http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
ANTITUMOUR EFFICACY OF THE
NITROREDUCTASE-ARMED ONCOLYTIC
ADENOVIRUS ONYX-411$^{\text{NTR}}$ IN COMBINATION
WITH DINITROBENZAMIDE MUSTARD PRODRUGS
IN PRECLINICAL MODELS

A thesis submitted in fulfilment of the
requirements for the degree of
Doctor of Philosophy

by

Dean Craig Singleton

B.Sc. (Hons), The University of Auckland

Auckland Cancer Society Research Centre and Department of Molecular
Medicine and Pathology
Faculty of Medical and Health Sciences
The University of Auckland
Auckland
New Zealand

July 2009
ABSTRACT

Oncolytic viruses that selectively replicate in and lyse cancer cells are a promising approach for the treatment of tumours that are resistant to conventional therapies. Clinical experience has shown that oncolytic viruses are safe and well tolerated but possess modest single agent activity. One approach to improve the efficacy of oncolytic viruses is to utilise their tumour tropism to deliver genes encoding enzymes able to activate prodrugs. ONYX-411 is an oncolytic adenovirus that replicates in cells that carry dysfunctions in the retinoblastoma (pRb) pathway, a common hallmark of cancer. ONYX-411 was ‘armed’ by inserting the *Escherichia coli* nfsB nitroreductase (NTR) gene into the E3B region of the viral genome under the control of the endogenous E3 viral transcriptional machinery. NTR is an oxygen-insensitive nitroreductase that is capable of activating dinitrobenzamide mustard (DNBM) prodrugs to cytotoxic metabolites. The main objective of this thesis was to determine the extent and mechanism of the therapeutic interaction between ONYX-411^{NTR} and DNBM prodrugs.

A fluorogenic probe was developed to monitor NTR activity non-invasively and revealed robust, replication dependent NTR activity in ONYX-411^{NTR}-infected neoplastic but not primary human cell lines. *In vitro* exposure of ONYX-411^{NTR}-infected cells to therapeutically relevant concentrations of the DNBM prodrugs (SN 27686 or PR-104A) did not inhibit virus replication.

Tumour growth delay studies of systemic ONYX-411^{NTR} followed by prodrug demonstrated different outcomes in three models (H1299, C33A, 22Rv1). To establish predictable viral infection of tumours a pre-infection model was developed using HCT 116 xenografts. This methodology demonstrated that prodrug administration (SN 28343 or PR-104) provided significant inhibition of tumour growth without suppression of ONYX-411^{NTR} replication. Follow-on studies using intravenous virus administration confirmed titre amplification with time (24-fold between day 3 and 13 post administration; \(P < 0.001 \)) and a marked survival gain for the virus/prodrug combinations. Neither the prodrugs nor ONYX-411^{NTR} were active as single agents. The improvement in efficacy for the combination of ONYX-411^{NTR} and prodrug was conditional on NTR-dependent prodrug activation resulting in improved virus distribution within the tumour.

PR-104 is currently in clinical development making the combination of ONYX-411^{NTR} with PR-104 a promising strategy for cancer selective therapy.
ACKNOWLEDGEMENTS

First of all, I would like to acknowledge my primary supervisor Dr Adam Patterson. I am extremely grateful for his encouragement and support throughout this project. His commitment and passion for science has been inspiring. I have learnt a great deal during the time of his supervision and am truly thankful for the opportunity.

I would also like to thank Professor Bill Wilson for his helpful input. Having the advice of someone with such considerable knowledge and experience in the field has been greatly appreciated.

I would like to acknowledge Dr Jeff Smaill for his willingness to provide advice and chemistry resource when needed.

I would also like to thank the students and staff of the Auckland Cancer Society Research Centre who have assisted with bringing this thesis to completion. Thanks to Susan Pullen for fielding my endless questions in the lab. Thanks to Sally Bai and Chenbo Wu for their assistance with conducting the in vivo studies. Thanks to Dianne Ferry, Dr Chris Guise and Yongchuan Gu for lending their bioanalytical skills. Thanks to Dan Li for the assistance with virus characterisation. Thanks to Mary Spellman for solving all of my administrative problems and for helping to get this thesis printed.

I have been the recipient of an Auckland Medical Research Foundation scholarship and a University of Auckland Doctoral scholarship during my PhD and am grateful for this financial support.

Finally, I would like to thank my family for their endless support and confidence. I especially thank Rachelle for her amazing support, her helpful discussions throughout this process and for her dedication, love and patience.
TABLE OF CONTENTS

ABSTRACT ... ii
ACKNOWLEDGEMENTS .. iii
TABLE OF CONTENTS .. iv
LIST OF FIGURES .. viii
LIST OF TABLES ... xi
LIST OF ABBREVIATIONS AND DEFINITIONS ... xii

1. INTRODUCTION .. 1
 1.1. INTRODUCTION .. 1
 1.1.1 Chemotherapy ... 1
 1.2. ONCOLYTIC VIROTHERAPY .. 3
 1.2.1 The oncolytic adenovirus ONYX-411 ... 6
 1.2.2 Clinical trials of oncolytic viruses ... 7
 1.3. COMBINATION OF ONCOLYTIC VIRUSES WITH CHEMOTHERAPY 10
 1.3.1 Chemotherapy enhances virus replication ... 10
 1.3.2 Oncolytic virus infection of cells enhances sensitivity to chemotherapy 11
 1.3.3 Combined efficacy of oncolytic viruses and chemotherapy in preclinical models 11
 1.3.4 Mathematical models of virus-tumour interaction .. 12
 1.3.5 Immune modulation .. 13
 1.4. VIRUS-DIRECTED ENZYME-PRODRUG THERAPY .. 14
 1.4.1 Virus-directed enzyme-prodrug therapy (VDEPT) ... 14
 1.4.2 Clinical trials of oncolytic VDEPT .. 18
 1.4.3 Nitroreductase based enzyme-prodrug systems ... 18
 1.5. PROJECT OUTLINE: ANTITUMOUR EFFICACY OF THE NITROREDUCTASE-ARMED ONCOLYTIC ADENOVIRUS ONYX-411NTR IN COMBINATION WITH DINITROBENZAMIDE MUSTARD PRODRUGS IN PRECLINICAL MODELS 22
 1.5.1 Project objectives ... 22
 1.5.2 Outline of presented work .. 23
2. CHARACTERISATION OF ONYX-411NTR USING FLUOROGENIC NITROREDUCTASE PROBES ... 25
 2.1. ABSTRACT ... 25
 2.2. INTRODUCTION ... 25
 2.2.1 Insertion of enzymes into oncolytic viruses ... 25
 2.2.2 Methods for monitoring the expression of PAE genes from oncolytic viruses 26
 2.2.3 Fluorogenic probes for nitroreductases .. 27
 2.2.4 Characterisation of NTR-armed oncolytic viruses ... 28
 2.3. OBJECTIVES .. 29
2.4. MATERIALS AND METHODS .. 30
2.4.1 Compounds ... 30
2.4.2 Cell lines .. 30
2.4.3 Fluorescence of compounds and screening using NTR-expressing cell lines 32
2.4.4 HPLC .. 32
2.4.5 Validation of FSL 41 for the quantification of NTR activity in cells 33
2.4.6 Virus stocks of ONYX-411NTR ... 34
2.4.7 Effect of DNA replication on NTR expression in ONYX-411NTR-infected cells 35
2.4.8 Western immunoblotting ... 36
2.4.9 Activity of NTR across a panel of cell lines infected with ONYX-411NTR 37
2.4.10 Graphing ... 37

2.5. RESULTS ... 37
2.5.1 Assembly of the fluorogenic substrate library .. 37
2.5.2 Screening for suitable fluorogenic probes using NTR expressing cells 38
2.5.3 Structure-activity relationships for nitroquinolinones .. 41
2.5.4 Development of an assay for the non-invasive measurement of NTR activity in cells using FSL 41 ... 45
2.5.5 Replication dependence of NTR expression by ONYX-411NTR 51
2.5.6 Patterns of NTR activity in a panel of ONYX-411NTR-infected human cell lines 54

2.6. DISCUSSION ... 56

3. THE ANTITUMOUR EFFICACY OF ONYX-411NTR IS ENHANCED BY THE DINITROBENZAMIDE MUSTARD PRODRUG SN 28343 ... 60
3.1. ABSTRACT .. 60
3.2. INTRODUCTION .. 60
3.2.1 Construction of ONYX-411NTR ... 60
3.2.2 Dinitrobenzamide mustard prodrugs for \textit{E. coli} nitroreductase 61
3.3. OBJECTIVES ... 64
3.4. MATERIALS AND METHODS .. 65
3.4.1 Animals and tumour xenograft growth .. 65
3.4.2 Virus and prodrug dosing .. 65
3.4.3 Tumour growth delay assays ... 65
3.4.4 Western immunoblotting of tumour and liver tissue .. 66
3.4.5 Histology and immunohistochemistry ... 66
3.4.6 Microscopy ... 66

3.5. RESULTS ... 67
3.5.1 Oncolytic efficacy of ONYX-411WT in tumour xenografts 67
3.5.2 Comparative oncolytic efficacy of ONYX-411WT and ONYX-411NTR in tumour xenografts ... 68
3.5.3 Systemic efficacy of ONYX-411NTR in combination with SN 28343 69
3.5.4 Delivery and expression of NTR in subcutaneous tumour xenografts 72
3.6. DISCUSSION ... 77

4. IN VITRO INTERACTIONS BETWEEN ONYX-411NTR AND THE DINITROBENZAMIDE MUSTARD PRODRUGS SN 27686 AND PR-104A ... 82
4.1. ABSTRACT ... 82
4.2. INTRODUCTION .. 83
4.2.1 The dinitrobenzamide mustards are both NTR and hypoxia activated prodrugs 84
4.2.2 Comparison of the bystander effects of SN 27686 and PR-104A 87
4.2.3 Comparison of the bystander effects of SN 28343 and PR-104 88
4.2.4 Preliminary studies demonstrating NTR-dependent antiviral effects of SN 27686 and PR-104A .. 88
4.2.5 The plasma pharmacokinetics of SN 27686 and PR-104A 89
4.3. OBJECTIVES ... 90
4.4. MATERIALS AND METHODS .. 90
4.4.1 Virus titre in cells or culture medium following infection with ONYX-411NTR 90
4.4.2 Determination of titre by plaque assay ... 90
4.4.3 Effect of refreshing the culture medium on days 1, 2 or 3 post infection on ONYX-411 replication .. 91
4.4.4 Effect of acute prodrug exposure on the ONYX-411 replication 91
4.4.5 Effect of acute prodrug exposure on ONYX-411NTR lifecycle by measuring nitroreductase activity .. 92
4.4.6 Estimation of ONYX-411NTR titre in biological samples by measuring NTR activity ... 92
4.4.7 Effect of acute prodrug exposure pre-infection on the replication of ONYX-411NTR 93
4.5. RESULTS ... 93
4.5.1 Development of a virus burst assay for measuring effects of prodrug exposure on virus replication ... 93
4.5.2 Effect of acute prodrug exposure on virus yield during ONYX-411NTR replication...... 95
4.5.3 Effect of acute prodrug exposure on NTR activity in ONYX-411NTR-infected cells 97
4.5.4 Development of a rapid assay for determination of ONYX-411NTR titre in samples...... 99
4.5.5 Effect of prodrug exposure pre-infection on the replication of ONYX-411NTR 100
4.6. DISCUSSION ... 101

5. EFFECT OF PRODRUG ON THE TITRE AND EFFICACY OF ONYX-411NTR IN TUMOUR XENOGRAFTS .. 105
5.1. ABSTRACT .. 105
5.2. INTRODUCTION .. 105
5.3. OBJECTIVES ... 107
5.4. MATERIALS AND METHODS ... 107
LIST OF FIGURES

Figure 1-1 Families of oncolytic viruses... 4
Figure 1-2 Schematic diagram of the oncolytic adenovirus ONYX-411 ... 6
Figure 1-3 The staged clinical research and development approach used for ONYX-015 by Onyx Pharmaceuticals... 8
Figure 1-4 Barriers to optimal oncolytic viral delivery in tumours... 9
Figure 1-5 Mechanism of CB1954 activation by E. coli nitroreductase ... 19
Figure 1-6 Mechanism of SN 23862 activation by E. coli nitroreductase... 21
Figure 2-1 Chemical classes in the fluorogenic substrate library.. 38
Figure 2-2 Screen of the FSL using NTR-expressing cells... 40
Figure 2-3 Structure-activity relationship of nitro- and aminoquinolinone fluorescence and activation by NTR.. 42
Figure 2-4 Identification of fluorogenic probes for human NQO1 ... 43
Figure 2-5 Identification of fluorogenic probes for human CYPOR .. 44
Figure 2-6 Stability of the 7-nitrocoumarin compounds FSL 66 and FSL 67 and the 6-nitroquinolinone compounds FSL 41 and FSL 59 in αMEM + 10% FBS at 37°C 45
Figure 2-7 FSL 41 is metabolised by NTR to the fluorescent -NH$_2$ product FSL 70 ... 47
Figure 2-8 FSL 70 has a linear fluorescence calibration curve which is stable at 4°C over 72 h 48
Figure 2-9 Optimisation of FSL 41 concentration and cell density and rate of formation of FSL 70 in NTR-expressing cells incubated with FSL 41 ... 49
Figure 2-10 Effect of the presence of wild-type cells on the quantification of NTR activity in NTR-expressing cells ... 50
Figure 2-11 Cell membrane permeability of FSL 70 produced by NTR-expressing cells following incubation with FSL 41 .. 51
Figure 2-12 Expression and activity of NTR in HCT 116 cells infected with ONYX-411NTR is dependent on virus replication... 53
Figure 2-13 Activity of NTR across a panel of cell lines infected with ONYX-411NTR ... 55
Figure 3-1 Mechanism of activation of SN 28343 by NTR .. 61
Figure 3-2 Comparison of the in vitro bystander effect of CB1954 and SN 27686 ... 62
Figure 3-3 Comparison of the in vivo bystander effect of CB1954 and SN 28343 .. 63
Figure 3-4 Schematic demonstrating the mechanism of action of an oncolytic virus armed with a prodrug activating system.. 64
Figure 3-5 ONYX-411WT and ONYX-411NTR have comparable efficacy in H1299 and C33A tumour xenografts .. 69
Figure 3-6 Systemic efficacy of the combination of ONYX-411NTR and SN 28343 in human tumour xenografts .. 71
Figure 3-7 Tumour ONYX-411NTR localisation.. 73
Figure 3-8 Patterns of ONYX-411^{NTR} gene expression in H1299 xenografts 14 days after a single i.v. dose of ONYX-411^{NTR} ... 76

Figure 3-9 Expression of NTR and fibre in tumour and liver of animals treated with i.v. ONYX-411^{NTR} ... 77

Figure 4-1 Mechanism of activation of PR-104 ... 85

Figure 4-2 Schematic diagram illustrating the bidirectional bystander effect of DNBM prodrugs in tumours infected with ONYX-411^{NTR} ... 86

Figure 4-3 Comparison of the bystander effect of SN 27686 and PR-104A ... 87

Figure 4-4 Tumour growth curves for HCT 116 xenografts treated with SN 28343 or PR-104 88

Figure 4-5 Effect of prodrug on viral cytopathic effect ... 89

Figure 4-6 ONYX-411^{NTR} titre in H1299 cells and culture medium on 5 d.p.i... 94

Figure 4-7 Refreshing the culture medium at late times during the virus lifecycle increases virus production .. 95

Figure 4-8 Effect of acute prodrug exposure on titre of ONYX-411 in infected cells .. 96

Figure 4-9 Effect of acute prodrug exposure on NTR activity in ONYX-411^{NTR}-infected cells 98

Figure 4-10 Validation of a rapid method for measurement of ONYX-411^{NTR} titre using NTR activity as a reporter gene.. 100

Figure 4-11 Effect of acute prodrug exposure pre-infection on titre in ONYX-411^{NTR}-infected cells .. 101

Figure 5-1 Establishment and growth of MIA PaCa-2 xenografts inoculated with subpopulations of ONYX-411^{NTR}-infected cells .. 111

Figure 5-2 Establishment and growth of HCT 116 xenografts inoculated with subpopulations of ONYX-411^{NTR}-infected cells .. 113

Figure 5-3 Virus titre in HCT 116 xenografts inoculated with 20 ONYX-411^{NTR}-infected cells 114

Figure 5-4 Effect of SN 28343 or PR-104 on tumour growth of uninfected or ONYX-411^{NTR} pre-infected HCT 116 xenografts .. 116

Figure 5-5 Effect of SN 28343 or PR-104 on virus titre in HCT 116 tumours inoculated with 42 ONYX-411^{NTR}-infected cells ... 118

Figure 5-6 Effect of SN 28343 or PR-104 on virus localisation in HCT 116 tumour xenografts inoculated with 42 ONYX-411^{NTR}-infected cells .. 120

Figure 5-7 Overlay of fibre stained and H&E stained tumour sections from representative samples in Figure 5-6 .. 122

Figure 5-8 Image analysis for ONYX-411^{NTR} infected tumours treated with SN 28343 or PR-104.. 123

Figure 5-9 Correlation between tumour titre and percentage of tumour stained for fibre in HCT 116 tumours inoculated with 42 ONYX-411^{NTR}-infected cells ... 124

Figure 6-1 Tumour titre in HCT 116 xenografts following treatment with i.v. ONYX-411^{NTR} 134

Figure 6-2 NTR expression in HCT 116 xenografts following treatment with i.v. ONYX-411^{NTR} 135

Figure 6-3 Correlation between tumour ONYX-411^{NTR} titre and level of NTR expression 135
Figure 6-4 Growth of HCT 116 xenografts infected with ONYX-411^{WT} or ONYX-411^{NTR} 136
Figure 6-5 Calibration curves for PR-104A and PR-104H (d0) spiked into HCT 116 xenograft homogenate ... 137
Figure 6-6 Reduction of PR-104A to PR-104H by ONYX-411^{NTR} in HCT 116 xenografts............. 138
Figure 6-7 Reduction of PR-104A to PR-104M by ONYX-411^{NTR} in HCT 116 xenografts............ 139
Figure 6-8 ONYX-411^{NTR} titre in HCT 116 xenografts 15 min after i.v. PR-104 140
Figure 6-9 NTR expression in HCT 116 xenografts 13 days after i.v. ONYX-411^{NTR} at 5×10⁸ PFU and correlation between NTR expression and PR-104H production.. 141
Figure 6-10 Correlation between tumour ONYX-411^{NTR} titre and level of NTR expression 142
Figure 6-11 Combined efficacy of ONYX-411^{NTR} with SN 28343 or PR-104 against HCT 116 xenografts .. 143
Figure 7-1 Human plasma PK of PR-104 and PR-104A at MTD (1100 mg/m²; q3w; pooled data from six patients)... 150
Figure 7-2 Mean tumour growth curves for HCT 116 xenografts infected with ONYX-411^{NTR} and treated with PR-104 .. 153
LIST OF TABLES

Table 1-1 Properties of a selection of reported oncolytic viruses .. 5
Table 1-2 Commonly used prodrug activating systems ... 16
Table 2-1 Cell lines and sources.. 31
Table 3-1 Efficacy ONYX-411^{WT} in human tumour xenografts. ... 67
Table 3-2 Toxicity of ONYX-411^{NTR}, SN 28343 and the combination of ONYX-411^{NTR} and SN 28343 in H1299 and 22Rv1 tumour xenograft growth delay studies .. 72
Table 4-1 SN 27686 and PR-104A are both NTR and hypoxia activated prodrugs. 86
Table 6-1 Summary of toxicity and survival for HCT 116 xenografts treated with ONYX-411^{WT} or ONYX-411^{NTR} followed by SN 28343 or PR-104 ... 144
LIST OF ABBREVIATIONS AND DEFINITIONS

αMEM α-modified minimal essential medium
ATCC American Type Culture Collection
AUC area under the curve
CB1954 5-aziridinyl-2,4-dinitrobenzamide
CYPOR cytochrome P450 reductase
CPA cyclophosphamide
DMSO dimethyl sulphoxide
DNBM dinitrobenzamide mustard
d.p.i. days post infection
FBS foetal bovine serum
FSL Fluorogenic substrate library
FSL 41 1-methyl-6-nitro-4(1H)-quinolinone
HPLC high performance liquid chromatography
h.p.i. hours post infection
IMS increase in median survival
i.p. intraperitoneal
i.v. intravenous
kDa kiloDalton
LC/MS liquid chromatography with mass detection
MCL multicellular layer
MTD maximum tolerated dose
NTR nitroreductase (specifically the product of the E. coli nfsB gene)
NQO1 NAD(P)H dehydrogenase, quinone 1
PD pharmacodynamic
PK pharmacokinetic
PR-104 2-((2-bromoethyl)-2-[[2-hydroxyethyl]amino]carbonyl)-4,6-dinitroanilino)ethyl methanesulfonate phosphate ester
PR-104A 2-((2-bromoethyl)-2-[[2-hydroxyethyl]amino]carbonyl)-4,6-dinitroanilino)ethyl methanesulfonate
P/S 100 U/mL penicillin and 100 µg/mL streptomycin
SAR structure–activity relationship
s.c. subcutaneous
sd standard deviation
sem standard error of the mean
SN 27686 2-(bis(2-bromoethyl)amino)-N-(2-hydroxyethyl)-3,5-dinitrobenzamide
SN 28343 2-(bis(2-bromoethyl)amino)-N-(2-hydroxyethyl)-3,5-dinitrobenzamide phosphate ester