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Abstract: Some new results about linearly Lindelöf spaces are given here.

It is proved that if X is a space of countable spread and X = Y ∪ Z, where

Y and Z are meta-Lindelöf spaces, then X is linearly Lindelöf. Moreover, we

give a positive answer to a problem raised by A.V. Arhangel’skii and R.Z. Buzyakova.
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1. Introduction

In the study of Lindelöf spaces, it is interesting to notice the following condition (intro-

duced in [8]):

(CAP) every uncountable subset A of X of countable regular cardinality has a point

of complete accumulation in X,

which dose not characterize a Lindelöf space. Probably, the first example of a space of

this kind was constructed by A.S.Mischenko (see [1]). The spaces satisfying (CAP) were

later renamed linearly Lindelöf or Chain-Lindelöf spaces, since the condition (CAP) turned

out to be equivalent to the following requirement: every open covering γ of X which is a

chain ( that is, for any two elements of γ, one is a subset of the other) contains a countable

subcovering of X.

In [4], Arhangel’skii and Buzyakova obtained the following result about linearly Lindelöf

spaces.

Theorem. Suppose that X is a space of countable extent such that X = Y ∪ Z, where Y
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and Z are paracompact spaces. Then X is linearly Lindelöf.

They also raised some problems and the following is one of them.

Problem. Can the above theorem be extended to finite unions of spaces?

In section 3, we can strengthen the above theorem by Theorem 3.1, and answer the

above problem positively by the corollary of Theorem 3.8.

2. Definitions

In this section, we shall give the main definitions used in this paper.

Definition 2.1. The extent e(X) of a topological space X is the smallest infinite cardinal

number τ such that for any locally finite subset A of X, |A| ≤ τ , that is , e(X)=sup{|A|:
A is a locally finite subset of X}.

Note that this definition obviously coincides with the usual definition of the extent of

X for all T1-spaces.

In the above definition, if we substitute a discrete set for the locally finite set, we have

the following (see [2]).

Definition 2.2. The spread s(X) of a topological space X is the smallest infinite car-

dinal number τ such that for any discrete subset A of X, |A| ≤ τ , that is, s(X)=sup{|A|:
A is a discrete subset of X}.

Definition 2.3. x ∈ X is called a point of complete accumulation for A if for any neighbor-

hood U of x, |U ∩ A| = |A|.

Now we can recall the definition of linearly Lindelöf spaces.

Definition 2.4. A topological space X is called a linearly Lindelöf space, if for any un-

countable subset A of X of regular cardinality, there exists a point of complete accumulation

for A in X. This is well-known to be equivalent to the statement that every increasing open

cover of X has a countable subcover.
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The class of D-spaces, introduced by E. van Douwen in [6], is a very natural and inter-

esting one. In the following, we shall give two kinds of definitions of D-spaces. Definition 2.5

(ii) is introduced in [6]. Arhangel’skii and Buzyakova have done a lot of interesting recent

work under Definition 2.5 (i) (see [3], [4] and [10]).

Definition 2.5. A neighborhood assignment on a topological space is a mapping φ of

X into the topology T of X such that x ∈ φ(x), for each x ∈ X.

(i) A space X is called a D-space if, for every neighborhood assignment φ on X, there

exists a locally finite in X subset A of X such that the family φ(A) = {φ(x) : x ∈ A} covers

X.

(ii) A space X is called a D-space if, for every neighborhood assignment φ on X, there

exists a closed discrete subset A of X such that the family φ(A) covers X.

It is easy to see that the above two definitions are the same in T1-spaces, since in such

spaces a set is locally finite if and only if it is closed discrete.

Other terminologies and notations follow [3], [4] and [9].

3. Main results and their proofs

Now we will give the main results and their proofs. Note that all spaces in this sec-

tion are general topological spaces satisfying no axiom of separation, unless explicitly stated.

Theorem 3.1. Suppose that X is a space of countable spread such that X = Y ∪ Z,

where Y and Z are meta-Lindelöf spaces. Then X is linearly Lindelöf.

Before giving the proof of Theorem 1, we provide two Lemmas and their proofs.

Lemma 3.2. Suppose that X is a meta-Lindelöf space and A is an uncountable subset

of X of regular cardinality. Then either there exists a point of complete accumulation for A

in X, or there exists a subset B of A such that B is discrete in X and |B| = |A|.

Proof. Assume |A| = κ, where κ is an uncountable regular cardinal number. If none

of the points of X is a point of complete accumulation for A in X, we show that there exists

a subset B of A such that B is discrete in X and |B| = |A|.
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For any x ∈ A, since x is not a point of complete accumulation for A, then there exists

an open neighborhood Ux of x, such that |Ux ∩ A| < |A|. Thus, we get a family U of open

sets, such that
⋃U ⊃ A and for any U ∈ U , |U ∩A| < |A|. For any U ∈ U , let UA = U ∩A.

Then we get a family UA such that
⋃UA = A and for any UA ∈ UA, there exists U ∈ U

satisfying UA = U ∩ A.

Since X is a meta-Lindelöf space and A is a closed subspace of X, then A is also a meta-

Lindelöf space. Therefore, UA has a point-countable open refinement V in the subspace A.

For any V ∈ V , V ∩ A 6= ∅. Or else, there exists x ∈ V and an open set U of X such

that V = U ∩ A. Then U ∩ A = ∅ since V ∩ A = ∅, which is contradicted by the fact that

x ∈ A.

Now we show that |V| = |A| = κ. We know that |V| ≤ κ, since V is a point-finite open

refinement. Besides, |V| ≥ |A|, since for any V ∈ V , |V ∩A| < κ, and κ is a regular cardinal

number.

Take x0 ∈ A. Since V0 = {V ∈ V : x0 ∈ V } is a countable family, then A \ ⋃V0 6= ∅.
Therefore, we can take x1 ∈ A \ ⋃V0 and let V1 = {V ∈ V : x1 ∈ V }. Similarly, for any

ordinal number α, if A \ {⋃Vβ : β < α} 6= ∅, then we can take xα ∈ A \ ⋃{Vβ : β < α}
and let Vα = {V ∈ V : xα ∈ V }. Thus, there must exist an ordinal number τ such that
⋃{Vα : α < τ} covers A and we get a set B = {xα ∈ A : α < τ}. We assume that |B| = λ.

Since κ is a regular cardinal number and for any V ∈ ⋃{Vα : α < τ}, |V ∩A| < κ, then

we know that λ ≥ κ. Besides, since B ⊂ A, then λ ≤ κ. Therefore, we know that λ = κ,

that is, |B| = |A|.
The following claim will complete the proof.

Claim. B is discrete in X.

Proof. For any x ∈ X, x 6∈ A or x ∈ A.

(i) If x 6∈ A, then X \ A is an open neighborhood of x and (X \ A) ∩ B = ∅. Thus, B

is discrete at such a point.

(ii) If x ∈ A, then there exists V ∈ V such that x ∈ V . If V ∩B 6= ∅, then there exists

xβ ∈ V ∩ B. For any α > β, according to the definition of xα, we have that xα 6∈ V . So

V ∩ {xα : β < α < τ} = ∅. On the other hand, if there exists α0 < β such that xα0 ∈ V ,

then we have xβ 6∈ V . Thus, we get a contradiction. Therefore, V ∩ B = {xβ}. Since there

exists an open set U of X satisfying V = U ∩A, then U ∩B = {xβ}. Thus, B is also discrete

at such a point.

According to (i) and (ii), we know that B is discrete at any point of X. So the set B

is discrete in X.
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The following lemmas are well-known, and are required for us to prove Theorem 3.1. In

fact, in [5], it has been showed that every δθ-refinable space of countable extent is Lindelöf.

But in order to understand more easily and clearly, here we’ll give the proof of Lemma 3.3

again.

Lemma 3.3. Every meta-Lindelöf space of countable spread is a Lindelöf space.

Proof. Assume that X is a meta-Lindelöf space of countable spread and that it is not

Lindelöf. Therefore, there exists an open cover U of X which dose not contain a countable

subcover. Since X is meta-Lindelöf, then U has a point-countable refinement V . V is not

countable and dose not contain a countable subcover, or else U has a countable subcover.

Assume V= {Vα : α < κ}. Take x0 ∈ V0 and let V0 = {V ∈ V : x0 ∈ V }. We know that V0 is

countable and
⋃V0 6= X. Then we can take x1 ∈ X \ ⋃V0 and let V1 = {V ∈ V : x1 ∈ V }.

Obviously, V1 is countable and
⋃

(V0 ∪ V1) 6= X. Similarly, we take x2 ∈ X \ ⋃
(V0 ∪ V1)

and let V2 = {V ∈ V : x2 ∈ V }. Thus, we can get a set A = {xα : α < τ} and the family
⋃{Vα : α < τ} which covers X. Since V has no countable subcover , it is easy to see that

{Vα : α < τ} is not countable. So the set A is uncountable.

Since X is a space of countable spread, then A is not discrete. So there exists a point

y such that for any open neighborhood U of y, |U ∩ A| ≥ 2. Assume that y ∈ Vy where

Vy ∈ V . Then Vy contains at least two elements of A. We assume that xm, xn ∈ Vy ∩ A and

m < n. Then we have that Vy ∈ Vm since xm ∈ Vy. On the other hand, xn 6∈ ⋃Vm, so

xn 6∈ Vy. Thus, we get a contradiction.

Hence X is Lindelöf.

Lemma 3.4. Every closed subspace of a space having countable spread is also a space

of countable spread.

On the basis of these three lemmas we can now prove Theorem 3.1.

Proof of Theorem 3.1. Suppose that the space X is not a linearly Lindelöf space. Then

there exists an uncountable subset A of X such that |A| = κ where κ is a regular cardinal

number and there is no point of complete accumulation for A in X.

It is clear that at least one of A ∩ Y and A ∩ Z has the same cardinality as A. We can

assume that |A ∩ Y | = κ. Thus, we can also assume that A ⊂ Y . According to Lemma 3.2,

in the space Y there exists a discrete set B ⊂ A satisfying |B| = |A|.
Let C = {x ∈ X : B is not discrete at x in X}. It is obvious that C ⊂ Z. Then

we prove that C is closed in X. Since for any x ∈ C and any open neighborhood U of x,
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U ∩C 6= ∅, then there exists y ∈ U ∩C. Therefore, U is also an open neighborhood of y, so

|U ∩B| > 1. Then we know that B is not discrete at x, so x ∈ C. Thus, we have shown that

C is closed in X. According to Lemma 3.4, the subspace C is a space of countable spread.

Then according to Lemma 3.3, the subspace C is Lindelöf.

For any z ∈ C, there exists an open neighborhood Uz of z such that |Uz ∩ B| < |B|.
Thus, we get an open family U satisfying

⋃U ⊃ C and for any U ∈ U , |U ∩ B| < |B|.
Since the subspace C is a Lindelöf space, there exists a countable subfamily V of U such

that
⋃V ⊃ C. Let W =

⋃V . Obviously, W is an open subset of X and C ⊂ W . Since

|B| = |A| = κ where κ is a regular cardinal number, we have |W∩B| < |B|. Then B\(W∩B)

is discrete in X and |B \ (W ∩B)| = κ > ω. This contradicts the fact that s(X) = ω.

Hence X is a linearly Lindelöf space.

As is well-known, all countably compact linearly Lindelöf spaces are compact and every

countably compact space has countable extent. Hence we have the following corollary of

Theorem 3.1.

Corollary 3.5. Suppose that X is a countably compact space such that X = Y ∪ Z,

where Y and Z are meta-Lindelöf spaces. Then X is compact.

Theorem 3.6. Suppose that X is a space of countable spread such that X =
n⋃

i=1
Xi (n ≥ 3),

where each space Xi is a meta-Lindelöf space and n− 2 spaces of them are closed subspaces,

then X is linearly Lindelöf.

Proof. We firstly give the proof of the case n = 3. We assume that X1 is a closed subspace.

Suppose that X is not a linearly Lindelöf space. Then there exists an uncountable

subset A such that |A| = κ and there is no point of complete accumulation for A in X,

where κ is a regular cardinal number.

(i) Suppose that |A ∩ X1| = κ. Since X1 is closed, then by Lemma 3.4, the subspace

X1 is a space of countable spread. By Lemma 3.2, there is a point of complete accumulation

for A in X1, or there exists a subset B of A such that B is discrete in X1 and |B| = |A|.
If x is a point of complete accumulation for A in X1, then x is also a point of complete

accumulation for A in X, which is a contradiction to the fact that there is no point of

complete accumulation for A in X. Otherwise, if there exists a subset B of A such that B

is discrete in the space X1, then we know |B| ≤ ω since X1 is a space of countable spread.

Then |B| < |A|. Thus, we have that |A ∩X1| < κ.

(ii) Suppose that |A ∩ X2| = κ. We can assume that A ⊂ X2. It is easy to see that

there is no point of complete accumulation for A in X2. Then by Lemma 3.2, there exists a
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subset B of A such that B is discrete in X2 and |B| = |A|.
Now consider the space X ′ = X1∪X2. Let C ′ = {x ∈ X ′ : B is not discrete at x in X ′}.

Then C is closed in the space X ′ and C ′ ⊂ X1. Since X1 is closed in X, C ′ is closed in X.

Therefore, the subspace C ′ is a space of countable spread. By Lemma 3.3, the subspace C ′

is a Lindelöf space. Consequently, in view of the proof of Theorem 3.1, we can get B′ ⊂ B

such that B′ is discrete in X ′ and |B′| = |B|.
Then we let C = {x ∈ X : B′ is not discrete at x in X}. Obviously, C ⊂ X3 and C is

closed in X. By Lemma 3.3, the subspace C is Lindelöf. Since there is no point of complete

accumulation for B′ in X, then we can get a subset B′′ of B′ such that B′′ is discrete in X

and |B′′| = |B′|. Then |B′′| = |A| = κ > ω, which is a contradiction to s(X) = ω. Thus, we

have |A ∩X2| < κ.

Similarly, we can prove |A ∩X3| < κ.

Since at least one of A ∩ Xi(i = 1, 2, 3) has the same cardinality as A, then we get a

contradiction by the above proof. Thus we know that the space X is a linearly Lindelöf

space when n = 3.

For the case n > 3, where n ∈ N , by the same way as in the above proof, we can also

prove that X is a linearly Lindelöf space.

In [7], under Definition 2.5 (ii), Gruenhage has proved that if X has countable extent

and can be written as the union of finitely many D-spaces, then X is linearly Lindelöf.

Here we can obtain the same result under Definition 2.5.(i) by modifying the proof of

Theorem 4.2 [7]. So the method of the proof is due to Gruenhage. Before that, we need the

following lemma.

Lemma 3.7 (see [7]). A space X is linearly Lindelöf iff whenever O is an open cover

of X of cardinality κ and O has no subcover of cardinality < κ, then cf(κ) ≤ ω.

Theorem 3.8. If X has countable extent and can be written as the union of finitely many

D-spaces, then X is linearly Lindelöf.

Proof. Suppose that X is a space of countable extent such that X =
⋃

i≤k Xi where k ∈ N

and each subspace Xi is a D-space, but X is not linearly Lindelöf. We can also assume that

k is the least possible value for any counterexample to the theorem. It is easy to see that

k > 1 since every D-space of countable extent is Lindelöf.

By Lemma 3.7, there is an open cover O = {Oα : α < κ} of some cardinality κ with

cf(κ) > ω, and O has no subcover of cardinality < κ. For each x ∈ X, let αx be the least

such that x ∈ Oαx . Define a neighborhood assignment φ on X as follows. For any x ∈ X,
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φ(x) = Oαx .

For any i ≤ k, there exists a relative locally finite subset Di of Xi such that the family

φ(Di) = {φ(x) : x ∈ Di} covers Xi. It is easy to see that there must be some i0 < k such

that |{αd : d ∈ Di0}| = κ since O has no subcover of cardinality ¡κ. Let C = {x ∈ X : Di0

is not locally finite at x}. Clearly, C is closed in X and C ⊂ ⋃
i6=i0 Xi. By the minimality of

k, C is a linearly Lindelöf subspace. Thus, for the increasing open cover {⋃β<αOβ : α < κ},
there are αn < κ, n ∈ ω, such that U = {⋃β<αn

Oβ : n ∈ ω} covers C. Then C \ ⋃U is

locally finite in X. Since X has countable extent, then C \ ⋃U is a countable subset. By

cf(κ) > ω, λ = sup{αn : n ∈ ω} < κ. Hence there exists some d ∈ Di0 such that d ∈ ⋃U
and αd > λ. Since d ∈ ⋃U implies that for some β < λ, d ∈ Oβ, then αd < β. Thus we get

a contradiction, and the proof is complete.

Since under Definition 2.5 (i), every paracompact space is a D-space, then we have the

following corollary which is a positive answer to the problem we have stated in the introduc-

tion.

Corollary 3.9. If X has countable extent and can be written as the union of finitely

many paracompact spaces, then X is linearly Lindelöf.
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