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Abstract: In this paper we introduce the concept of
F-consistency of a social choice function relative to the
given class F of social choice functions. This refines the
concept of consistency, introduced by Koray [2], and al-
lows to discover a number of classes F for which there
exist F-consistent social choice functions which are nei-
ther dictatorial nor antidictatorial. Furthermore, un-
der certain mild conditions on F all F-consistent social
choice functions are described.

1. Introduction

It is not uncommon that a society of voters A facing a choice between
the alternatives of a set A has also to decide on the procedure which is
to be employed to make this choice. Suppose that only the social choice
functions (SCFs) from a class F are socially acceptable (for example, the
Paretian omes). Suppose also that the information about voters’ preferences
is publicly known. Then the voters are able to compare the outcomes, which
will result from the implementation of each of the available SCFs, and their
preferences on the set F are therefore defined. Thus, any preference profile
on A leads to a dual preference profile that the same voters have on F. It is
now possible to employ any SCF from F to choose the SCF, which will be
employed to make a choice from A. It would be consistent to use for the main
choice any SCF that chooses itself at the first stage of the procedure. Koray
[2] investigated such self-selective SCFs with F being the class of all possible
SCFs on A - he called such SCFs consistent. Under these assumptions he



proved that all neutral and unanimous consistent SCFs are the dictatorial
ones.

In this paper we investigate the concept of consistency in the most general
situation. We do not assume neither neutrality nor unanimity and allow for
a large variety of classes F, e.g., F may be the class of all Paretian SCF's.
In these circumstances we characterize all F-consistent SCFs and show that,
when F is not the whole set of all possible SCF's, interesting non-dictatorial
F-consistent SCFs do exist. For example, when F consists of all Paretian
SCF's, the SCF, which chooses the worst Pareto-optimal alternative for the
1th voter, is F-consistent.

2. Social Choice Functions and Correspondences

Let A be a finite set of m alternatives and A be a finite set of n agents
who are to make a choice of one best alternative from A. To this end, the
agents submit strict linear orders Ry,..., R, on A as their preferences over
the given set of alternatives. The n-tuple R = (Ry,...,R,) is called the
n-profile or, simply, the profile. The set of all strict linear orders on A is
denoted as £(A) and the set of all n-profiles is denoted as L£(A)™.

Definition 1 A social choice function (SCF) F on A is a mapping
F:L(A)" — A. (1)
A social choice correspondence (SCC) m on A is a mapping
m: L(A)" = P(A),
where P(A) is the power set of A.

In this section we will pay attention to the following question: how, given
an SCF (or an SCC) on A, to define an SCF (or an SCC) on any set B which
is equinumerous to A.

Let A and B be two equinumerous finite sets and let v: A — B be a
bijection. Then, for all n > 1, we can define a bijection

v L(A)" = L(B)"

as follows. Suppose that we have a relation () on A. Then we can define a
relation Q7 on B in the following way:

bQ7Y & L ())Qu L (V). (2)
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If R=(Ry,...,R,) € L(A)"is a profile on A, then we define a profile R” on
B by setting R” = (RY,...,RY).

Proposition 1 Let A, B,C be three finite equinumerous sets and u: A — B
and v: B — C' be bijections. Then pov = jio .

Proof: It suffices to prove the statement for n = 1, i.e. for linear orders.
Let @ be a linear order on A. Then for any ¢, ¢’ € C

Q"¢ = (nov) He)Q(uov) '(¢) = (v o )R op ) () =

v (@)Qr T () = (@Q () = (@) ¢ = e D

Suppose now that F' is an arbitrary SCF on a set X. Let A be a set
equinumerous to X, and let v: A — X be a bijection. Let R € L(A)™ be a
profile on A. We define

FY(R) € v ! (F(R)). (3)

This could be illustrated by the following commutative diagram

v

K

=y

R L
A

Clearly, F” is an SCF on A. Therefore, having an SCF on X we can induce
an SCF on A for each bijection v: A — X. Thus, if X was of cardinality
m, then we can get m! different SCFs on A. Of course, in some cases, for
different bijections p and v the SCFs F* and F” may well coincide.

Proposition 2 Let A, B,C be three finite equinumerous sets and u: A — B
and v: B — C' be bijections. Let F' be an SCF on C. Then

F*"(R) = u~' F*(RP), (4)



i.e. the following diagram is commutative:

R -, Rr
A Y B

Proof: We have
FP(R) = (v o j)) "F(R™) = p" o v ' F((RP)7) = ™ F*(R").0

Suppose now that P is an arbitrary SCC on X. Let A be a set equinu-
merous to X, and let v: A — X be a bijection. Let R € L(A)"™ be a profile

on A. We define ,
P*(R) € v 1(P(R")). (5)

This could be illustrated by the following commutative diagram:

R 2 R

| | »

P(A) X P(X)

Proposition 3 Let A, B,C be three finite equinumerous sets and u: A — B
and v: B — C' be bijections. Let P be a SCC on C. Then

PrH(R) = i P (RT). (6)

The proof of this following proposition is similar to that of Proposition 2.

3. Universal Social Choice Functions and Correspon-
dences

The common sense says that a social choice function must be applicable to
a large variety of the situations in which choice is to be made. In particular,

4



we want SCFs and SCCs to be applicable for any finite set of agents N and
for any finite set of alternatives A. To this end, we need a generic set of
alternatives, and in this capacity we take the subset I, = {1,2,...,m} of
the set of all positive integers N. We define

Definition 2 A social choice function (SCF) F is a mapping

F:\J L(In)" =N (7)

meN

such that F(R) € I, for each R € L(I,;,)". A social choice correspondence
(SCC) 7 is a mapping

m | L))" = P(N), (8)

meN
where P(N) is the power set of N, such that F(R) C I, for each R € L(I,,,)".

In the sequel, if we do not specifically mention the set of alternatives, on
which the SCF is defined, it means that we have in mind a universal SCF of
the latter definition.

Now, using the machinery defined in the previous section, we may extend
any of the universal SCFs and SCCs to SCFs and SCCs on A. Let F' be an
arbitrary SCF and let the cardinality of A be m. Suppose that v: A — I,
is a bijection. Then a pair (A, v) is called an indexed (numbered) set. Let
R € L(A)™ be a profile on A. We define

F"(R) ¥ v 'F(R"). (9)

By S,, we denote the symmetric group of all permutations on I,,,.

Definition 3 An SCF F is said to be neutral at a profile R € L(I,)™ if for
every permutation o: I, — I,,, from S,, we have

F(R°) = oF(R). (10)

An SCF F is said to be neutral for m alternatives if it is neutral at any profile
of R € L(I,,)". An SCF F is said to be neutral if it is neutral at any profile.

The symmetric group S, acts on L£(I,,)" by means of o - R Y R7. Let us
denote by <R> the orbit in L£(I,,)" to which R belongs, i.e. <R> = {0-R |
o€ Sn}.



Lemma 1 If an SCF F is neutral at a profile R, then it is neutral at any
profile of the orbit <R>.

Proof: Let us assume that F' is neutral at a profile R. Suppose v € S, is
fixed and p € S, is arbitrary. Let 0 = pov. Then, since F' is neutral at R,

F(R™) = F(R") = 0F(R) = (nov)F(R),
or due to Proposition 1 and neutrality
F((R")") = p(vF (R)) = pF (R).

This means that F is neutral at R”. But R” is an arbitrary profile of <R>.
(Il

Proposition 4 Let R be a profile on A and n: A — I,,, be a bijection. Then
the following statements are equivalent:

1. F is neutral at <R">;

2. F'(R) does not depend on n, i.e., for any other bijection u: A — I, we
have F"(R) = F*(R).

Proof: Let 0 = pon'. The neutrality condition written for o and the
profile R" would be i
F ((R")") =oF (R")

which is by Proposition 1 can be written as

F(R") = (pon™")F (R").
This, in turn, is equivalent to

p™F (R = F (RY),
or F¥(R) = F"(R). O

Definition 4 If the conditions of Proposition 4 hold, we will say (with some
abuse of the terminology) that F is neutral at R and denote as F(R) the
common value of F"(R) since it does not really depend on the bijection 1.



Proposition 5 Let R be a profile on A and u: A — B be a bijection. Let F
be an SCF on A which is neutral at R. Then F is also neutral at R* and

F(R) = ' F(R"). (11)

Proof: Let v: B — I, be any bijection and n = v o u. Then by (4) of
Proposition 2
FI(R) = F(R) = ;i \F (")

Since the left-hand-side does not depend on 7, the right-hand-side does not
depend on v, which proves the statement. O

Definition 5 An SCC P is said to be neutral at a profile R € L(I,)" if for
every permutation o I, — I, from S,, we have

P(R?) = o(P(R)). (12)
An SCC is said to be neutral if it is neutral at every profile.

Everything that was said in relation to the neutrality of SCFs can be
repeated word by word in relation to SCCs.

4. Two Main Concepts.

These two main concepts to be defined in this section are m-completeness
and independence of 7-irrelevant alternatives for m being any SCC.

Definition 6 Let m be an SCC. We say that elements of w(R) are the -
optimal alternatives of R. We say that an SCF F is mw-ian if for every
profile R the alternative F(R) is m-optimal.

Example 1 If 7(R) is the set of all Pareto optimal alternatives of the pro-
file R, then the m-ian SCFs are exactly the Paretian ones.

Definition 7 Let F be a set of SCFs and let m be an SCC. We say that F is
a w-complete set of SCF's if for every profile R and every element a € w(R)
there exists an SCF F € F such that F(R) = a.

Example 2 Let m(R) be the set of all first preferences of the profile R, then
any set of SCFs containing all dictatorial SCFs is w-complete.

7



Let R € L(I,,)" be a profile which represents preferences of agents from
N. Suppose that we have also a finite set of SCFs F. Then the agents
can compare also these SCFs in a way that the ¢-th agent prefers an SCF
F to an SCF G, if F(R)R;G(R), or she is indifferent, if F(R) = G(R).
We defined therefore a complete preorder P on F. By breaking ties and
introducing strict linear orders on indifference classes we may obtain a strict
linear order R;. Of course, this can be done in many different ways. Any
profile R* = (Rj,..., R}), so obtained, will be called a profile dual to R on

the set of SCFs F.

Definition 8 Let F be a set of SCFs. An SCF F is said to be F-consistent
at a profile R € L(I,,)" if, for any finite set of SCFs F' C F, there exists
at least one dual profile R* on G = {F} U F' such that for every bijection
v:G — Iy, where k is the cardinality of G, the SCF FY, being applied to R*,
chooses F, i.e., F*(R*) = F for allv. An SCF F is said to be F-consistent
if it is F-consistent at every profile.

Let m be an SCC and R be a profile. By 7~ (R) we will denote the
set of all alternatives which are not m-optimal relative to R. The following
key lemma relates the condition of F-consistency with the more familiar
conceptual framework.

Lemma 2 Let m be an SCC and let R € L(I,)" be a profile. Let F be an
SCF which is F-consistent at R for some mw-complete set F of SCFs. Let
Q be a subset of I, of cardinality m — k such that 7= (R) C Q C I,,. Let
A=1,\Q. Then for every bijection v: A — I}

(F(R) e A) = (F(R) = F"(R|a))- (13)
In particular, F is neutral at R|4.

Proof: Suppose F(R) € A. Note that all elements in A are m-optimal, hence
there exists a subset G C F of cardinality £ such that F' € G and for every
a € A there exists an SCF G € G such that G(R) = a. Let u:G — A be a
bijection such that u(G) = G(R). Let 0 = v o p.

Let us denote S = R| 4 to be the restriction of R onto A. Then, using the
mapping p~' we can induce a profile S¥' on G. Note that S* ' coincides
with the unique dual profile S* on G. Thus, by F-consistency of F', we have

Fo(S*") = F7(S*) = F.
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Having the definition of 4 in mind, by Proposition 1 and by (4) of Proposi-
tion 2, we obtain

F(R) = p(F) = pF(S"") = F*(S).

Since the right-hand-side does not depend on v, by Proposition 4 we have
the neutrality of F" at S. O

We will call the condition (13) the Independence of w-Irrelevant Alterna-
tives (7-ITA). Note that, although we proved that F' is neutral at R|y, it
does not mean that F is neutral because the profile R|4 is not arbitrary. For
example, if 7 is the SCC from Example 1, then all alternatives of R|, are
Pareto optimal, which is not the case for an arbitrary profile.

Corollary 1 Let R € L(I,,)" be a profile and F be an w-ian SCF satisfying
w-1TA. Then

F(R) = F"(R|x(r))-
Proof: Since F' is m-ian, F(R) ¢ 7~ (R). By w-1IA

F(R) = F(R|1,\»~(r)) = F(R|z(r))- O

Corollary 2 Let F be a m-ian SCF satisfying w-IIA. Then F is neutral
at every profile R € L(I,)" for which all alternatives are w-optimal, i.e.,
7(R)=1,. O

Let R be a profile on a finite set A and let F' be an SCF. In the sequel, if
F”(R) does not depend on v, and no confusion can emerge, then this v will
be omitted and we will write simply F'(R).

Definition 9 We say that an SCC « is hereditary if for every profile R and
for every subset X C w(R) it is true that m(R|x) = X.

Example 3 Let a € I,,, R be a profile, and U;(a) be the upper contour set
of a relative to R;. An element a is said to be q-Pareto optimal if

card (ﬂ Uz-(a)> <q.

Let P,(R) be the set of all g-Pareto optimal elements of R. Then for every
q > 0 the SCC P, is hereditary.



Definition 10 An SCC « is said to be tops-inclusive if
1. for every profile R the set m(R) contains all first preferences of agents;

2. if m(R) strictly contains Pi(R), i.e. the set of all Pareto optimal ele-
ments of R, for at least one profile R, then w(R) contains all second
preferences of agents as well.

For the rest of the article we will fix a neutral, hereditary and tops-
inclusive SCC 7, for example, any of the given in Examples 1,2 or 3.

Let F' be an SCF satisfying 7-IIA and let R be a profile. Then for
X C m(R) (using the convention above) we define

cr(X) = F(R|y);

and for every z,y € 7(R)

def
T>RY & cr({z,y}) = z.

By doing this, we attach to every SCF F' and every profile R a binary re-
lation g on 7(R). These binary relations satisfy the following conformity
condition: if a profile R’ is a restriction of R, then =g is a restriction of = 3.

Lemma 3 Let F' be an SCF satisfying w-IIA. Then for every profile R the
restriction of the binary relation =g to w(R) is a linear order on w(R).

Proof: Suppose z =g y and y >g 2, where z,y, 2 € m(R) are distinct. Then
z,Yy,2 € T(R|{zy,-}) since 7 is hereditary. Let us prove that cg({z,y,z}) =
x. Indeed, if cg({x,y,z}) = 2z, then 7-ITA implies cx({y,2}) = z which
contradicts to y >g 2. If cr({z,y, 2z}) = y, then 7-IIA implies cr({z,y}) =y
which contradicts to x > y. O

The following proposition reveals the mechanism behind an 7-ian SCF
satisfying 7-ITA. It can be viewed as an extention of Corollary 1.

Proposition 6 Let m be hereditary and let F' be a m-ian SCF satisfying
7w-ITA and R be a profile. Let us enumerate elements of m(R) so that m(R) =
{b1,...,b.} and

by =r b2 >=gr ... >R b,.

Then F(R) = cr({b1,...,b.}) = b;.
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Proof: The equality F(R) = cg({b1,...,b.}) is implied by Corollary 1. Let
us prove cg({b1,...,bx}) = by by induction on k. If k = 2, then cg({b1, b2}) =
by is equivalent to by =g by. Suppose that cg({bi,...,bc}) = b1, let us
consider by, ..., bgy1. Her({b1,...,bpr1}) = by, then 7-ITA implies by 1 =g
b, the contradiction. Then cg({b1,...,bk+1}) € {b1,...,bx}. Then by 7-ITA

CR({bl, ey bk:—l—l}) = CR({bl, ey bk,}) = bl.

The proposition is proved. O

We will assume that A = {1,2,...,n} denoting the i-th voter as 7. It
will not lead to a confusion.

Definition 11 Let F be an SCF. We say that a coalition D C N is 7-
decisive for F and a pair (a,b) of distinct alternatives a,b € I, if for an
arbitrary profile R, such that a,b € w(R), aR;b for i € D, and bR;a for
j € N\D, imply a =g b. We say that D is w-decisive for F, if it is
w-decisive on every pair of w-optimal distinct alternatives.

Lemma 4 Let F' be an SCF satisfying w-IIA and let D be a coalition. Sup-
pose that there exists a profile R, such that for some a,b € w(R), aR;b for
i € D, and bRja for j € N\D, and a =g b. Then D is n-decisive for F' and
a pair (a,b). If the coalition D is proper, i.e ) # D # N, then the reverse is
also true.

Proof: Suppose that there exists a profile R, such that a,b € 7(R), aR;b
for i € D, and bR;a for j € N\ D, and a =g b. Let R’ be any profile with
a,b € m(R') such that a,b € 7(R'), aRb for i € D, and bRja for j € N\ D.
Then R,|{a,b} = R|{a,b}, whence by m-1TA F(RI|{a,b}) = F(R|{a,b}) = a, and
a g b.

Suppose now that a proper coalition D is m-decisive for F' and a pair
(a,b). Let us consider any profile R of the following type:

a>b>... : agents from D,
b>=a»... : agentfrom N \D.

Then a, b € 7(R), since 7 is tops-inclusive, and hence a > b by m-decisiveness
of D. Therefore the required profile exists. O
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Lemma 5 Let F' be an SCF satisfying w-IIA. Then a coalition D is 7-
decisive for F if and only if it is w-decisive for F' and a pair (a,b) for some
distinct alternatives a,b € I,,.

Proof: Suppose D is m-decisive for F' and a pair (a, b), of distinct alternatives
a,b € I,,. First, we suppose that there exists a profile R, such that a,b €
m(R), aR;b for i € D, and bR;a for j € N'\ D, and a > b. By the definition
the latter means that a = F'(R|{qp}). Let us denote R|g,p; = P. By Lemma 2
F' is neutral at P.

Let us consider any profile R’ such that such that ¢,d € 7(R'), c¢R}d for
i € D, and dRc for j € N\ D. Let us denote R'|{.qy = Q. Consider
the mapping p:{a,b} — {¢,d} such that pu(a) = ¢ and p(b) = d. Then by
Proposition 5

a=F(P)=u""F(Q),
whence F'(Q)) = ¢. The latter means ¢ =g d and by Lemma 4 D is 7-decisive
for (¢, d).

Let us consider the remaining case, when no profiles exist such that a,b €
7(R), aR;b for i € D, and bR;a for j € N\ D, then no profile () can exist
such that ¢,d € 7(Q), ¢Q;d for i € D, and dQ;c for j € N'\ D because 7 is
neutral. Thus, in both cases, D is also w-decisive for F'. O

Corollary 3 Let F be an SCF satisfying m-1IA. Let D be a proper subset of
N. Then either D is w-decisive or its complement N\ D is w-decisive.

Proof: Suppose that a coalition D is m-decisive for F" and a pair (a, b). Then
D is decisive by Lemma 5. If D is not m-decisive for F' and a pair (a,b), then
there exists a profile R such that a,b € 7(R), and aR;b for i € D, and bR;a
for j € N'\ D, but b > a. But now by Lemmata 4 and 5 A"\ D is 7-decisive.
(I

4. Main Results

In what follows, we follow the ideas of the original proof of Arrow’s Im-
possibility Theorem [1]. The difference is that we have transitivity only on
a variable set of alternatives which depend on the profile.

The following Lemmata on the structure of the set of m-decisive subsets
of N will be proved in the assumption that F is a SCF which satisfies m-ITA,
where 7 is a neutral, hereditary, and tops-inclusive SCC.
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Lemma 6 If a w-decisive set D = D, U Dy, different from N, is a disjoint
union (D1 NDy =0) of two nonempty subsets Dy and Dy, then either Dy or
Dy is w-decisive as well.

Proof: Let N' = D; UDy; UM, where M = N\ D # (. Consider any profile
R such that for some a,b,c € I,,:

a>=b>c>... :agents from Dy,
b>=c>a>... . agents from Dy,
c-a>b>... :agents from M.

Then a,b,¢ € w(R) as 7 is tops-inclusive. Then b =g ¢ as D = D; U Dy is
m-decisive. If b >=px a then D is w-decisive and the result is proved. If not,
then a >z b. Since by Lemma 3 the relation > is transitive on 7(R), a > b
and b =g ¢ imply a > ¢, which means that in this case D, is m-decisive. O

Lemma 7 There exists a singleton v € N such that {v} is 7-decisive.

Proof: Let N' = N\ {u}, where v € A is arbitrary. Then by Corollary 3
either {u} or N is decisive. In the first case we are done. In the second, we
may repeatedly apply Lemma 6 to A/ and then to its decisive subsets until
a decisive singleton is obtained. O

Lemma 8 Let D,, D, and D5 be three nonempty disjoint subsets of N such
that N = D; U Dy U D3. Then all three subsets cannot be simultaneously
m-decisive.

Proof: If it were possible, then consider the following profile R:

a>=b>c>... : agents from Dy,
b>=c>a>... . agents from Dy,
c=a>=b>... . agents from Dsj.

Since 7 is tops-inclusive, the alternatives a, b, ¢ are all m-optimal and, assum-
ing that all three subsets are m-decisive, we will have a >z ¢ =g b >r a,
which contradicts to the transitivity of > proved in Lemma 3. O

Lemma 9 Let D, and D, be two w-decisive subsets of N such that D;UD, #
N. Then the union Dy U Dy is m-decisive.
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Proof: Suppose first that D; and D, are disjoint. As D; U Dy # N, then
M = N\ (D UD,) # (. By Lemma 8 M is not w-decisive. But then
Dy UDy = N\ M is m-decisive by Corollary 3.

Now let us assume that D; and Dy have a nonzero intersection. We may
also assume that this intersection is different from both of the sets because
otherwise the result is trivial. Let us consider any profile such that for some
alternatives a, b, c € I,

a-b-c- ... : agents from Dy N Dy,
a>=c=bw ... . agents from D; \ Dy,
b>=a>=c— ... :agents from Dy \ Dy,
c=b>a>... . agents from M,

where M = N'\ (D;UD,). We note that a,b,c € 7(R) as 7 is tops-inclusive.
Then a >=px b since D, is w-decisive and b =g ¢ since D, is m-decisive. By
transitivity of >x on m(R) we get a >p ¢ and hence D; U D, is w-decisive.
O

Corollary 4 There exists a w-decisive subset D of N of cardinality n — 1.

Proof: This is the same to say that one of the singletons is indecisive.
Suppose to the contrary that all of them are m-decisive. Then by Lemma 9
all proper subsets of A/ are m-decisive. This is impossible since by Corollary 3
a subset and its complement cannot be simultaneously 7-decisive. O

Lemma 10 Let ) # Dy C D C Dy # N with Dy and Dy being w-decisive.
Then D is m-decisive.

Proof: Let us consider any profile such that for some alternatives a, b, c € I,

a>=b>c>... : agents from Dy,

b>=a>c»... : agents from D\ Dy,
b>=c>a»... : agentsfrom Dy \ D,
c-=b=a>... : agentsfrom N \ Ds.

Since a,b,c € w(R), we get a > b as Dy is decisive and b > ¢ as Dy is
decisive. By the transitivity of > on m(R) we get a =g ¢ which means that
D is decisive. O
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Definition 12 Let F be an SCF. An agent k € N will be called an 7-
dictator, if for every profile R and for every pair of two distinct alternatives
a,b € w(R) it is true that aRyb implies a =g b; an agent k € N will be called
an m-antidictator, if for every profile R and for every pair of two distinct
alternatives a,b with a,b € w(R) it is true that aRyb implies b =g a.

The following two propositions are obvious.

Proposition 7 An agent k € N is an w-dictator, if all coalitions in N
containing k are m-decisive. An agent k € N is an w-antidictator, if all
coalitions in N not containing k are w-decisive.

Proposition 8 Let F' be an m-ian SCF. Then an mw-dictator is an ordinary
dictator.

Proof: It follows from the fact that 7 is tops-inclusive.
Now we are ready to formulate the main results of this paper.

Theorem 1 Suppose m > 3. Let w be any neutral, hereditary and tops-
inclusive SCC and let F' be an SCF which is F-consistent for some w-complete
set F of SCFs. Then there exists either an w-dictator or an m-antidictator.

Proof: Without loss of generality, we assume that D = {1,...,n—1} is
m-decisive. The existence of it is guaranteed by Corollary 4. By Lemma 7
there is an m-decisive sigleton in D; and we may assume that it is {1}. By
Lemma 10 all subsets of D, which contain {1}, are m-decisive.

Now the key question is whether or not {1,n} is w-decisive. If, yes, then
by Lemma 10 all proper subsets containing {1} are mw-decisive. It remains to
prove that N itself is m-decisive, it would mean that agent 1 is an w-dictator.

We note first that if 7(R) C P;(R) for all profiles R, then A is trivially
m-decisive. If not, then m(R) contains all second preferences. Let us consider
any profile of the following type

a=b>c>... : agentsfrom N\ {2,3}
b>=a>c>... . agent 2,
a>=c>b>... : agent 3.

Then a,b,¢ € w(R) as w(R) contains all first and second preferences. We
get a =g b as N\ {2} is m-decisive and b > ¢ as N\ {3} is m-decisive.
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By transitivity we get a =g ¢ which by Lemma 4 means that A is decisive.
Thus agent 1 is an w-dictator.

Suppose now that {1,n} is not m-decisive. Then it immediately follows
that all agents 2,3,...,n—1 are m-decisive. Indeed, if, for example, agent 2
is not 7m-decisive, then (n—1)-element subset {1,3,...,n} is m-decisive and
by Lemma 10 the pair {1,n} is m-decisive. Now by Lemma 9 it follows that
every nonempty subset of D is m-decisive. Then n would be an m-antidictator
if and only if an empty set is m-decisive.

We note first that if 7(R) C Pi(R) for all profiles R, then 0 is trivially
m-decisive. If not, then m(R) contains all second preferences. Let us consider
any profile of the following type

a=b>=c... : agentsfrom N\ {n—1,n—2}
b>=a>c>... : agent n-1,
a>=c>b>... : agent n-2.

Then a,b,¢ € w(R) as w(R) contains all first and second preferences. We
get b = a as {n—1} is m-decisive and ¢ >p b as {n—2} is w-decisive. By
transitivity we get ¢ =x a which by Lemma 4 means that () is 7w-decisive.
Thus agent n is an m-antidictator. O

Theorem 2 Suppose m > 3. Let w be any neutral, hereditary and tops-
inclusive SCC and F be an w-ian SCF which is F-consistent for some com-
plete set F of m-ian SCFs. Then either F' is dictatorial and there exists an
agent i € N such that F(R) = max R; or F is w-antidictatorial and there
ezists an agent i € N such that F(R) = min R; on 7(R).

Proof: It follows from Theorem 1 and Propositions 2 and 8.

Now we are going to single out some interesting cases which fall under
this general result.

According to Koray [2] an SCF is said to be universally consistent if it is
F-consistent for any set of SCFs F. The following corollary generalizes the
main result of [2].

Corollary 5 Let F' be an universally consistent (not necessarily neutral)
SCF. Then it is dictatorial or antidictatorial.
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Definition 13 Let F' be an SCF. We say that an agent k is a topsonly-
antidictator for F, if, for every profile R, F(R) is the lowest ranking alter-
native relative to Ry among the first preferences of R.

Corollary 6 Let F' be an SCF which always chooses an alternative among
the first preferences of the profile. Let D = {Ds,...,D,} be the set of all
dictatorial SCFs. Then F is D-consistent if and only if it is dictatorial or
topsonly-antidictatorial.

Proof: To obtain this result one has to set w(R) to be the set of all first
preferences of R. Then it is clear that D is a complete set of w-ian SCF's for
this SCC 7.0

Definition 14 Let F' be an SCF. We say that an agent k is a g-Paretian
antidictator for F, if, for every profile R, F(R) is the lowest ranking q-Pareto
optimal alternative relative to Ry.

Corollary 7 Let P, be the class of all q-Paretian SCFs and F be an q-
Paretian SCF. Then F' is P,-consistent if it is dictatorial or else q-Pareto
antidictatorial.

Proof: Here the set 7(R) should be the set of all g-Pareto optimal elements
of R. O
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