Characterizations of Moore and Semi–stratifiable Spaces *

Abdul M. Mohamad

September 29, 1999

Abstract

In this paper, we study Moore and semi–stratifiable spaces. We give characterizations of developable and semi–stratifiable spaces. We prove that: a regular space X is semi–stratifiable if and only if it is a β , quasi–semi–stratifiable and the following are equivalent for a regular $w\Delta$ –space X:

- (a) X is a Moore space;
- (b) X is a hereditarily weakly θ -refinable space with a quasi- G_{δ} -diagonal;
- (c) X is a quasi- G_{δ}^* -diagonal;
- (d) X is a quasi-semi-stratifiable space;
- (e) X is a quasi- α -space.

1 Definitions

Throughout this paper "space" will always mean " T_1 topological space".

Let (X, τ) be a space and let $g: \mathbb{N} \times X \to \tau$ be a map such that $c(x) = \{n \in \mathbb{N} : g(n, x) \neq \emptyset\}$ (it is used elsewhere with a similar meaning) is infinite and $x \in \bigcap_{n \in c(x)} g(n, x)$. g is called **quasi-COC-map** (= quasi-countable open covering map) for X if the following condition is satisfied: for each $i, j \in c(x), g(i, x) \subset g(j, x)$ if i > j. g is called **COC-map** (= countable open covering map) for X if the following conditions are satisfied:

^{*}The author acknowledges the support of the Marsden Fund Award UOA 611, from the Royal Society of New Zealand. AMS (1991) Subject Classification: 54E30, 54E35. Keywords and phrases: semi–stratifiable space; weakly γ –space; weakly β –space; metrizable; Moore space; quasi– α –space; quasi– G_{δ}^* –diagonal.

- (a) $x \in \bigcap_{n \in \mathbb{N}} g(n, x)$ for all $x \in X$;
- (b) $g(n+1,x) \subset g(n,x)$ for all $n \in \mathbb{N}$ and $x \in X$.

Consider the following conditions on g.

- (1) $n \in c(x)$ whenever $x \in g(n, y)$.
- (2) The collection $\{g(n,x): n \in c(x)\}$ is a local basis at the point x.
- (3) If $x \in g(n, x_n)$ for every $n \in c(x)$, then x is a cluster point of the sequence $\langle x_n \rangle$.
- (4) If $x \in g(n, x_n)$ for every $n \in \mathbb{N}$, then x is a cluster point of the sequence $\langle x_n \rangle$.
- (5) If $x \in g(n, y)$, then $y \in g(n, x)$.
- (6) If $x \in g(n, x_n)$ for every $n \in c(x)$, then the sequence $\langle x_n \rangle$ has a cluster point.
- (7) If $x \in g(n, x_n)$ for every $n \in \mathbb{N}$, then the sequence $\langle x_n \rangle$ has a cluster point.
- (8) $\bigcap_{n \in c(x)} g(n, x) = \{x\}$
- $(9) \bigcap_{n \in \mathbb{N}} g(n, x) = \{x\}$
- (10) If $y \in g(n, x)$ then $g(n, y) \subseteq g(n, x)$.
- (11) If $y_n \in g(n, x)$ and $x_n \in g(n, y_n)$ for each $n \in c(x)$ then x is a cluster point of the sequence $\langle x_n \rangle$.
- (12) If for each $n \in \mathbb{N}$, $\{x, x_n\} \subset g(n, y_n)$, then x is a cluster point of the sequence $\langle x_n \rangle$.
- (13) If for each $n \in \mathbb{N}$, $\{x, x_n\} \subset g(n, y_n)$, then the sequence $\langle x_n \rangle$ has a cluster point.
- (14) If $x_n \in g(n, x)$ for every $n \in c(x)$, then the sequence $\langle x_n \rangle$ has a cluster point.

A space X is called **developable**; **semi–stratifiable**; $\boldsymbol{w}\Delta$; $\boldsymbol{\beta}$; $\boldsymbol{\alpha}$ if X has a COC-map g satisfies (12); (4); (13); (7); (9) and (10).

Bennett proved that quasi-developable spaces can be characterized by a quasi-COC-map g satisfying conditions (2), (3) and (5) [1, Theorem 1] and

by [8, Lemma 2.1], quasi- $w\Delta$ -spaces can be characterized by a quasi-COC-map g satisfying conditions (5), (6) and (14). A quasi-COC-map satisfying conditions (2), (3) and (5) will be called a quasi-developable-map and one satisfying conditions (5), (6) and (14) will be called a quasi- $w\Delta$ -map.

Lee defines quasi-semi-stratifiable spaces to be those possessing a quasi-COC-map g that satisfies conditions (1) and (3)[6, Definition 2.3]. A quasi-COC-map which satisfies the conditions (1) and (3) will be called a quasi-semi-stratifiable map.

Definition 1.1 A space (X, τ) is said to be a quasi- α -space; weak- β -space; weak- γ -space if there is a quasi-COC-map g that satisfies (1), (8) and (10); (1) and (6); (11) respectively. A quasi-COC-map g which satisfies these respective conditions will be called a quasi- α -map; weak- β -map; weak- γ -map respectively.

Let $\mathcal{G} = \{\mathcal{G}_n\}_{n \in \mathbb{N}}$ be a sequence of families of open subsets of X, for example $g: \mathbb{N} \times X \to \tau$ may be a function as above and $\mathcal{G}_n = \{g(n,x) \mid x \in X\}$. Define $c(x) = c_{\mathcal{G}}(x) = \{n: x \in \mathcal{G}_n^*\}$ where $\mathcal{G}_n^* = \bigcup \{G: G \in \mathcal{G}_n\}$. A space X has a quasi- G_δ^* -diagonal [7] if there is such a sequence \mathcal{G} such that for any distinct $x, y \in X$, there exists $n \in \mathbb{N}$ such that $x \in \overline{st(x, \mathcal{G}_n)} \subset X - \{y\}$.

A space is Moore (resp. quasi-Moore) if and only if it is regular developable (quasi-developable).

For terminologies which are not defined in this paper, the readers should consult books [5] and [2].

2 Main Results

Theorem 2.1 The following are equivalent for a regular space X.

- (a) X is a semi-stratifiable space;
- (b) X is a β -space with a quasi- G_{δ}^* -diagonal;
- (c) X is a quasi- α , β -space.

Proof. Every regular semi–stratifiable space is an α and has a G^*_{δ} -diagonal, so, it is clear that (a) \Rightarrow (b) and (a) \Rightarrow (c). To prove (b) \Rightarrow (a), let $\langle \mathcal{V}_n : n \in \mathbb{N} \rangle$ be a quasi– G^*_{δ} -diagonal sequence of X and let $g: \mathbb{N} \times X \to \tau$ be a β -map of X. Then $\bigcap_{n \in c_{\mathcal{V}}(x)} \overline{st(x, \mathcal{V}_n)} = \{x\}$.

Define a map $h: \mathbb{N} \times X \to \tau$ by

$$h(n,x) = \begin{cases} g(n,x) \cap st(x,\mathcal{V}_n) & \text{if } x \in \mathcal{V}_n^*. \\ g(n,x) & \text{if } x \notin \mathcal{V}_n^*. \end{cases}$$

Let $r(n,x) = \bigcap_{i=1}^n h(i,x)$. We prove that r(n,x) is a semi-stratifiable-map. Let $x \in r(n,x_n)$. It is clear that r is a β -map, so, $\langle x_n \rangle$ has a cluster point, say p. Suppose that $x \neq p$. Choose k large enough that $x \in \overline{st(x, \mathcal{V}_k)}$ but $p \notin \overline{st(x, \mathcal{V}_k)}$.

For each $n \geq k$,

$$x_n \in st(x, \mathcal{V}_k).$$

Thus the open neighborhood $X - \overline{st(x, \mathcal{V}_k)}$ of p contains at most k-1 members of the sequence $\langle x_n : n \in \mathbb{N} \rangle$, which contradicts the fact that p is a cluster point of $\langle x_n \rangle$.

To prove (c) \Rightarrow (a), let g be a β -map for X and f be a quasi- α -map for X. Define

$$h(n,x) = \begin{cases} g(n,x) \cap f(n,x) & \text{if } n \in c(x). \\ g(n,x) & \text{if } n \notin c(x). \end{cases}$$

Let $k(n,x) = \bigcap_{i=1}^n h(i,x)$. We shall show that the map k satisfies the conditions for a semi–stratifiable–map. Clearly the first and second conditions are satisfied. To check the third condition, let $x \in k(n,x_n)$, for $n \in \mathbb{N}$. Then for $n \in \mathbb{N}$ $x \in g(n,x_n)$ and so $\langle x_n \rangle$ has a cluster point y. Suppose $x \neq y$. Now $\bigcap_{n \in c(y)} f(n,y) = \{y\}$ and so there is $n_o \in \mathbb{N}$ such that $x \notin f(n_o,y)$. Since y is a cluster point of the sequence $\langle x_n \rangle$, there is a $m \geq n_o$ such that $x_m \in f(n_o,y)$ and so, $n_o \in c(x_m)$. Since f is a quasi– α map for X, $x_m \in f(n_o,y)$ implies $f(n_o,x_m) \subseteq f(n_o,y)$. But $x \in k(m,x_m) \subseteq f(n_o,x_m)$ and so, $x \in f(n_o,y)$ which is a contradiction. Thus x = y and x is a cluster point of $\langle x_n \rangle$.

Theorem 2.2 The following are equivalent for a regular $w\Delta$ -space X.

- (a) X is a Moore space;
- (b) X is a hereditarily weakly θ -refinable space with a quasi- G_{δ} -diagonal;
- (c) X is a quasi- G_{δ}^* -diagonal;
- (d) X is a semi-stratifiable space;
- (e) X is a quasi-semi-stratifiable space;
- (f) X is a G_{δ}^* -diagonal;

- (g) X is a α -space;
- (h) X is a quasi- α -space.

Proof. Every Moore space is hereditarily θ -refinable space with a quasi- G_{δ} -diagonal, so (a) \Rightarrow (b). The implication (b) \Rightarrow (c) follows from [7, Theorem 2.6]. The implication (c) \Rightarrow (d) follows from the theorem above and the fact that every $w\Delta$ -space is an β . The implication (d) \Rightarrow (e) is trivial. The implication (e) \Rightarrow (c) follows from the fact that every regular quasi-semi-stratifiable space has a quasi- G_{δ}^* -diagonal [7]. The implication (d) \Rightarrow (f) follows from the fact that every regular semi-stratifiable space has a G_{δ}^* -diagonal. The implication (f) \Rightarrow (a) is Hodel's theorem [5, Theorem 3.3 (a space is a Moore space if and only if it is a regular $w\Delta$ with a G_{δ}^* -diagonal)]. The implication (a) \Rightarrow (g) follows from the fact that every developable space is α . The implication (g) \Rightarrow (h) is obvious. The implication (h) \Rightarrow (e) is the [8, Theorem 3.4: a regular space X is a quasi-semi-stratifiable if and only if it is a quasi- α , quasi- β -space].

Counterexamples involving weakening of the hypotheses in Theorem 2.2 are given in [3] and [4] as follows.

Example 2.3 There is a p-adic analytic manifold which is separable, submetrizable, quasi-developable, but not perfect (see [3, Example 3.7]). This example also can serve as a quasi-semi-stratifiable space (which is weak- β -space) which has a G_{δ}^* -diagonal but which is not semi-stratifiable.

Example 2.4 There is a quasi-developable manifold which has a G_{δ} -diagonal but not a G_{δ}^* -diagonal (see [4, Example 2.2]) This example also can serve as a quasi-w Δ manifold which is not w Δ . (It is not even a β -manifold).

Proposition 2.5 A regular weakly γ -space is a Moore space if and only if it is a β -space.

Proof. Every Moore space is β . Conversely let f be a β map and g a weakly γ -map for X. Define

$$h(n,x) = \begin{cases} g(n,x) \cap f(n,x) & \text{if } n \in c(x). \\ f(n,x) & \text{if } n \notin c(x). \end{cases}$$

Let $r(n,x) = \bigcap_{i=1}^n h(i,x)$. We show that r is a developable map. Let $\{x,x_n\} \subseteq r(n,y_n)$, for all $n \in \mathbb{N}$. Now $x \in f(n,y_n)$, for all $n \in c(x)$ so $\langle y_n \rangle$ has a cluster point, say y. Let $\langle y_{n_k} \rangle$ be a subsequence of $\langle y_n \rangle$ such that

 $y_{n_k} \in g(k, y)$ for all $k \in c(x)$. Now $x_{n_k} \in r(n_k, y_{n_k}) \subseteq g(n_k, y_{n_k}) \subseteq g(k, y_{n_k})$, so we have $y_{n_k} \in g(k, y)$ and $x_{n_k} \in g(k, y_{n_k})$ for all $k \in c(y)$. Thus y is a cluster point of $\langle x_{n_k} \rangle$. On the other hand $y_{n_k} \in g(k, y)$ and $x \in g(k, y_{n_k})$ for all $k \in c(y)$, so y is a cluster point of $\langle x \rangle$. Therefore x = y from which it follows that x is a cluster point of $\langle x_n \rangle$.

Acknowledgement: The author is grateful to Prof. David Gauld and Dr. David McIntyre for their kind help and valuable comments and suggestions on this paper.

References

- [1] H.Bennett, A short proof that compact quasidevelopable spaces are metrizable, Proc. Amer. Math. Soc. 86, No. 4, (1982), 667–669.
- [2] R. Engelking, General Topology, Berlin, 1989.
- [3] P.M. Gartside and A.M. Mohamad, Diversity of p-adic analytic manifolds, Topology Appl. (to appear).
- [4] P.M. Gartside, C. Good, R. Knight and A.M. Mohamad, Quasidevelopable manifolds, Topology Appl. (to appear).
- [5] G.Gruenhage, Generalized metric spaces, Handbook of Set-theoretic Topology (1984), 423–501.
- [6] I.H.Lee, On quasi-semidevelopable spaces, J. Korean Math. Soc. 12, No. 1, (1975), 71–77.
- [7] A. M. Mohamad, Generalization of G_{δ}^* -diagonals and $w\Delta$ -spaces, Acta Math. Hungar, 80 (1998), 285–291.
- [8] A. M. Mohamad, Some conditions which imply quasi-developability, Bull. Cal. Math. Soc., 90 (1998), 325–330
- [9] A. M. Mohamad, Developable Spaces and problems of Fletcher and Lindgren, submitted.

The Department of Mathematics The University of Auckland Private Bag 92019 Auckland New Zealand. mohamad@math.auckland.ac.nz