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ABSTRACT

This paper concerns (redundant) representations in a Hilbert space H of the form

F=S ¢t b0 VfEH
J

These are more general than those obtained from a tight frame, and we develop a general
theory based on what are called signed frames. We are particularly interested in the cases
where the scaling factors c; are unique and the geometric interpretation of negative c;.
This is related to results about the invertibility of certain Hadamard products of Gram
matrices which are of independent interest, e.g., we show for almost every vy,...,v, € ¢
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Applications include the construction of tight frames of bivariate Jacobi polynomials on a
triangle which preserve symmetries, and numerical results and conjectures about the class
of tight signed frames in a finite dimensional space.
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1. Introduction

Over the last decade there has been renewed interest in frame representations because
of their applications in wavelet theory (cf [D92]). Often when an orthogonal wavelet with
certain desired properties doesn’t exist it is possible to find a frame representation which
has them. More recently the redundancy built into a frame representation has been seen
to be desirable for computations (when a term in the representation is removed, not all
the information associated with it is lost).

This paper concerns the question: when can a set of vectors {¢;} in a Hilbert space
H be scaled to obtain a tight frame {«;¢;}, and hence a representation of the form

F=Y cilf dj)d;,  VfeEH, (1.1)
J

where ¢; = |a;|? > 07 Such representations are of interest because they share many
features of an orthogonal expansion (which may not be available). Our motivation was the
construction of tight frames of multivariate Jacobi polynomials which share the symmetries
of the weight (no such orthonormal bases exist).

It turns out that representations of the form (1.1) can exist with some c¢; negative, and
these correspond to what we call signed frames. We first develop the basic theory of signed
frames and give examples. Next we consider Hadamard products of Gram matrices which
occur in the scaling question. Here we give a number of results of independent interest,
e.g., for almost every vy,...,v, € C?

rank([(s, ) Too] D = min( (5T ) (5T ) o

We then give answers to the scaling question. For example, if H is d—dimensional, then
almost every set of

d(d+1)/2, H real;
d?, H complex

vectors can be scaled to obtain a unique representation of the form (1.1). This includes
a discussion on the particular choice of n and the geometric interpretation of negative c;.
We conclude with some applications including the construction of tight frames of bivariate
Jacobi polynomials on a triangle (which preserve symmetries), and some numerical results
and conjectures about the class of tight signed frames in a finite dimensional space.

2. Basic theory of signed frames

Throughout, H denotes a real or complex Hilbert space, with the linearity in the first
variable of the inner product. The following motivates the definition of signed frames and
provides the connection with Hadamard products of Gram matrices.
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Lemma 2.1. Let ¢; € H and c; be scalars. Then there exists a representation

F=> cilf.¢i)bj,  VfEH, (2:2)

J

if and only if
I =D "ci Ko, VfeH. (2:3)
J
If the choice of the c; is unique for given ¢;, then ¢; € IR, Vj. When H is finite-dimensional
dim(H) = 3 ¢; 16 (2.4)
J

Proof: The forward implication is immediate, and the reverse follows from the

polarisation identity. If the c; are unique, then they can be solved for by applying Gauss
elimination to (a suitable subsystem of)

S UL o) e =117 Y,
J

and so are real. Let (e;) be an orthonormal basis and use Parseval’s formula to obtain

dim(H) = 3 llel* = 30D esllens )P = 3 e - Kews )l = D sl 1

J

The condition (2.3) can be rewritten as
I1f11? = Zaj [(F ) P, oj = sign(cj), ¥; = +/lcjldy,
J

which motivates the following.

Definition. A family (1);) in a Hilbert space is called a signed frame with signature
o = (0j), o5 € {—1,1} if there exists A, B > 0 with
AIfIP <Y o (F > < BIfI?,  VfeH, (2.5)
J
and (1)) is a Bessel set, i.e., there exists C' > 0 with

YKL <ClfII’,  VfeH. (2.6)
J
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The signed frame operator S = ST — S~ is the self adjoint operator defined by

Sf=> o {fj)h;,  VfEH, (2.7)
J
where its positive and negative parts are
Stfe= Y (fyby,  S™f= Y (fr) ¢ (2.8)
o;=1 o;j=—1

Since {¢;} is a Bessel set, only countably many of the coefficients (f, ;) are nonzero,
and so the above sums (and those that follow) can be interpreted in the usual way.

When A = B we say (¢;) is a tight signed frame, and the polarisation identity implies
the representation

;= %%}aﬁf, Uy Ve

The theory of frames (cf [HW89]) can be extended to signed frames in the obvious way.

Theorem 2.9. The following are equivalent
(a) (¢;) is a signed frame with signature o and frame bounds A, B and Bessel bound C'.
(b) ST and S~ are bounded linear operators with

Al < S =81t -8 <BI, St 4+ S <CI.

Proof: The implication (a) = (b) holds since

a5 =011 (S£HF) Zo—y (f,5)1

(b) = (a). Consider a sequence s, of partial sums for S f

50 = sml* = sup [(sn = sm,9)1> = sup |( D o;(f,9)¢5,9)
llgll=1 loll=1 i1
= sup | Y o {(f,95) (8, 9)
lall=1 ;5%

n n

< sup (D [AuP) (D 1Wig))  (Cauchy-Schwartz)
lgll=1 "1 j=m+1
<C Z f,@bj n > m — 00,

j=m+1

so Sf € H is well defined, as are ST f, S™f. The bounds ||ST||, ||S™|| < ||S]] < C follow
from a similar calculation, and the relations AI < S < BI, ST+ S~ < CI from the signed
frame definition. O



In particular, we have the following signed frame representation.

Theorem 2.10 (Signed frame representation).
(a) S is invertible with
(1/B)I <S™' < (1/A) 1.

(b) Let 1/;]- := S~14;, then (1[)]) is a signed frame with signature o and frame bounds
1/A,1/B and Bessel bound C/A?%, which we call the dual signed frame.
(c) Each f € H can be represented

[ = ZUJ f,% lbg ZUJ f,%

Proof: Since AT < S < BI, III —(1/B)S|| < (B— A)/B < 1, so S is invertible,
and it is positive since
(STHLF) = (ST S(STH)) > AlISTH P > 0, VS
Multiplying AI < S < BI by S™! (which commutes with I and S) gives (a). Since S™!is
self adjoint,

Sf= ol =5~ (Zaj T)eg) = STIS(STH) =87,
J

(5% 4 87)f = Y (fubyhiy = ST (D(S 7 fubyduy) = STHS T+ 5T)ST
Hence
(1/B)I<S<(1/A)I, S5t+85 <(C/A%I,

and we obtain (b) from Theorem 2.9. Part (c) follows by expanding
f=S8(S71f)=S"1(Sf).
O

Corollary 2.11 (Equivalence). Let ¢c; € R and ¢; € H. The following are equivalent
a) There exists a representation

f:ZCj<fa¢j>¢jv Vf € H.
J

(V/|cjlo;) is a tight signed frame with signature o = sign(c) and frame bound A = 1.

Proof: The forward implication follows since

||f||2 = <ch<f7¢3 bj, f) ZCJ| fsb5) |2 ZUJ| »V ¢y ¢j

J

Conversely, taking 1, := /|cj|¢; in Theorem 2.10 gives

[ =2 0ilf VIeiloi)V/leilds = 3 eilf. 6i)és



Example 1 (Frames). A signed frame with zero negative part, ie., o; = 1, Vj, is
frame in the usual sense (and conversely). Here B = C and the Bessel property (2.6) is a
consequence of (2.5). Also the positive part of a signed frame {¢;},,=1 is a frame.

Example 2 (Nonharmonic Fourier signed frames). A system of complex exponen-
tials ey, : ¢ > Mt X; € C is a signed frame with signature (o) for Lo[—m, x] if

T T ™ ™ 2
A1 <] [Cren| <8 [ ur Z\/ fes,
—T ] —T —T ] —T
By the Paley—Weiner theorem, this is equivalent to
af ol <ot < [ ot Slsof e [ o

for every function g from the Paley—Weiner space (cf [Y80]).

2

<C | IfI>, vf.

Example 3. Take any three unit vectors in IR? none of which are multiples of each other.
These can be scaled in a unique way (up to 1) to a signed frame, with the ¢; for a vector
given by

cos(f — «)
Cj = >

sin « sin 3

where —7/2 < a < 8 < 7w/2 are the (acute) angles from the subspace spanned by this
vector to those spanned by the other two. This is negative if « < 0, 8> 0, 8 — a < /2,
i.e., the subspace generated by the vector lies in the region between the acute angle made
by the other two.

+ +

/S B
AN =

+

+ +

Fig. 1. Tight signed frames of three vectors in IR? with the signature indicated.

Example 4. Almost all choices of four unit vectors in €2 can be scaled uniquely to a
tight signed frame. The possible signatures are ++++ (a frame), +++— and ++——.

Examples 3 and 4 are special cases of the scaling results in Section 4.

Example 5 (Associated tight signed frame). Given a signed frame (1);) with signature
o, let v; := S_l/zwj. Then (v;) is a tight signed frame with signature o and frame bound
1, since

> oi(fvpyvy = SY2Y o (STVAf iy = SYESTHRE=f, VfeH.
J J



We call (v;) the associated tight signed frame.

Example 6 (Possible signatures). Since the positive part of a signed frame is a frame,
the signature o of a signed frame in H = R?, C¢ must have at least d positive entries,
say 01 = -+ =04 = 1. A tight signed frame can have any signature ¢ which satisfies this
restriction. For example, let (1/)]-)?:1 be any orthonormal basis, then

d n n
Sl =12 | wlren | < (D2 Iwl?) AP,
j=1 j=d+1 j=d+1
and so any choice of the remaining 1; with Z?: i1 19117 < 1 will give a signed frame with
signature o. Now take the associated tight signed frame (which has the same signature).

3. Hadamard products of Gram matrices

It follows from (2.3) of Lemma 2.1 that a necessary condition for a scaling of {¢;} to
a tight signed frame to exist is that there are c¢; satisfying

> i gidlPes = lloll?, Vi (3.1)
i

Thus we are interested in the matrix

A= ([0 dj)Pl =BoB,  B:= (¢ ;). (3.2)
Here o denotes the Hadamard (pointwise) product
(SoT)ij == sijtij-
The positive semidefinite matrix B := [(¢;, ¢;)] is commonly known as the Gram matriz.
We will use the Schur product theorem (cf [HJ91]).

Theorem (Schur product). If A and B are positive semidefinite, then so is Ao B. If,
in addition, B is positive definite and A has no diagonal entry equal to zero, then A o B
is positive definite. In particular, if both A and B are positive definite, then so is A o B.

We now provide general results about the rank of Hadamard products of the Gram
matrix and its conjugate, of which we will use the particular case (3.2).
Suppose H is d—dimensional, and let
Sy := S.(H) := the symmetric r—linear mappings on H,
112 := I1°(H) := the homogeneous polynomials of degree r on H,
H, := H,(H) := the space of spherical harmonics of degree r on H.
These spaces are isomorphic via the association of the symmetric r—linear map L with

the homogeneous polynomial p :  — L(z,...,z) and the spherical harmonic obtained by
restricting p to the sphere {z € H : ||z|| = 1}.
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Lemma 3.3. Let uy,...,u, be unit vectors in a real or complex Hilbert space H of
dimension d, where

d -1

n = < T ) = dim(S,) = dim(T1?) = dim(H,.), 7> 0.

r

Then the following are equivalent

(a) The points {u;} are in general position on the sphere, by which we mean that no
nonzero spherical harmonic of degree r vanishes at all of them.

(b) There is a unique p € H, which interpolates arbitrary data at the points {u;}.
(¢) The n x n positive semidefinite matrix

A= [(ui, u5)"]

is invertible.
(d) The polynomials {(-,u;)"} are a basis for I and H,..
The functionals {f — f(u;)} are a basis for the dual spaces of 11 and H,,..
The symmetric r—linear mappings on H have a basis given by

T
— @
— —

(1,22, ..y xy) = (@1, ug) (T, ui) -+ - (T, uy), i=1,...,n.

(g) The functionals L — L(u,,...,u;) are a basis for the dual space of S,.

Proof: The positive semidefiniteness of A = B o --- 0 B follows from the Schur
product theorem. The equivalence of (a),(b),...,(e) is the standard conditions for unique
linear interpolation from V' = span{(-,u;)} to the linear functionals f ~— f(u;). The
implications (d) <= (f), (e) <= (g) follow from the isomorphism between S, and I1%. O

Remark 1. Lemma 3.3 also holds with the inner product replaced by the dot product
x-y:=y . z;y; on C", in which case (c) becomes A is an invertible symmetric matrix.

In the following we use Lebesgue measure on IR? x --- x R? and €% x --- x €%, and
remind the reader that the zero set of a nonzero polynomial has measure zero.

Theorem 3.4. For almost every vy,...,v, € R? or ¢
d -1
rank([(v;, v;)"]) = min{n, ( r )}, r > 0. (3.5)
Proof: This matrix is the r times Hadamard product of the Gram matrix

A::[</UIL',/UJ'>T]:\BOBO---OBJ7 B:‘/*‘/7 V::[/Ul,._.”un]_

r times

Since B = V*V is positive semidefinite, it follows from the Schur product theorem that
A is also. Almost every choice of {v;}?_, is in general position, and so we may assume
without loss of generality that they are chosen so.
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First suppose n < d. Then the {v;} are linearly independent, so B is positive definite,
and by the Schur product theorem A is positive definite, giving rank(A) = n, as asserted.
Hence it suffices to suppose n > d. Clearly, rank(A) < n. Since B, V have the same
kernel and rank(V) = d, the positive semidefinite matrix B has rank d, and so can be

written
d
*
B = E Uiy ,
i=1

where {u1,...,uq} is an orthogonal basis for the range of B. Now

d d d
*
A=B E E: E:Uu0%0"'0%)(%OUiQO"'OUz'T)7

a sum of at most (d+:_1) rank one matrices (o is commutative), giving
d+r—1
rank(A) < < )
r

Thus, by considering principal submatrices, it suffices to show rank(A) = n, where

<d+r—1>
n = :
r

Since det(A) is a polynomial in vy, ..., v, it will be nonzero for almost every choice of {v;}
(giving the result) provided it is nonzero for some choice. Using equivalence with (c) in
Lemma 3.3, it is easy to see such choices exist. For example, use (d) and the well known
fact that the polynomials II? have a basis of ridge functions {(:, u;)"}. O

Example 1. In three dimensions (d = 3), let r = 2. Then the matrix [(v;, v;)?] is invertible
for almost every choice of {vq,...,vg}. If we take vy, v9, v3 to be an orthonormal basis and

V4 = VU1 + Vg, Us:=Us+UV3, Ug: =g+ Us=1v1+ 203+ V3,
then these {v;} are not in general position (since vg = v4 + vs5), and satisfy
| det([(vi, v;)*])| = 8.

Thus, the configurations of points {v;} which give (3.5) are not simply those which are in
general position. In Example 2 we give an example where this is the case.

We now give the counterparts to Lemma 3.3 and Theorem 3.4 for complex matrices

S

A = [(vg,v5)" (vi, v5) 1, r,s > 0.

This requires a generalisation of Hermitian forms and the associated polynomial algebra.
We can not find a reference to this in the literature, and so provide the basic results.
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Suppose H is a complex Hilbert space. Then a map L : H" x H® — C is called
a Hermitian (r,s)—form on H if it is symmetric r—linear in the first r variables and
symmetric s—conjugate—linear in the last s variables. Let

Sr.s := Sy s(H) := the real vector space of all Hermitian (r, s)—forms.
The map which associates L € S, s with z — L(z,...,z;z,...,2) is an isomorphism onto

W0, = 10, (H) = I @ TIY

(f(2) == f(z)), and the restriction of I ; to the sphere is an isomorphism onto
HT‘,S = HT,S(H) = HT‘ X H_s
Lemma 3.6. Let uq,...,u, be unit vectors Hilbert space H of dimension d, where
d—1 d—1
n = <r4d_ | ) <s; . ) = dim(S,;) = dim(II),) = dim(H,.s), r,s > 0.

Then the following are equivalent

(a) No nonzero p € H, s vanishes at all the points {u;}.

(b) There is a unique p € H, s which interpolates arbitrary data at the points {u;}.
(¢) The n x n positive semidefinite matrix

A = [(uigy ug)"(ug, ui)°]
is invertible.

(d) The polynomials {(-,u;)"(u;,-)*} are a basis for I1° ; and H, s.

) The functionals {f — f(u;)} are a basis for the dual spaces of I, and H, .
) The Hermitian (r, s)—forms on H have a basis given by

(-'1717 <oy Ty Y1, - - '7ys) = <.T1,’U,¢> e <xrvui><ui7yl> e <U/¢,ys>, 1= 17 seey I

(g) The functionals L — L(u;,...,u;) are a basis for the dual space of S, 5.

Proof: The proof is similar to that of Lemma 3.6. O
In particular, a Hermitian (1,1)-form is a Hermitian form.
Theorem 3.7. For almost every vy, ...,v, € C%
s d -1\ [/d -1
rank([(v;, v;)" (01, 0;)°]) = min{n, < r ) ( T )}, rs>0. (3.8
r s

Proof: The proof is similar to that of Theorem 3.4, with
A= [<Uiavj>r<vivvj>s] :ﬁOBO "'OBJOEOFO OEJ.

r times s times

This leads to
d

d d d
A= E §§(uz1o O Uj, O Uj, © Ouys)(uho O U4, OUj O OUJS)

1 .
a sum of at most , ) . rank one matrices. O



We now give an explicit formula for the determinant of [(v;, v;)"] in two dimensions.

Lemma 3.9. Let vy, ...,v, be vectors in C?, where n = r + 1. Then

det([(vi,v)) ) =C(r)  J[  Idet([vs,v;])I?,

1<i<j<r+1

det([(v;-v)) N =C(r) [  det([vi, v;])%

1<i<j<r+1
where
S
C(r):= H (k‘)
k=0
Proof: Let A := [(v;,v;)"] and v; = (v;1,v;2)T. Then a binomial expansion gives
(r
aij = (Titvj1 + Tigvje)" = ) <k> (irvj1)" (Vizvj2)" "
k=0

. r
= ()" (@) " (k;) (01)" (vj2)" ",
k=0
i.e., A= B*DB, where
bz] = (Ujl)i_l(vjz)T_i+1, D = diag{( r 1) 72' = 1, ceey n}.
2 J—

Similarly, with M := [(v; - v;)"], we have M = BT DB. Taking determinants gives
det(A) = C(r) | det(B)|?, det(M) = C(r) det(B)?,

and so it remains only to compute the determinant of B.

If v;1vj2 — vipvj1 = 0, then either rows ¢ and j of B are multiplies of each other, or
one of them is zero, and so det(B) = 0. Thus Hilbert’s Nullstellensatz in the polynomial
ring R := C(v11,v12,...,VUn1,Un2) implies that det(B) belongs to the radical VT of the
principal ideal I generated by

f= H (vi1vj2 — vi2vj1).

1<i<j<n

Since each factor v;;vj2 — v;2v;1 is irreducible in R the radical VT equals I, and so f
divides det(B). A comparison of degrees and the coefficients of a given monomial then
gives det(B) = f. O
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Example 2. When n = r + 1, d = 2 the conditions of Lemma 3.3 are equivalent to
u1,..., U, being in general position, since by Lemma 3.9

[(vi,v;)"] is invertible <= det([(v;, v;)"]) # 0
< det([vi,v]) #0, 1<i<j<n

< v1,...,V, are in general position.

Example 1 shows that this is not the case for d > 3.

4. Scaling to obtain a tight signed frame

In this section, we investigate when a set of unit vectors {u;} in H can be scaled
Vi = aguy,

to obtain a tight signed frame {;}, and hence a representation of the form

F=Y oi(fi; = ci(frujuy,  VfeH. (4.1)
i i

where ¢; := oj|a;|?. Clearly, multiplying the «; by scalars of unit modulus gives a signed
frame with the same signature and bounds. Thus we say there is a unique scaling if
there is a unique signature o and |o;| giving a tight signed frame, i.e., there is a unique
choice of the ¢;. If a more than one scaling exists, then there are infinitely many since
the set of such ¢ = (¢;) is affine. Here we consider a finite set {uy,...,u,} where H has
dimension d.

A necessary and sufficient condition for such a scaling to exist is that

Z<ei17uj><ujvei2>cj = (€, €is ) Vi = (i1,12) € I,
J

where (e;)?_; is an orthonormal basis of H, and I is the index set

1= {(7:1,7:2) 01 S 7:1 S 7:2 S d} (H real),
I:={(i1,i2) : 1 <iy,i2 <d} (H complex).

This can be written in matrix form
Me =0, mij = (€, , uj)(Uj, €iy), bi == (€i,,€ir )5 (4.2)
where M is an I x n matrix. The normal equation for this system
M*Mec= M*b (4.3)
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is the necessary condition (3.1) in matrix form, i.e.,
Ac=[1], A= [ (uiy ug) P (4.4)
This follows from the calculations

(M*M)gy =Y Tigmiz = Y _ (€iy, ts) (us, iz (€iy s e) (u, €iy)

= (Z(us, 611><611,Ut>> (Z (us, €4,) (612,Ut>> = |(us, ue)|?

(M*b); = Mgbi = Y (uj,ei)ew,ui)( e, en) = Y (ug,ei ) ei,u) = [lu]® =1,
iel i€l i1
which show M*M = A, M*b = [1]. When |I| = n the matrix M is square and the
necessary condition Ac = [1] becomes necessary and sufficient for a unique scaling to exist.
By a Hermitian form on H we mean a symmetric bilinear map when H is a real
space and a (1,1)-Hermitian form when H is complex, i.e., one satisfying the conditions
of an Hermitian form. This is a real vector space of dimension

1
sd(d+1), H real;
e I e 2 ’ ! 4'
n =l {d2, H complex. (45)
Theorem 4.6 (Equivalence). Let uy,...,u, be unit vectors in a Hilbert space H of

dimension d, where
n— 1d(d+1), H real;
d?, H complex.
Then the following are equivalent
(a) The n x n positive semidefinite matrix
A= [[(ui, ug) ]

is invertible.
(b) The vectors uq,...,u, have a unique scaling which gives a tight signed frame, with
the ¢ of (4.1) given by

c=ATM1], A= (|, up)l].
(¢) The Hermitian forms on H have a basis given by
(f7g)'_><f7ul><ulvg>7 7’:17777’

(d) The functionals L — L(u;,u;) are a basis for the dual space of the Hermitian forms.
(e) The self adjoint operators on H have a basis given by the rank 1 orthogonal projections

P f— (f, ui)u,, i=1,...,n.

Proof: The equivalence of (a),(c),(d) is a special case of Lemmas 3.3 and 3.6.
Since |I| = n, there is a unique scaling (given by Mc¢ = b) iff the I x n matrix M is
invertible iff A = M*M is invertible. Since c is then given by (4.4) this gives (a)<=(b).
The self adjoint (Hermitian) operator corresponding to (f,g) — (f, u;)(u;, g) is P;, which
gives (¢)<=(e). O
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Corollary 4.7 (Scaling to a tight frame). Let H be a Hilbert space of dimension d,

and
n— 1d(d+1), H real;
d?, H complex.

Then almost every choice of unit vectors {uy,...,u,} in H has a unique scaling that gives
a tight signed frame, with the constants c; in (4.1) given by

c= AL A= [l ). (4.8)

The signature and the scaling factors of the tight signed frame so obtained satisfy

o = sign(c), lj)? = lej], V9, > =d. (4.9)
Proof: Since det(A) is a nonzero polynomial in wy,...,u,, A is invertible for
almost every choice of {u;}. The equations (4.9) follow from ¢; = oj|a;|? and (2.4). O

For d = 1 the result is trivial. The examples of three vectors in IR? (being in general
position implies there is unique scaling) and four vectors in C? have already been discussed.

Example 1. If n = d(d 4+ 1)/2 unit vectors are in general position on the sphere in IR,
i.e., no homogeneous quadratic (quadratic spherical harmonic) vanishes at all of them,
then there is a unique scaling of them giving a tight signed frame.

Example 2. With the exception of three vectors in IR?, it is possible to construct a set
of n vectors in general position for which more than one scaling to a tight signed frame
exists. For example, take two different orthonormal bases (possible for d > 2, H complex
and d > 3, H real) whose union is in general position and enlarge this to a set of n vectors
in general position. Then this can be scaled to a tight frame (in two different ways) by
taking the weights corresponding to one of the orthonormal bases to be 1, and all the
others to be zero.

Example 3. It is also possible to construct a set of n vectors for which no scaling to
a tight frame exists. This can be done by taking the vectors from a basis which is not
orthogonal. Examples where the vectors are in general position also exist, e.g., in C? take

<é>’<;;>’ <(§T2>’ <i§>, (4.10)

1 1 1 1 1 1
1], 2 1, 3 , 4 1, 5 , 6 |. (4.11)
V2 V5 V10 V17 /26 NEY

The considerations which led to these choices are discussed in the appendix.

and in IR? take

Example 4. When H is real a specific choice of {u;} for which A is invertible is
(ex +e1)/V?2, 1<k <Il<d,
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where {e;}_, is an orthonormal basis. When H is complex add to this
(ex +ie))/V2, 1<k<l1<d,

to get such a choice.

5. Tight frames of Jacobi polynomials on a triangle

Here we construct tight frames of bivariate orthogonal Jacobi polynomials which share
the symmetries of the weight. Though primarily interested in the bivariate case, we give
the definitions for IR® (which are no more complicated).

Let V be a set of s + 1 affinely independent points in IR®, i.e., the vertices of an
s-simplex which we denote by T. Let & = (§,)yev be the corresponding barycentric
coordinates, i.e., the unique linear polynomials that satisfy

» &) =1, Y &@v=a, VacR"
veV veEV

For the (standard) triangle with vertices 0, e; = (1,0), ea = (0, 1), these are

$o(z,y) =1—2—y, e, (2,y) =, eo (2,y) = 9.

We will use standard multi-index notation for indices, so, for example,

¢o=[l¢r nerY, p=]]n! pezl

veV veEV

For functions defined on T', we define an inner product by

<f7g>u::/ng£u7 /1'>_1

The condition p, > —1 ensures the nonnegative weight £ is integrable over T'.

Let Sy be the symmetry group of the simplex T" with vertices V, i.e., the group of
affine maps of T' onto T'. This is (isomorphic to) the symmetric group on V since an affine
map IR®* — IR’ is uniquely determined by its action on s+ 1 affinely independent points
(such as V). Let S € Sy act on functions f defined on T via S - f := foS~1. Then S
permutes the barycentric coordinates &,, and so if all the u, are equal, the inner product
has the symmetries

<S'fa5'g>u:<fag>u7 SGSV-
We say that f € IIx(IR’) is a Jacobi polynomial (of degree k) for the simplex T

with weight &# (cf [DX01]) if it satisfies the orthogonality condition
(o= [ fper =0, pe e ().
T
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Such a polynomial is uniquely determined by its leading term f4, i.e., the homogeneous
polynomial of degree k for which deg(f — f4) < k, via

f=Ff—-Pua._, (fr), Py, _, = orthogonal projection onto IT;_;(IR?).

Thus the space Py of Jacobi polynomials of (exact) degree k has

k -1
dim(P") = dim(I1%(IR?)) = ( e . )
S J—

There exist explicit formulae for an orthogonal basis of this space (see [P57] and [KMT91]),
and also biorthogonal systems (see [AK26] and [FL74]). But these do not share the
symmetries of the weight, i.e., they are not invariant under the action of Sy when u, = po,
Vv € V. We now use the scaling results to construct a tight frame of Jacobi polynomials
with these symmetries for the triangle.

Let pg, denote the Jacobi polynomial with leading term (€)1 =1 ev(€v1)?". Then

{pfs - 1Bl =k, BeZy} CPL

is an Sy—invariant family when p, = po, Vo. In this bivariate case (s = 2), this consists
of (k+ 1)(k + 2)/2 Jacobi polynomials of degree k, and so, by Theorem 4.6, they have a
unique scaling that gives a tight signed frame provided the matrix

A= |0 )Nl 1=

is invertible. We first give examples, then give the general result that A is always invertible
and the scaling factors can be computed exactly. Normalise the p‘gﬁ so that the tight signed
representation is

> AL (5.1)
8=k ﬂ<p557pgﬁ>u £67 k> )
Bezi

where, by (2.4),
> h=k+1, (5.2)

Example 1 (Quadratics). For quadratic Jacobi polynomials the 8 have two forms:
(1,1,0) and (2,0,0) (three of each). The cg for selected p = (po, o, o) are (respectively)

7 3 9 5 34 21 55 36
(0,00 _ JLLD L222) _ L(3:33) _

AT 10010 s 14’ 14° 55755 TR TR
The Jacobi polynomials with constant weight (referred to as Legendre polynomials) are

1

1 1 1 4
pgﬁ;(]) - évgw - gév - ggw + 55 v 7é w, pg;,’o’()) - EE N EE” + E

20’
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Example 2 (Cubics). For cubics the 8 have three forms (1,1,1), (2,1,0) and (3,0,0)
(1,6,3 of each). The cg for selected 1 = (10, f20, f10) are (respectively)

000 24 52 4 1) 3291
c T or) 1nr or’ c — T AN a0
B 357105 35 B 560" 6
222 80 68 28 0 335 15 79 3
s 1437 143’ 143’ s 287168 14"

The Legendre polynomials are

1 2
pégﬁ:gl = Eugvéw - ? (Eugv + fufw + fvéw) + 1—

05’
000 20 4, Ll 2, 1, 1
Pere, = Sobu = 7bubu = 28 o8t 5 rde — g5
000) _,3_ 9.0 3, 1
pg% é-’l} 751} + 7511 35'

We now give an explicit formula for a general cg. Define a multivariate hypergeometric

function with arguments ¢ a scalar, and 3, vy, z vectors from RY by

(B)a =
(Ve ! 7

Fle,Bivim) = Y (O ceR, B,v,zeRY,

aEZX
where ()4 is the multivariate shifted factorial

(B)a = H (Bv)ava (Bv)av = Bv(ﬁv + 1) te (Bv + ay, — 1)

veV

This is the Lauricella function F4. Note that F(c,—f;v;&) is a polynomial of degree ||
in &, i.e.,
SR

(7)(1 (6 - a)' a! .

Fe,~B:7:€) =Y _(0)jal

asp

In [AK26] it was shown how in two variables this relates to the Jacobi polynomials with a
restricted class of weights (no weight on the third barycentric coordinate), and the general
result can be found in [FL74], namely

. ()Pl +1)s y
(18] + |ul + 8)18 77

a5 = F(|8] + |ul + 5, =B+ 1;§),

where p1+1:= (py + Dvev, |p] =32, to-

In [WXO01] a technical proof, which uses the orthogonal basis of Proriol [P57] and the
Hahn polynomials, is given for the following bivariate result. Let I' be the multivariate
gamma function.
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Theorem 5.3 (Tight frame of Jacobi polynomials on a triangle). On the triangle
there is a unique scaling of {pgﬁ |B] = k} that gives a tight signed frame for P!, with the

scalars of (5.1) given by

+1
N T N S R ¢

where

on < (Il + 5)w Plul+s+1)

NP T(p+1)

and so this is a frame. The representation (5.1) can be written in the compact form

)2 (| + 5+ 1)2s

p=cp S WDy s et (5.4
|8]=Fk ’

This was first observed, by chance, for the Legendre polynomials, i.e., when p = (0),
and (5.4) simplifies to

F=Cha N S (. v e PR

[Bl=k

It was then extended whilst proving this case. In [WXO01] it is also shown this result holds
in all dimensions, where now (5.2) becomes

k+s—1
Zc = dim(P}) = < >
1Bl=k s—1

In constract to the bivariate result, our abstract scaling results do not suggest that this
should be the case.

Since {pgs }|g=k spans P} any scalar multiples of these functions forms a frame. The
determination of the dual frame (which shares any symmetries) is still an open question
in all but the above (most interesting) case.

6. Numerical results and conjectures

Consider the least squares solution of the necessary condition (4.4) given by taking
the (Moore-Penrose) pseudoinverse

c=cluy,...,uy) = AT[1], A = [[{ug, ug)|?)- (6.1)

This is a continuous function of wq,...,u, except at those points where the number of
singular values of A changes (a set of measure zero). By Corollary 4.7, for n greater than
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or equal to the value (4.5), it has constant trace, i.e., > jC = d for almost all choices of

u1,...,u,. When a scaling to a tight signed frame exists this value of ¢ gives the scaling
factors with minimal > j cjz-. In particular, the scaling gives a frame if this is possible.
Thus, one could imagine finding a set of vectors uq,...,u, for which c(uy,...,u,)

takes some specified (and allowable) value ¢* by taking an initial guess, computing ¢, then
comparing it with the value obtained for some appropriately sized (random) perturbation
of uy,...,u,, and keeping whichever set, of vectors gives a value closest to ¢*. Using MATLAB
we implemented this naive scheme. A number of interesting, but unproved, conjectures
have arisen from the computations we undertook, which are now described.

Fig. 1. Tight frames of vectors in IR? which are equally spaced on the circle.

In H = IR?, C? the standard examples of a tight frame of n > 2 vectors are

o i .
(cos —Z]> 1 (wJ 2mi -
Ui = . Ui 1= —— . w::=en ] = R 8
J s 27y | J g3 ] ’ ) ’
sin =~ V2 \w

For each of these the frame representation is of the form

n

2
= — U Ve € H.
T n;<$’u3>%’ T

Moreover, the vectors {u;} in IR? are equally spaced on the circle. Thus, it is natural
to ask whether there exist frames with all the ¢; equal in higher dimensions (other than
the orthonormal bases), and whether they can be interpreted as points which are equally
spaced on the sphere. The answers to these questions appear to be yes and probably not.

Conjecture 6.2 (Isometric tight frames). For each n > d, there exist unit vectors

U1, ..., Uy in general position in H = R¢, C? for which
d n
T=- z(m,uQuZ, Ve € H,
1=

i.e., there exists a tight frame consisting of n vectors of equal length.

This is supported by all our calculations. For example, in IR® we obtained the following
vectors U = [u, ..., u,], n =4,5,6 which give a tight frame with equal ¢; (to 4 sf).
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—0.5742 —-0.4972 —-0.5799 —0.6569
U= —-0.7015 0.3905 0.7496 —0.3424 |, c; = 0.7500
—0.4221 —-0.7748 0.3191 0.6718

0.4771  0.4732 0.7153 0.6624 0.4955
U=10.6468 —0.8745 0.5849 —0.2450 -0.2994 |, c; = 0.6000
0.5950 0.1061 —0.3825 —0.7079  0.8153

0.5767  0.8003 0.6376 —0.0293 —0.5824 0.5294
U= —-0.5587 0.4885 0.1064 0.7417 —0.5180 —0.7871 |, c; = 0.5000
0.5961 —0.3475 0.7630 0.6701 0.6265 —0.3165

Here is an example of 8 vectors in IR® (¢; = 0.6250)

0.6257 —0.3562 —0.2393  0.4430 0.4650 0.0081 0.5352  0.5522
0.4655 0.1264 —0.9514 —0.4910 —-0.2354 0.2406 0.0612 —0.3293
U=1 —-0.0407 0.7345 0.0480 0.4079  —0.5840 0.5357 0.3845 0.3407
0.5238  0.0028  0.1466 0.5980 —0.4689 —0.5520 0.0466 —0.6521
—0.3403 0.5636 —0.1175 —0.1966 0.4092 —0.5918 0.7482 —0.2130

In the complex case our naive algorithm converges only when the perturbation of uy, ..., u,
is taken to be real (here accuracy of 4 sf is typically obtained within 1000 iterations). As
yet, we have been unable to explain why this is so in term of the underlying geometry of
c(uy, ..., uy,). It is also observed that the c of iterates tend to approach ¢* (equal entries)
from below in the cases where the trace of ¢ is need not be d. Here are examples of
isometric tight frames of 4 vectors in €2 and € obtained from our calculations

U — 0.5587 + 0.0842: —0.0848 + 0.0482: —0.8080 + 0.1602z —0.8242 — 0.5600¢
~ \ 0.8225 — 0.0657¢ —0.9889 + 0.1119¢  0.5467 — 0.1505% 0.0832 + 0.0157:

—0.2995 4 0.2150z  0.5050 — 0.11162  0.9105 + 0.0821z —0.0492 + 0.3040:
U= 0.6115+0.3047¢ —0.6113 +0.3512¢ 0.3641 4 0.0847: —0.3063 + 0.3687¢
0.6101 — 0.1581z 0.4626 — 0.1466:  0.1271 — 0.09102 —0.5943 — 0.5677¢

When there is no scaling giving a tight signed frame, then sum } . c;(f, uj)u; is as
close to f as possible in the following sense.

Theorem 6.3 (Best approximation property). The ¢ which minimise the Frobenius
(matrix) norm

IT=Y ciPille,  Pif={fruuj, If:=f (6.4)
j=1

are given by Ac = [1]. In particular, the function ¢ := A™[1] of (6.1) gives the shortest of
these (in the Euclidean norm).

Proof: Recall the Frobenius inner product is given by
(A, B)p := trace(AB™) = Zi,jaijgijy
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and so

(Pj, P;)p = trace(ujuju;u;) = |(ui,uj>|2, (I, P)p = trace(u;u}) = [|u;]|? = 1.
The minimum (least squares solution) of (6.4) occurs when (the error) I — 3. c;P; is
orthogonal to all the P, i.e., Vi

I_ZjCijJ—Pi < chj<Pj7Pi>F:<IaPi>F < chj|(ui,uj>|2:1.

O

Now we consider the question of whether or not a (tight) frame with all ¢; equal can
be interpreted as a set of points which are equally spaced on the sphere. For three vectors
in IR? this is the case. Here the intersection of the three subspaces spanned by the {u;}
with the circle gives six equally spaced points. However, for four or more points there exist
frames where this is not the case. For example, all frames of four vectors with equal c;
can be obtained by taking the union of two orthonormal bases. This gives equally spaced
points only when the axes corresponding to the bases can be mapped onto each other by
rotation through 7 /4.

Ko

Fig. 2. Isometric tight frames of four vectors in IR

KX

Fig. 3. Isometric tight frames of five, six and seven vectors in IR?.

An even more extreme example is given by H = C. Here uq,...,u, can be any
complex numbers of unit modulus. These can be placed anywhere on the circle, even
taken to be all the same. Thus it appears that, except for a few special cases, a randomly
generated isometric tight frame can not be interpreted as points which are equally spaced.
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Many nice examples, such as the roots of unity (in ]RQ) and the vertices of the five Platonic
solids in IR® do exist, but the authors can think of no systematic way of finding them.

7. Appendix

Here we provide details on the constructions of Example 3 of Section 4, i.e., we find
vectors uq, ..., u, which are in general position for which (4.2) has no solution.

To find four vectors in general position in € for which no scaling to a tight frame
exists it suffices to consider ones of the form

- 1 wo — cos ty Yo — costs s — costy
1= \o )’ 27 \sintge®® )0 ™7 \sintze® )7 77 \sintyei )2

where ¢;,0; € IR. For these the determinant of the matrix M in (4.2) is scalar multiple of
sin(2t9) sin(2t3) sin(2t4) {tanty sin(f3 — O4) + tants sin(0y — O3) + tanty sin(fy — 03)},

provided cost; # 0. It is easy to choose ¢;,0; so that the second factor above is zero,
and so there is not a unique scaling to a tight signed frame. Moreover, a choice can be
made so that there is no solution to Mc = b (hence no scaling), and the {u;} are in general
position. One such choice is ty = 7/4, t3 = tan~'(v/3+2), t4 = 57/4, 03 = 5, Oy = 7/2+5,
04 = 5 — m/3, which gives (4.10) up to a scalar factor.

The second example (4.11) is a special case of the following.

Proposition 7.1. There exist n := d(d 4+ 1)/2 vectors in general position in IR%, d > 3
for which no scaling to a tight signed frame exists.

Proof: Let V = [ug,...,u,] € R¥™™ and {e;} be the standard basis vectors in
RE. With I := {(i1,72) : 1 < iy <ip < d}, the condition (4.2) becomes

Mc=b,  msj = (e, u;)(Uj, €ip) = VijVinj,  bi = (€, €ir)-

The system Mc = b (which gives the scalings to a tight signed frame) has no solution, i.e.,
b & ran(M) = ker(M*)L, if we can find a vector a € IR with M*a = 0 and (a,b) # 0. Let

1, ie{(1,1),(2,2)};

ai =4 —1, i=(3,3);
0, otherwise.
Then (a,b) =1 # 0, and the condition M*a =0 is
v%j—kv%j :v?z,j, j=1,...,n. (7.2)

Thus it suffices to find a V € IR¥™ whose first three rows satisfy (7.2), and whose columns
are in general position. Let

e LT i 7 3;

Y Viz+1, i=3.
Then this satisfies (7.2), and it columns are in general position since any d x d submatrix
is a Vandermonde matrix (for distinct integer points) with the third row modified in such
a way that it can not be written as a linear combination of the others. O
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