Recently, high force density direct-drive linear motors [3], [4]
have been used to enable electronically controlled injectors
with superior repeatably and consistency. The voice coil motor
(VCM) hand-piece in [5] has a total mass of 426 g, and
requires peak electrical power of 5 kW to deliver a 300µL
drug volume. A higher-performance injector based on the tubu-
lar permanent magnet linear synchronous motor (PMLSM)
assembly in [4] requires 1.4kW to deliver as much as 1mL
of drug, weighs 322 g for just the coil and magnets, and 600 g
in total when adding support components. Even with such
progress, this synchronous permanent magnet motor is still
larger and heavier than the form factor preferred for a hand-
held medical device. In addition, the most efficient and highest
force-density implementations of such motors require large
amounts of rare-earth permanent magnet material, leading to
high cost.

We are therefore motivated to explore alternative motor
topologies that could potentially offer both high force density
and a reduced cost. One possible alternative is the linear

flux-switching motor (LFSM). Belonging to the the family
of doubly-salient permanent magnet motors [6], LFSMs have
high thrust density, high tolerance to current overload, lower
use of permanent magnet material, and a generally robust
construction. They use a passive secondary that can be made
out of steel laminations or soft magnetic composite (SMC)
to reduce eddy current loss to the minimum. Being able to
ignore eddy currents will play an important role in improving
the efficiency of design simulation. The amount of permanent
magnet (PM) in a LFSM in long stroke applications can
be significantly less than that used by a PMLSM[7]. All
these advantages are important in bringing a prototype into
manufacturing at scale to reach high reliability. However,
since the LFSM is still a relatively unexplored topology,
the literature has opposing opinions about whether LFSMs
outperform PMLSMs [7], [8].

The requirements of direct-drive electric motors for NFJI
are demanding: very high pulsed force is required at near stall
velocity, but the motor mass must be minimal to ensure the
usability of the hand-held injection device. Due the complex
flux path in LFSMs and resulting difficulty in semi-analytical
modelling for this type of motor, the literature typically makes
use of 2D or 3D finite element analysis (FEA) to accurately
predict the thrust and cogging force. For modelling accuracy
and efficiency advantages, we chose to adopt the tubular varia-
tion of LFSM, which can easily be modelled and templated as
axisymmetric 2D finite element models (FEM). Traditionally,
during the optimization process, each performance valuation
requires one FEM evaluation. This means simulation only
when needed has poor data re-use, and unpredictable opti-
mization wait time. Instead, we can approach motor design
with the response surface method (RSM), by describing the
motor performance metrics using empirical equations [9], [10],
or using an artificial neural network [11], [12]. In a high
order RSM problem with many input variables, large sampling
levels for each input are the key to obtaining accurate model
predictions. However, for the number of design parameters
needed to describe a motor, the time and computation effort
required to reach the required sampling levels is high, growing
exponentially with the number of parameters.

This study attempts to clarify the performance character-
istic of LFSMs, specifically in jet injection applications, by



Fig. 1. Schematic of a three-phase tubular linear flux-switching motor (in this case, 6 slot/5 pole). The radii of the SMC track (ris, rms, ros) and armature
(ric, rmc, roc) structure are shown. The motor has slot period length LKC , track period length LKS , whole of mover armature length LC , whole track
length or equivalent motor length LS , length of each overall repeat unit Lrepeat, and motor stroke length Lstroke.

(a) Detailed dimensions (b) A jet injector driven by a LFSM

Fig. 2. Detailed dimensions of the tubular LFSM: armature assembly widths (wM , wS , wC ), armature assembly heights (hCM , hC ), track tooth width
(wR), and track tooth heights (hR1, hR2), tooth angle θ, air gap hG in (a). A basic schematic of a LFSM driven jet injector and a NFJI drug ampoule with
diameter D are shown in (b).

optimizing a LFSM to similar mass and size constraints used
in a previous study about a PMLSM [4]. With the help of
deep regression ANN, we will develop a topological study and
suitable design optimization methodology for LFSMs applied
to NFJI in order to achieve this goal.

II. ELECTROMAGNETIC MODEL

A. Structure
We chose to examine a C-core topology, because they

typically produce more thrust than E-core topologies [13].
A conventional 6 slot/5 pole LFSM as shown in Fig. 1 has
minimal thrust ripple due to cancellation of even order and
third order harmonics. However, we chose to study a 6 slot/7
pole LFSM structure because it is reported to also produce
more thrust than other configurations, even though it may
come at the expense of having more thrust ripple [14].

To minimize the moving (and total) mass, the outer sliding
armature assembly is selected as the moving element. Each
repeating period of the motor consists of 6 axially magnetized
permanent magnet rings, 6 SMC cylindrical cores to contain
the conductor windings, and 2 circumferentially wound three-
phase coil groups. The secondary is passive, and constructed

as an SMC tube with a periodic tooth structure with angled
sides. Dimensions are shown for each topology in Fig. 2(a).
Fig. 2(b) illustrates how a tubular LFSM can be incorporated
in the design of a hand-held jet injector device.

B. Modelling approach

Due to the complex flux pattern inherent to the doubly-
salient structure in the mover assembly, estimating average
thrust of a design requires knowledge of the maximum achiev-
able forces at different stroke positions.

The 6 slot/7 pole machine was modelled in ANSYS
MAPDL to measure the force generated on the secondary, as
shown in Fig. 3(a). The 2D axisymmetric model implemented
in ANSYS 19.2 uses a mapped mesh for the motor parts and
a free mesh for the transition regions such as the air gap and
the free space surrounding the structure. Periodic boundary
conditions weres applied at each end of the armature repeat
unit along the ẑ direction. This setup ignores end effects
because later on in the extension to this work, the use of
more than one motor repeat period may be considered. The
SMC parts and magnets are made out of Sintex SMC prototype
materials and K&J Magnetics Grade N45SH, respectively. The



(a) FEA setup, currently θ = 0◦

(b) 1x motor: 6 slots, 7 poles, ris = 2mm, hR1 = 2.4mm, hR2 =
6mm, ric = 9.2mm, hC1 = 12mm, hC2 = 15mm, wM = 2.7mm,
wS = 10.6mm, wC = 6.4mm, wR = 3.4mm, 6 ·LKC = 7 ·LKS =
80mm, θ = 0◦.

(c) Plot of average thrust for the original motor and another motor with
all dimensions doubled (“2x motor”) at different current densities: 1, 3,
5, 10, 20, 30, 40, and 50A/mm2

Fig. 3. The axisymmeic FEA model in ANSYS Mechanical APDL for evaluating force produced on the secondary (a). A plot of maximum achievable force
at different track positions for the original motor moving right → left (b). A plot that compares the original motor’s force production capability to that of a
motor twice the size (c).

non-linear B-H relationship of the SMC material is also fully
captured in the FEA model. This setup will be crucial to
the design optimization process, where many different design
configurations need to be tested.

C. Scaling study

There are abundant studies which have explored the effects
of changing single design parameters or a few at a time;
however, there has not been a study that examine the effect of
scaling all LFSM design parameters to benchmark a scaling
law. The flux loading created by the permanent magnets
pushes the iron structures close to saturation, so we cannot
necessarily expect a simple form to the scaling law. The 6
slot/7 pole structure was chosen to be examined first because
its tendency to produce larger average thrust at the cost

of higher thrust ripple. An arbitrary 6 slot/7 pole machine
and a machine with the same structure but all dimensions
doubled (“2x motor”) were compared. Fig. 3(b) compares the
force production capability at different stroke positions for
the original motor. The thrust waveforms are uneven, with
high ripple and skewness, which grow as the current density
increases. Fortunately, varying the tooth angle to reach a more
trapezoidal tooth shape is expected to help reduce the thrust
ripple significantly [15].

In doubling the dimensions of a motor, the mass and volume
are multiplied by a factor of 8. Hence, when applying the
same current density to the coil, the 2x motor will consume 8
times more power. For a permanent magnet motor, one would
expect that the force produced would also be eight times
higher, in agreement to the motor constant scaling units of



N/
√
W · kg[16]. The scaling relationship is different in motors

operating primarily on the principle of variable reluctance, in
which the appropriate normalization for size and power gives
units of N/W · kg. The scaling difference arises because, in
scaling the overall dimensions of the motor by a fixed number,
the rates at which PM and winding induction lose effectiveness
are different[17]. In a LFSM, the thrust is produced from
the flux-switching action of the armature on uni-polar flux
produced by the permanent magnet[6], a combination of the
two operating principles. These scaling relations apply only
up to a certain power level, above which motor performance
is impacted by saturation.

The effect of scaling this LFSM is shown in Fig. 3(c). In this
particular example, for a current density up to 5A/mm2, the
force produced by the 2x motor is indeed 8 times that of the
original motor. This ratio drops to 7 times at 10A/mm2 and
to below 6 times at 40A/mm2. When optimizing a motor to
maximize the motor constant, one should incorporate an extra
step to check whether the applied power has not exceeded the
scaling relationship implied by the objective of the optimiza-
tion. Since the extent to which the scaling relationship applies
is not well understood in the literature, alternative methods
to choosing a good design are to perform a grid search or to
use a heuristic method such as a genetic algorithm (GA). The
draw back of grid search is computational inefficiency which
we can compensate with given a high performance computing
facility. On the other hand, GA requires rigorous and heuristic
tuning which deviates away from being able to understand
how design parameters interact.

III. DESIGN & OPTIMIZATION

From the motor properties study above, we learn that the
more saturated the power and average thrust curve becomes,
the larger the proportion of thrust fluctuation grows. Our pre-
vious effort to optimize PMLSMs for NFJI has involved fixing
the length of the motor and the force required to deliver drug
at v = 200m/s, while minimizing the required motor mass
[4]. A recent study suggests that intra-muscular NFJI can still
be realized when the initial peak jet speed of vpeak = 140m/s
and subsequent jet speed can be as low as v = 120m/s [18].
This implies that we can re-frame the problem into finding a
LFSM that can produce peak jet speed of vpeak = 140m/s
and average jet speed around v = 120m/s. This design goal
indirectly lower the required thrust as the result. If no motor
could satisfy the thrust requirement, we can gradually relax
the mass constraints m until the optimization routine can find
a suitable configuration.

In a motor powered NFJI like that shown in Fig. 2(b),
ignoring resistance due to fluid viscosity, the actuator force
F and jet speed v have the following relation:

F =
π

8
ρv2D2 (1)

where ρ is the density of fluid being delivered and D is the
diameter of the piston cylinder. We can work backward to find

Fig. 4. Flowchart of the motor design process.

the jet speed v when the stroke length Lstroke, thrust F , and
injection volume V are given:

v =

√
2FLstroke

ρV
(2)

In the problem at hand, the injection volume V is fixed
to be 1mL, and maximum achievable thrust F and stroke
length Lstroke are to be determined. Our optimization goal is
to maximize the jet velocity at a given power dissipation to
determine an optimized and practical LFSM design to power a
hand-held NFJI device. We will first need to obtain sufficient
data to train our ANN model by obtaining simulation results
from a vast amount of FEM computed on a supercomputer. By



TABLE I
SUMMARY OF MOTOR PARAMETER RANGES

Parameter Description Values
α Ratio of wM over LKC 0.1− 0.3

β Ratio of wC over wS 0.7− 0.9

γ Ratio of hCM over hC 0.7− 0.9

δ Ratio of wR or LKS 0.1− 0.3

ε Ratio of hR1 or hR2 0.4− 0.6

rsi Inner radius of SMC stator core 2mm

rso Outer radius of SMC stator core 4− 10mm

hC Thickness of the mover assembly 10− 30mm

hG Mover-stator air gap 1.2mm

Lrepeat Length of each 6 slot/7 pole unit 50− 90mm

θ Stator tooth angle arctan(1/2)

having a big set of data, we can explore the relationship be-
tween the motor’s geometric parameters and the performance
metrics such as the average thrust, maximum thrust, and the
cogging force profile. The neural network is then employed in
our optimization process to find the desired motor. The entire
design and optimization process is summarized in Fig. 4. The
rest of this section will describe each step in more details.

A. Specifications & Sampling

The requirements on the final motor design were identified
based on the assumption that the motor will be fitted in a
hand-held jet injector device, separate from the power source:

• The motor length LS should not exceed 16 cm and mass
M should fall in the range or 300 g to 400 g but not
significantly more,

• The average power consumption PE should be less than
1.6 kW, dictated by the power limit imposed by our
battery powered control system in [19].

• The combination of force produced F and stroke length
Lstroke must allow for 1mL jet injection through a
200µm nozzle diameter at an average jet speed of
v = 120m/s, and peak jet speed of vpeak = 140m/s.

This work investigate and optimize tubular linear 6 slot/7
pole machine with the dimensions presented in Fig. 1 and 2.
With consideration to the dimensions and ratios of the desired
motor design, the structural design factors and their range are
summarized in Table I.

The magnet, conductor and SMC core assembly as a whole
body is treated as the mover, and the SMC track with trapezoid
teeth is treated as the stator. The stator core inner radius rsi and
the mover-stator air gap hG are fixed at 2mm and 1.2mm, re-
spectively. With an effective stator pocket of 4mm in diameter,
the structural support has a place to be added later on. For the
ease of manufacturing, there needs to be a reasonable amount
of air gap between the stator and mover such as 1.2mm, which
comes from our past experience building tubular longitudinal
synchronous motor. (Physically, this air gap will include non-
magnetic support structures as well as mechanical clearance.)
Note that in the data collection process, the motor length LS

TABLE II
SUMMARY OF MOTOR PARAMETER SAMPLING LEVELS

Params Level 1 Level 2 Level 3 Unit
α 0.1 0.2 0.3

β 0.7 0.8 0.9

γ 0.7 0.8 0.9

δ 0.1 0.2 0.3

ε 0.4 0.5 0.6

rsi 2.0 - - mm

rso 4.0 7.0 10.0 mm

hC 10.0 20.0 30.0 mm

hG 1.2 - - mm

Lrepeat 50.0 70.0 90.0 mm

θ arctan 1/2 - - rad

and stroke length Lstroke are not yet determined. Instead, the
length of each repeat 6 slot/7 pole unit Lrepeat is iterated upon.
To simplify the model the tooth angle θ is set to be the value
of arctan 1/2, which makes the width of each tooth extension
precisely half the height of the tooth.

Table II shows incremental sampling steps for the structural
design factors. From the sampling steps, a design grid of
6561 cases are generated. Additionally, another 6561 cases
constructed by input variables created with random values
within Table I range were added to help generalize the entire
continuous design space better. In total, there were 13 122
independent motor designs to have their average thrust, max-
imum thrust, and cogging profile predicted by FEA.

B. FEA data mining

Poorly understood physical systems often require FEA for
accurate numerical calculation at the cost of long computation
time. This work adopts the FEA modelling approach outlined
in II-B. The base ANSYS MAPDL 19.2 script was constructed
with the intention to allow for easy modification of the
input parameters summarized in Table I. For the 13 122 motor
designs, we need to determine the cogging force, average
thrust, and peak thrust at 1500W input power. We take force
measurements at 20 equally spaced stroke positions and 42
current angle offsets. Since the the mesh of each simulation
can be reused for all the different current angle offsets, only the
different stroke positions require re-meshing. In total, there are
262 440 input files which represent all the unique permutations
of all motor design dimensions, stroke positions, and current
angle offsets. Additionally, each input files contain an extra
simulation at null applied current to learn about the cogging
force at the various stroke positions.

We sent these 262 440 input files to the high performance
computing (HPC) infrastructure owned by the New Zealand
eScience Infastructure (NeSI) for execution in parallel batches.
Each input file is estimated to take 22 minutes on a two-
core Intel CPU with 3GBs of RAM. Given that the HPC
facility allows for any user to execute 1000 jobs in parallel,
this consumed 96 228 CPU hours, and took 96 hours to
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Fig. 5. Heat map which depicts the relationship between different input and
output variables of the motor design data set obtained in the FEA data mining
step. Red and blue on this scale mean positively and negatively correlated.
Small values are hidden.

complete. All verbose output of jobs were collected and
doubled checked for errors and warnings, totalling 100.7GBs
of raw data in text format. The necessary information was then
reduced back to 13 015 fully captured motor designs in CSV
format, demonstrating a very high success rate of more than
99%. The computed thrust output by FEA batches was later
further processed and refined into peak to peak cogging force
F∆cogging , average thrust F , and peak thrust Fpeak for use in
training the neural network.

One additional advantage of having the data ready ahead
of the optimization process is that the available data, though
limited, can still provide valuable insights into identifying
the principal design parameters. To investigate these hidden
relationships, we plot a heat map in Fig. 5. We can learn a
number of useful relationships from this heat map:

• α ratio can improve the average and peak thrust at the
cost of more peak to peak cogging F∆cogging,

• rso also improve average and peak thrust without adding
more cogging, however, this will inherently add more
mass,

• Low β is more preferable,
• Surprisingly, stator tooth design factors such as ε and δ

has very little influence on the motor performance, even
on the peak to peak cogging F∆cogging

C. Deep regression ANN training

Deep learning belongs to a broader family of machine
learning methods and provides the most value in capturing
complex non-linear patterns with almost any data set. The
data set provides both the continuous input variables (structural
design factors), and the continuous output variable (thrust char-
acteristics at a given power), which classify our application as
a supervised and regression type of machine learning problem.
The ANN model was implemented in Keras and Tensorflow:

• 10 structural parameters and the input power are regarded
as the Input layer (α, β, γ, ε, δ, rsi, rso, hC , hG, Lrepeat

and input electrical power PE),
• 3 performance outputs are regarded as the Output layer

(F∆cogging, F , and Fpeak),

• Adam optimizer is used for ANN training,
• 9 hidden layers of 128− 256− 256− 256− 256− 256−

256− 256− 128 of densely connected nodes,
• Rectified linear unit (ReLU) activation function is used

for the input and hidden layer,
• Linear activation function is used for the output layer
• 75% and 25% of the 13 015 data points previously

collected are regarded as the training and validation sets,
respectively. The split was chosen at random.

After 500 training iterations, the model was shown to have a
mean squared error of under 3.7 and mean absolute percentage
error of just under 2.89%. The training and validation errors
were similar, showing that the deep regression model is not
over-fitted to the training data set.

D. Optimization
With a fully constructed ANN model of the LFSM within

the specified design space, our desired motor was optimized to
maximize the normalized jet velocity v to help achieve peak
and average jet velocity of 140m/s and 120m/s, respectively.
The total power P was kept a constant value of 1500W. The
entire optimization search was repeated with different mass
constraints m, starting from 350 g.

In this optimization round, there was a single 6 slot/7 pole
repeat unit. So far the entire length of the motor LS has not
been chosen yet, because we only looked at grid searching for
Lrepeat. Thus, the overall optimization process was arranged
as follows:

• Limit the search to motors with a total length LS =
Lrepeat + Lstroke in between 120mm and 160mm,

• Divide the LS and Lstroke ranges into 41 equally
spaced lists each, i.e. [120, 121, 122, ..., 160]mm and
[50, 51, 52, ..., 90]mm,

• Create a 2D search zone for each combination of stroke
length Lstroke and mover length Lrepeat that makes up
a value of LS , totalling 1681 points,

• Run 1681 inner optimization searches with Matlab
constrained convex non-linear optimization function
fmincon(). Details of the inner optimization will be
explained below,

• Plot and identify a motor design that produce the highest
average jet speed v at the given mass constraint m.

In more detail, each inner optimization was implemented as
follows to complete the 2D search zone for each combination
of stroke length Lstroke and mover length Lrepeat:

• Given Lstroke in each inner optimization, the values for
rsi and hG were taken as fixed; the unknown variables
for each search were α, β, γ, ε, δ, rso, and hC ,

• The objective function aims to maximize the value of
average jet speed v when working backward (equation
2) from the given stroke length Lstroke in the previous
step, injection volume V = 1mL from the specification,
and the average thrust F estimated by the ANN model
previously constructed and trained,

• The optimization objective function evaluation interacts
with the trained ANN model in the fashion of a web



(a) Sub-routine setup: Each objective function evaluation will start a
separate sub-routine, taking about 6 seconds.

(b) Web-server setup: The model is loaded only once, and all objective
function evaluation takes less than 0.05 seconds.

Fig. 6. Two different style of optimization objective function evaluation.

(a) m = 350 g: peak average jet speed found is 114.7m/s (b) m = 425 g: peak average jet speed found is 131.6m/s

Fig. 7. Mover length Lrepeat = [50, 51, 52, ...90]mm × motor length LS = [120, 121, 122, ..., 160]mm search map for a motor that produces the highest
average injection jet speed v at the lowest (350 g) and highest(425 g) mass constraints. The optimal configurations are highlighted with stars on all subplots.
The settings are: injection volume V = 1mL, and input power P = 1500W.

TABLE III
OPTIMIZED MOTOR UNDER DIFFERENT MASS CONSTRAINTS

Mass (g) α β γ ε δ rsi rso hC hG Lrepeat Lstroke v(m/s) vpeak F (N) Fpeak

350 0.30 0.70 0.71 0.43 0.14 2.00 6.24 10.0 1.20 51 109 114 124 60.42 70.89

375 0.30 0.70 0.90 0.42 0.17 2.00 6.39 10.0 1.20 56 104 120 131 69.50 82.15

400 0.30 0.70 0.90 0.47 0.19 2.00 6.56 10.0 1.20 58 102 127 136 78.79 90.81

425 0.30 0.90 0.90 0.44 0.18 2.00 6.81 10.0 1.20 61 99 132 143 87.43 102.6

server instead of a sub-routine, as illustrated in Fig. 6(b),
reducing query time from 6 seconds to just 0.05 seconds,

• The constraint function restricts the motor dimensions so
that the entire motor has a mass set by m.

E. Results & discussions

The plots of 2D search maps for Lstroke×Lrepeat with the
highest and lowest mass constraints m are shown in Fig. 7. The
optimal motor configurations are highlighted on each plot. As
expected, in searches with higher mass constraint values m,
the overall average jet speeds were higher. It also appears that



the more difficult the mass constraint, the longer the stroke
length Lstroke required. More information on all 4 motor
configurations is summarized in Table III.

The optimization appears to favor higher values of motor
length LS and stroke length Lstroke. The evidence is found
in these motor designs where the lengths of the 6 slot/7 pole
repeat unit Lrepeat lean toward the lower limit of 50mm. This
tendency is very similar for both VCMs and LPMSMs [5],
[20].

At mass m = 375g, the optimized motor can satisfy the
requirement for average jet speed v = 120m/s, however
the peak jet speed vpeak = 124mm is not satisfactory. The
output for mass m of 375 g, and 400 g are also did not meet
the specification. Only the optimized motor found at 425 g
produce the average jet speed of 132mm and peak jet speed
of 143mm to satisfy all of the above requirements.

To recall, the LPMSM for NFJI presented in [4] has a base
mass of 322 g, base length of 144mm, and in theory produces
peak jet speed of 200m/s. From the results discussed above,
we conclude that for this application, tubular LFSM motors
perform worse than LPMSMs. However, the LPMSM uses
200 g of rare earth permanent magnet, but the LFSM only uses
116.5 g of the same material. This demonstrates a significant
42% reduction in high cost rare earth permanent magnet usage.

IV. CONCLUSION

To summarize, we presented an efficient FEA modelling
setup for studying tubular LFSMs, a dimensional scaling study
on motors of this type, and finally an optimization study for
the application of LFSM to NFJI. We also discussed a method
of employing an ANN model as a web server to minimize
RSM evaluation time. The optimized LFSM for NFJI found
was 31% heavier the bench mark LPMSM in [4] but saved
42% in rare earth magnet mass.

Following this work, future work will focus on also gather-
ing 6 slot/5 pole machine data, as well as extending the search
ranges of input variables for existing ANN model. The chosen
motor design will be further refined to reduce the natural
cogging force and thurst ripple using methods which will not
compromise the overall force density.
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