Cortical thinning and neuropsychological changes in presymptomatic Huntington’s Disease

John W. Davison

This thesis is submitted in partial fulfilment of the requirements for the degree of Doctorate of Clinical Psychology, University of Auckland, 2009.
Abstract

Degeneration of the striatum and striatal-frontal circuits are generally thought to cause most of the neuropsychological symptoms experienced in Huntington’s Disease (HD). Advances in cortical thickness mapping (an automated MRI method for precisely measuring the cortical thickness across the entire cortex) provide a new technique for examining changes in the brain in HD. Recent studies using this technology have reported provocative results. They found significant cortical thinning in participants with early HD (Rosas et al., 2002; Rosas et al., 2008) and even in presymptomatic HD (Rosas et al., 2005). Moreover, cortical thinning was most prominent in posterior regions of the brain, with relative preservation of the anterior frontal regions. The present study replicated Rosas et al.’s (2005) study but used a larger sample of presymptomatic HD participants (n = 19) and a control group matched for age, gender and education (n = 19). Presymptomatic HD participants were divided into two groups, PreHDclose and PreHDFar, based on their estimated proximity to clinical onset. The distribution of cortical thinning was assessed using an identical MRI method to previous cortical thinning studies with HD participants. Specific neuropsychological tests were used to assess cognitive and mood changes that may be associated with cortical thinning. It was hypothesised that cortical thinning would be more evident in posterior than frontal cortical regions. It was also hypothesised that presymptomatic HD participants would perform more poorly than controls on tests that are subserved primarily by specific posterior cortical regions, but not on tests that are subserved by anterior cortical regions. Lastly, it was predicted that poorer performance in the neuropsychological measures would be associated with greater thinning in cortical regions that are important during performance of these tasks.

Consistent with predictions, the presymptomatic HD group showed regionally-specific cortical thinning which was most prominent in the posterior cortices, particularly around the right parieto-temporal-occipital (PTO) junction. Thinning occurred in people up to 15 years before clinical onset, with little to no thinning before that. The presymptomatic HD group, and particularly the PreHDclose participants, performed significantly worse than controls in 2 of the 6 cognitive tests that are subserved primarily by posterior cortical regions (the Judgment of Line
Orientation test and modified Roadmap Test), but not in tests that are subserved primarily by frontal cortical regions. Correlational analyses showed a number of regionally-specific relationships between thinning and cognitive performance, although the distribution of these relationships did not generally support our region-of-interest predictions. The results contribute to a better characterisation of the cortical and neuropsychological changes that occur early in the development of HD, and provide tentative support for cortical thickness mapping as a valid and sensitive measure for assessing cortical changes in presymptomatic HD.
Acknowledgements

Many brains have contributed to this thesis.

My primary supervisor, Lynette Tippett, provided support, insight and enthusiasm, for both this thesis and more broadly in the field of clinical neuropsychology. I appreciate the energy and commitment she gave to guiding this thesis and improving my skills.

I gained a great deal from Diana Rosas, Stephanie Lee, Alexandra Zaleta, and the research group at Massachusetts General Hospital and Harvard Medical School. This thesis would not have been possible without the extensive time and expertise they provided with MRI procedures. I am grateful for their patience and encouragement, and their warm welcomes in Boston.

Richard Roxburgh and Virginia Hogg provided invaluable support and encouragement. I was grateful to Richard for conducting the UHDRS motor assessments, and to Virginia, for her help in recruiting participants and maintaining an important link with them for this study.

I am indebted to all the participants in this study who generously contributed their time and energy, and in particular, to those who carry the burden of the Huntington’s Disease gene.

The Auckland Huntington’s Disease Group welcomed me and furthered my interest in research into Huntington’s Disease. Thanks to Richard Faull, Jo Dysart and Jocelyn Bullock, for relating this research to the wider community, and teaching me the vital link between research and people with Huntington’s Disease and their families.

I am also grateful to the Neurological Foundation, Brendal Trust, New Zealand Postgraduate Study Abroad Awards, University of Auckland Doctoral Scholarship, University of Auckland MRI Grant, and Freemasons New Zealand for providing me with funding towards tuition, research, workshop and conference travel costs.
The staff at the Centre for Advanced Magnetic Resonance Imaging lent their skills to the project. Thanks to Sandra Winsor, Anna-Maria Lydon, Shelley Park and Peter Dooley for their cheerfulness and adaptability.

I am lucky to have parents who offer both love and intellectual insight. I have really appreciated their interest in my thesis, their encouragement to maintain a balanced lifestyle, their practical support, and proof-reading.

My doctoral colleagues have shared this journey with me, thesis and all. Other friends and family have helped me to enjoy life outside of the thesis.

I am most grateful to my wife, Barbara, and her boundless love and support. Thank you for deciding to endure this thesis, and this life, with me.
Table of Contents

Abstract ... ii

Acknowledgements .. iv

Table of Contents ... vi

List of Tables .. x

List of Figures .. xi

List of Appendices ... xv

List of Abbreviations ... xvi

Preface .. 1

Chapter One Literature Review 2

General Introduction .. 2

Background information on HD ... 3

Prevalence of HD .. 3

Genetics of HD ... 3

Neuropathology of HD ... 4

Diagnosis and prognosis of HD .. 7

Structural neuroimaging in HD ... 8

Subcortical changes in HD ... 9

Cortical changes in HD ... 12

Neuropsychological changes in HD ... 21

Psychomotor abilities ... 21

Attention .. 22

Executive functioning ... 23
Chapter Five Study 3: Clinical correlates of brain measures 128

Introduction ... 128

Method ... 129

Statistical analysis ... 129

Results ... 132

Surface-based regressions .. 132

Correlations between cortical parcellations and neuropsychological test scores 137

Correlations between striatal volume and neuropsychological tests scores 138

Discussion .. 140

Chapter Six General Discussion 147

Summary of findings ... 147

Understanding correlations between cortical thinning and neuropsychological scores 149

Complexity of brain processes in presymptomatic HD ... 149
Cortical thinning and neuropsychological performance in the normal population........... 150

Poorer neuropsychological performance is associated with both thinner and thicker cortex ... 151

A priori selection of neuropsychological tasks... 153

Basal ganglia and neuropsychological performance... 154

Validity of the proximity to onset model.. 155

Contributions to scientific research and implications for clinical trials 156

Reflections on an international collaboration .. 158

Conclusions.. 159

List of Appendices .. 160

List of references ... 185
List of Tables

Table 1: Clinical characteristics of the PreHD group ... 47
Table 2: Demographic characteristics for the PreHD and Control Groups 48
Table 3: Demographic characteristics for the PreHDfar, PreHDclose and Control groups 49
Table 4: Average cortical thinning and intracranial volumes .. 57
Table 5: Properties of neuropsychological tests selected for this study 72
Table 6: Mean response times and standard deviations on the motor screening and simple reaction time tasks for the PreHD and Control groups .. 91
Table 7: Mean accuracy scores, standard deviations and ranges for four tasks sensitive to posterior cortical regions: the Judgment of Line Orientation task, Hooper Visual Organisation Test; Collision Judgment task and Facial Recognition Test 92
Table 8: Accuracy and response times on the Roadmap Test for the PreHD group and the Control group. ... 93
Table 9: Means and standard deviations for PreHD and Control groups on the four mood assessments .. 106
Table 10: Means response times and standard deviations on the motor screening and simple reaction time task for the PreHDclose, PreHDfar and Control groups ... 107
Table 11: Mean accuracy, standard deviation and range for the PreHDclose, PreHDfar and Control groups on four tasks sensitive to posterior cortical regions 107
Table 12: Accuracy and response times on the Roadmap Test for the PreHDclose, PreHDfar and Control groups .. 109
Table 13: Performance measures for the Iowa gambling task ... 117
Table 14: Means and standard deviations on four mood assessments for the PreHDclose, PreHDfar and Control groups .. 122
Table 15: Cortical parcellation regions of interest (ROIs) associated with cognitive test measures ... 131
Table 16: Cortical regions considered crucial to mediating cognitive task in the study 177
List of Figures

Figure 1: Basal-ganglia thalamo-cortical circuits from Alexander, Delong & Strick (1986) 6

Figure 2: Mean cortical thickness maps from Rosas et al. (2002) ... 18

Figure 3: Mean cortical thickness maps from Rosas et al. (2008) ... 19

Figure 4: Mean cortical thickness maps from Rosas et al. (2005) ... 20

Figure 5: Confidence rating of Huntington disease motor abnormalities (item 17 of Unified Huntington’s Disease Rating Scale, 1998). ... 47

Figure 6: Image of a reconstructed MRI dataset from Fischl et al., (2008) 53

Figure 7: Lateral views of the pial surface and inflated cortical surface representations for a single participant ... 53

Figure 8: 68 Cortical parcellations, shown on a normal view of the brain and an inflated view... 56

Figure 9: The topology of cortical thinning in the PreHD group (n = 19) compared to the matched control group (n = 19) ... 59

Figure 10: The topology of cortical thinning in the PreHDClose and PreHDFar groups 60

Figure 11: Volume measures of the striatal regions in the PreHDClose, PreHDFar and Control groups .. 62

Figure 12: Judgment of Line Orientation Test. Participants were required to identify which of the eleven exemplar lines are the same orientation as the two stimulus lines 74

Figure 13: Item 22 (a mouse) from the Hooper Visual Organisation Test 75

Figure 14: Collision Judgment task ... 76

Figure 15: Facial Recognition Test ... 77

Figure 16: Modified version of the Roadmap Test of Directional Sense 79

Figure 17: Letter mental rotation task stimuli including normal and mirror image ‘F’s in all six orientations .. 81

Figure 18: The Iowa Gambling Task ... 83

Figure 19: The Stockings of Cambridge task .. 85

Figure 20: Hand Rotation Task stimuli including left and right hands in all six orientations. ... 87
Figure 21: Mean response times for letter mental rotation task for the PreHD group and the Control group. ... 95

Figure 22: Mean response times for the Mirror and Normal conditions of the letter mental rotation task for the PreHD group and the Control group................. 96

Figure 23: Mean accuracy for letter mental rotation task for the PreHD group and the Control group. ... 97

Figure 24: Mean response time for hand mental rotation task for the PreHD group and the Control group. ... 98

Figure 25: Mean accuracy for hand mental rotation task for the PreHD group and the Control group. ... 99

Figure 26: Mean percent correct (advantageous card selections from deck C and D) across the five time-blocks of the Iowa Gambling task for the PreHD group and the Control group. ... 100

Figure 27: Mean proportion of perfect moves and mean number of excess moves to completion across the four problem difficulty levels of the Stockings of Cambridge task for the PreHD group and the Control group. 102

Figure 28: Mean initial thinking time and subsequent thinking time across the four problem difficulty levels of the Stockings of Cambridge task for the PreHD group and the Control group .. 103

Figure 29: Motor initiation times and motor execution times in the Stockings of Cambridge task for difficulty levels 2-5 for the PreHD group and the Control group ... 104

Figure 30: Mean percentage of correct turns for the no rotation (NR) and the rotation turns (HR and FR combined) of the Roadmap Test for the PreHDclose, PreHDfar and Control groups... 109

Figure 31: Mean response times for (a) total letter mental rotation task, (b) mirror condition, and (c) normal condition, for the PreHDclose, PreHD far and Control groups ... 111

Figure 32: Mean accuracy for letter mental rotation task for the PreHDclose, PreHD far and Control groups ... 112
Figure 33: Mean accuracy for the mirror and normal conditions of the letter mental rotation task for the PreHDClose, PreHD far and Control groups .. 113

Figure 34: Mean response times for Hand mental rotation task for the PreHDclose, PreHD far and Control groups. .. 114

Figure 35: Mean response times for the left and right hand stimuli of the hand mental rotation task for the PreHDclose, PreHD far and Control group 114

Figure 36: Mean accuracy for hand mental rotation task for the PreHDclose, PreHD far and Control groups.. 116

Figure 37: Mean percent of advantageous card selections (from Deck C and D) across the five time-blocks of the Iowa Gambling task for the PreHDclose, PreHDfar and Control groups... 117

Figure 38: Mean proportion of perfect moves and excess moves for difficulty levels 2-5 of the Stockings of Cambridge task for the PreHD group and the Control group 118

Figure 39: Mean initial thinking time and subsequent thinking time across for difficulty levels 2-5 of the Stocking of Cambridge task for the PreHDClose, PreHDfar and Control groups... 120

Figure 40: Mean motor initiation times and motor execution times in the Stockings of Cambridge task for difficulty levels 2-5 for the PreHD group and the Control group. .. 121

Figure 41: Significant correlations between JLOT total accuracy scores and selective cortical thinning in the PreHD group... 132

Figure 42: Significant correlations between Roadmap accuracy scores (rotation turns only) and selective cortical thinning in the PreHD group .. 133

Figure 43: Significant correlations between Stockings of Cambridge task (proportion of perfect solutions) and selective cortical thinning in the PreHD group 133

Figure 44: Scatter plot illustrating the correlation between performance on the Stockings of Cambridge task and a manually selected ROI within the right Pars Triangularis ... 134

Figure 45: Significant correlations between Iowa Gambling task (percentage of advantageous cards in last 60 trials) and selective cortical thinning in the PreHD group ... 135
Figure 46: Significant correlations between Outward Irritability Scale total scores and selective cortical thinning in the PreHD group ... 136

Figure 47: Scatter plot illustrating the correlation between performance on the Outward Irritability Scale and an ROI within the right anterior cingulate cortex 136

Figure 48: Scatter plot illustrating the positive correlation between Iowa Gambling task accuracy scores (percentage of advantageous cards in last 60 trials) and cortical thickness in the left pars opercula. ... 138

Figure 49: Scatter plot illustrating the positive correlation between caudate volume and Roadmap accuracy scores for the PreHD group. ... 139

Figure 50: Scatter plots illustrating the positive correlation between putamen volume and JLOT accuracy scores (top) and Roadmap accuracy scores (bottom) for the PreHD group. ... 139
List of Appendices

Appendix A: UHDRS motor scale... 161
Appendix B: Study consent form... 164
Appendix C: MRI safety and consent form .. 165
Appendix D: Mean thicknesses of the cortical parcellations in the PreHD and Control
groups ... 167
Appendix E: Mean thicknesses of the cortical parcellations in the PreHDClose, PreHDFar
and Control groups ... 169
Appendix F: Rationale for cognitive tests used in this study................................. 171
Appendix G: Standardised instructions for the Iowa Gambling Test 178
Appendix H: Hospital Anxiety and Depression Scale ... 179
Appendix I: Irritability-Depression-Anxiety Scale (IDAS) 180
Appendix J: Structured interview .. 181
Appendix K: Correlations between cognitive test scores and mean thicknesses in the
cortical parcellation regions of interest in the PreHD and Control groups 183
List of Abbreviations

AD Alzheimer’s Disease
ANOVA Analysis of Variance
BA Brodmann Area
CVLT Californian Verbal Learning Test
DLPFC Dorsolateral prefrontal cortex
DRS Dementia Rating Scale
fMRI Functional Magnetic Resonance Imaging
HADS Hospital Anxiety and Depression Scale
HD Huntington’s Disease
HVLT Hopkins Verbal Learning Test
HVOT Hooper Visual Organisation Test
ICV Intracranial volume
IDAS Irritability-Depression-Anxiety Scale
IGT Iowa Gambling Test
JLOT Judgement of Line Orientation Test
MMSE Mini-Mental State Examination
MRI Magnetic Resonance Imaging
PET Positron Emission Tomography
QNE Quantified Neurological Examination
ROI Region-of-interest
SDMT Symbol Digit Modalities Test
SoC Stockings of Cambridge task
TBI Traumatic Brain Injury
TFC Total Functional Capacity Scale
ToL Tower of London task
UHDRS Unified Huntington’s Disease Rating Scale
VBM Voxel-Based Morphometry
VLPFC Ventrolateral prefrontal cortex
WCST Wisconsin Card Sorting Test
WMS Wechsler Memory Scale
YTO Estimated Years To clinical Onset