Weak bases and Metrizability*

A.M. Mohamad

October 19, 1999

Abstract

In this paper we investigate weak bases. We give a characterization of weakly developable spaces and metrization theorems. The metrization results are: a space X is metrizable if and only if X has a $CWBC$-map g satisfying the following conditions:

1. g is a pseudo–strongly–quasi–N–map;
2. for any $A \subseteq X, \overline{A} \subseteq \bigcup \{g(n, x) : x \in A\};$

a space X is metrizable if and only if X has a $CWBC$-map g satisfying the following conditions:

1. if $x \in g(n, y_n), y_n \in g(n, x_n), x_n \in g(n, y_n)$ and $y_n \in g(n, x)$ for all $n \in \mathbb{N}$, then x_n converges to x;
2. for any $A \subseteq X, \overline{A} \subseteq \bigcup \{g(n, x) : x \in A\}.$

1 Definitions

A collection \mathcal{W} of subsets of a space X is said to be a weak base for X provided that to each $x \in X$, there exists $\mathcal{W}_x \subset \mathcal{W}$ such that:

(i) Each member of \mathcal{W}_x contains x.

(ii) For any two members W_1 and W_2 of \mathcal{W}_x, there is a $W_3 \in \mathcal{W}_x$ such that $W_3 \subseteq W_1 \cap W_2$.

(iii) A subset U of X is open if and only if for every point $x \in U$ there exists a $W \in \mathcal{W}_x$ such that $W \subseteq U$.

*The author acknowledges the support of the Marsden Fund Award UOA 611, from the Royal Society of New Zealand. AMS (1991) Subject Classification: 54E30, 54E35. Keywords and phrases: weakly developable; metrizable; weakly first countable; quasi-G_δ-diagonal.
If to each \(x \in X \) we assign a collection \(\mathcal{W}_x \) of supersets of \(\{x\} \) such that \(\mathcal{W} = \bigcup \{\mathcal{W}_x : x \in X\} \) is a weak base by virtue of the collections \(\mathcal{W}_x \), then we say that the collection \(\mathcal{W}_x \) is a \textbf{local weak base} at \(x \) for each \(x \in X \).

Graded weak bases:

Let \((X, \tau)\) be a space, let \(g : \mathbb{N} \times X \to \mathcal{P}(X) \) be a function and \(\mathcal{G} = \{ g(n, x) : n \in \mathbb{N}, x \in X \} \). We call \(\mathcal{G} \) a \textbf{graded weak base} for \(X \) and \(g \) is called a \textbf{CWBC–map} (= countable weak base covering map) for \(X \) and \(X \) with a graded weak base is called \textbf{weakly first countable} if the following conditions are satisfied:

(a) \(x \in \bigcap_{n \in \mathbb{N}} g(n, x) \) for all \(x \in X \).

(b) \(g(n + 1, x) \subseteq g(n, x) \) for all \(n \in \mathbb{N} \) and \(x \in X \).

(c) A subset \(U \) of \(X \) is open if and only if for every \(x \in U \) there is an \(n \in \mathbb{N} \) such that \(g(n, x) \) is contained in \(U \).

The map \(g \) is called a \textbf{COC–map} (= countable open covering map) for \(X \) if conditions (a), (b) and for each \(n \in \mathbb{N}, g(n, x) \) is open are satisfied. A space \(X \) is called first countable (resp. \(q \)) if and only if \(X \) has a COC–map \(g \) such that if \(x_n \in g(n, x) \) for every \(n \in \mathbb{N} \), then \(x \) is a cluster point of the sequence \(\{x_n\} \) (then the sequence \(\{x_n\} \) has a cluster point).

Generalizations of developable spaces:

Martin in [4] introduced weakly developable spaces. Let \(\mathcal{G} = \{ \mathcal{G}_n : n \in \mathbb{N} \} \) be a countable family of collections of subsets of a space \(X \). Consider the following conditions on \(\mathcal{G} \):

(a) For each \(n \in \mathbb{N}, \mathcal{G}_n \) is a collection of open sets in \(X \).

(b) Each \(\mathcal{G}_n \) is a covering of \(X \);

(c) For each \(x \in X \), \(\{ st(x, \mathcal{G}_n) : n \in \mathbb{N}, x \in \mathcal{G}_n^* \} \) is a local base at \(x \);

(d) For each \(x \in X \) and \(n \in \mathbb{N}, st(x, \mathcal{G}_n) \) is an open subset of \(X \).

(e) For each \(x \in X \), \(\{ st(x, \mathcal{G}_n) : n \in \mathbb{N}, x \in \mathcal{G}_n^* \} \) is a local weak base at \(x \);

(f) For any distinct \(x, y \in X \), there exists \(n \in \mathbb{N} \) such that

\[
x \in \overline{st(x, \mathcal{G}_n)} \subset X - \{y\};
\]

Definition 1.1 A space \(X \) is \textbf{developable} if there exists a family \(\mathcal{G} \) satisfying (a), (b) and (c);

A space \(X \) is \textbf{o–semi–developable} if there exists a family \(\mathcal{G} \) satisfying (b), (c) and (d);
A space X is **semi-developable** if there exists a family \mathcal{G} satisfying (b) and (c);

A space X is **weakly-developable space** if there exists a family \mathcal{G} satisfying (b) and (e);

A space X has a **quasi-G_δ^*-diagonal** if there exists a family \mathcal{G} satisfying (a) and (f);

A regular developable space is called a Moore space. Throughout this paper, every space is T_1.

2 Generalizations of first countable spaces

Recall, a space X is **sequential** [1] if every sequentially open set is open, where a set U is said to be sequentially open if every sequence converging to a point in U is eventually in U. A space is **Frechet** [1] if every accumulation point of a set is the limit of a sequence in the set. Every first countable space is Frechet and every weakly first countable space is sequential.

Lemma 2.1 A T_2 space X is first countable if and only if X is Frechet and weakly first countable.

Proof.

It is clear that every first countable space is Frechet and weakly first countable. Now, let $g : \mathbb{N} \times X \to \mathcal{P}(X)$ be a CWBC-map. We claim that for each $x \in X, g(n, x)$ is a neighborhood of x for each $n \in \mathbb{N}$. Suppose it is not, so there is a point $x \in X$ and $m \in \mathbb{N}$ for which $g(m, x)$ is not a neighborhood of x. Then by the Frechet assumption, there is a sequence $\langle x_k \rangle$ which converges to x such that $x_k \in X - g(m, x)$. Let $U = X - \{ x, x_1, x_2, x_3, \ldots \}$, which is open (we are assuming our space is Hausdorff), so that for each $p \in U$ there exist a $g(n, p)$ which is contained in U. Put $V = U \cup \{ x \}$, for each $p \in V$ there is a $g(n, p)$, such that $g(n, p) \subset V$, since if $p = x$ then $g(n, p) = g(m, x) \subset V$. By the assumption of weak first countability of g, V is open in X. But x is in V, so that we have the contradiction that $\langle x_k \rangle$ does not converge to x. Thus x is in the interior of $g(m, x)$. Now, put $h(n, x) = \text{Int} \ g(n, x)$ for each $n \in \mathbb{N}$ and $x \in X$, then $h : \mathbb{N} \times X \to \tau$ satisfies the first countability condition. \qed

From the Lemma 2.1 and the results in [8], we can summarize the relationships between the classes above in the following diagram:
Lemma 2.2 A q space with quasi-\(\mathbb{G}_k^* \)-diagonal is first countable.

Proof. Let \(f \) be a q-map and \(\{ G_n : n \in \mathbb{N} \} \) a quasi-\(\mathbb{G}_k^* \)-sequence on \(X \). Define \(g \) by

\[
g(n, x) = \begin{cases}
st(x, G_n) & \text{if } x \in G_n^*, \\
X & \text{if } x \notin G_n^*.
\end{cases}
\]

For each \(x \in X \) and \(n \in \mathbb{N} \), let \(h(n, x) = f(n, x) \cap \bigcap_{i=1}^{n} g(i, x) \). Then \(h \) is a first countable map. Let \(x_n \in h(n, x) \). Then \(\{ x_n \} \) has a cluster point, say \(y \) (because \(g \) is q-map). For all \(n \in \mathbb{N}, y \) is a cluster point of \(\{ x_m : m \geq n \} \), so \(y \in h(n, x) \) as \(x_m \in h(n, x) \) for all \(m \). Thus \(y \in \bigcap_{n \in \mathbb{N}} h(n, x) \subset \bigcap_{n \in \mathbb{N}} \text{st}(x, G_n) = \{ x \} \), so \(y = x \) and \(x \) is a cluster point of \(\{ x_n \} \).

3 Weakly developable spaces

Our next theorem is a characterization of Martin’s weak developably concept.

Theorem 3.1 A space \(X \) is weakly developable if and only if there is a CWBC-map \(g : \mathbb{N} \times X \rightarrow X \), such that if \(\{ p, x_n \} \subseteq g(n, y_n) \) for all \(n \), then the sequence \(\{ x_n \} \) has a cluster point.

Proof. We will prove firstly the sufficiency of the condition. Suppose that there is a CWBC-map \(g : \mathbb{N} \times X \rightarrow X \), such that if \(\{ p, x_n \} \subseteq g(n, y_n) \) for all \(n \), then the sequence \(\{ x_n \} \) has a cluster point. For each \(i \in \mathbb{N}, \) let \(G_i = \{ g(j, x) : x \in X, j \geq i \} \). The sequence \(\{ G_n : n \in \mathbb{N} \} \) of covers constitutes a weak–development. Suppose, conversely, that \(\{ G_n : n \in \mathbb{N} \} \) is a weak–development for \(X \). Define the map \(g \) as follows: for each point \(x \) of \(X \) let
$g(1, x)$ be some member of G_1 which contains x and, if $n > 1$, let $g(n, x)$ be a member of G_n such that $x \in g(n, x) \subset g(n-1, x)$. Clearly g is a CWBC-map which satisfies the condition of the theorem. \hfill \blacksquare

Theorem 3.2 A regular space is Moore if and only if it is weakly developable and Frechet.

Proof. Let $g : \mathbb{N} \times X \to \mathcal{P}(X)$ be a weakly developable–map. We can use the same proof as for Lemma 2.1 to prove that for each $x \in X, g(n, x)$ is a neighborhood of x for each $n \in \mathbb{N}$. Thus x is in the interior of $g(n, x)$. Now, put $h(n, x) = \text{Int } g(n, x)$ for each $n \in \mathbb{N}$ and $x \in X$. Then $h : \mathbb{N} \times X \to \tau$ is a developable map. \hfill \blacksquare

We can summarize the relationships between some classes of generalizations of developable spaces in the following diagram:

```
Developable
  ↓
\ o-semidevelopable
  ↓
\ semidevelopable
  ↓
\ weakly developable
  ↓
\ weakly first countable
```

Figure 2: Relationships between some classes of generalizations of developable spaces and weakly developable spaces.

Definition 3.3 A space X is called a pseudo–strongly–quasi–\mathbb{N}–space if there is a CWBC–map $g : \mathbb{N} \times X \to \mathcal{P}(X)$ such that if for each $n \in \mathbb{N}, y_n \in g(n, x_n)$ and the sequence $\langle y_n \rangle$ converges to p in X, then p is a cluster point of the sequence $\langle x_n \rangle$. The CWBC–map g is called a pseudo–strongly–quasi–\mathbb{N}–map for X.

The proof of our next result relies on a metrization theorem of Martin [4].
Theorem 3.4 (Martin) A necessary and sufficient condition that a topological space X be metrizable is that X has a weak development $\{\mathcal{G}_n\}_{n \in \mathbb{N}}$ such that $\{st^2(x, \mathcal{G}_n) : n \in \mathbb{N}, x \in X\}$ is a weak base of X.

Theorem 3.5 A space X is metrizable if and only if X has a CWBC-map g satisfying the following conditions:

1. g is a pseudo-strongly-quasi-N-map;

2. for any $A \subseteq X$, $\overline{A} \subseteq \bigcup \{g(n,x) : x \in A\}$.

Proof. The only if part is obvious. We now prove the if part. Assume that X has a CWBC-map g satisfying the conditions (1) and (2). Let $h(n, x) = X - \{y \in X : x \notin g(n,y)\}$ and $k(n, x) = g(n, x) \cap h(n, x)$ for each $(n, x) \in \mathbb{N} \times X$. Let $\mathcal{G}_n = \{k(n, x) : (n, x) \in \mathbb{N} \times X\}$. Then $st(x, \mathcal{G}_n) = \bigcup \{k(n, y) : x \in k(n, x)\}$ and $st^2(x, \mathcal{G}_n) = \bigcup \{k(n, y) : k(n, y) \cap st(x, \mathcal{G}_n) \neq \emptyset, (n, x) \in \mathbb{N} \times X\}$.

By condition (2) on g, $x \in h(n, x)$. To see this, let $A = \{y : x \notin g(n,y)\}$, and suppose by contradiction that $x \in \overline{A}$. By (2), there exists $y \in A$ such that $x \in g(n,y)$. But $y \in A$ means that $x \notin g(n,y)$, a contradiction. Therefore, $h(n, x)$ is a neighborhood of x and so is $k(n, x)$. Therefore, in virtue of the Martin metrization theorem 3.4, we only need prove that $\{st^2(x, \mathcal{G}_n) : n \in \mathbb{N}, x \in X\}$ is a weak base of X. If $\{st^2(x, \mathcal{G}_n) : n \in \mathbb{N}\}$ is not a local weak base for some $x \in X$, then there exists an open neighbourhood U of x such that $st^2(x, \mathcal{G}_n) - U \neq \emptyset$ for each $n \in \mathbb{N}$. For each $n \in \mathbb{N}$ take $y_n \in st^2(x, \mathcal{G}_n) - U$. That means we can find $z_n, w_n \in X$ such that $y_n \in k(n, z_n), k(n, z_n) \cap k(n, w_n) \neq \emptyset$ and $x \in k(n, w_n)$. Take $v_n \in k(n, z_n) \cap k(n, w_n)$. By $x \in k(n, w_n) \subseteq g(n, w_n)$ and condition (1), we conclude that $\langle w_n \rangle$ converges to x, and by $v_n \in k(n, w_n) \subseteq h(n, w_n)$ and the definition of h, we get $w_n \in g(n, v_n)$. Using condition (1) again, we have that $\langle v_n \rangle$ converges to x. Similarly, from $v_n \in k(n, z_n) \subseteq g(n, z_n)$, we have that $\langle z_n \rangle$ converges to x, and by $y_n \in k(n, z_n) \subseteq h(n, z_n)$, we get that $\langle y_n \rangle$ converges to x. But $y_n \notin U$ for each $n \in \mathbb{N}$, which is a contradiction.

In the next theorem, we use a technique similar to that used in [5, Theorem 2.1].

Theorem 3.6 A space X is metrizable if and only if X has a CWBC-map g satisfying the following conditions:

1. if $x \in g(n, y_n)$, $y_n \in g(n, x_n)$, $x_n \in g(n, y_n)$ and $y_n \in g(n, x)$ for all $n \in \mathbb{N}$, then x_n converges to x;
(2) for any $A \subseteq X, \overline{A} \subseteq \bigcup \{g(n, x) : x \in A\}$.

Proof. The only if part is obvious. We now prove the if part. Assume that X has a CWBC-map g satisfying the conditions (1) and (2). By Theorem 3.5, we need only to prove that X has a pseudo-N-map (because every pseudo-N-map is a pseudo-strongly-quasi-N-map) which satisfies condition (2). For each $p \in X$ and each $n \in \mathbb{N}$ let $h(n, p) = X - \{y : p \notin g(n, y)\}$ and $k(n, x) = g(n, x) \cap h(n, x)$. By condition (2) on $g, x \in h(n, x)$. To see this, let $A = \{y : p \notin g(n, y)\}$, and suppose by contradiction that $p \notin A$. By (2), there exists $y \in A$ such that $p \notin g(n, y)$. But $y \in A$ means that $p \notin g(n, y)$, a contradiction. Therefore, $h(n, x)$ is a neighborhood of x and so is $k(n, x)$.

So, k is a CWBC-map. Now, let $y_n \in k(n, x) \cap k(n, x_n)$ for all $n \in \mathbb{N}$. We have, $y_n \in k(n, x), y_n \in g(n, x)$ and $y_n \in h(n, x)$. From the definition of h, $x \in g(n, y_n)$. It follows that $y_n \in g(n, x)$ and $x \in g(n, y_n)$ (3).

We have, $y_n \in k(n, x_n), y_n \in g(n, x_n)$ and $y_n \in h(n, x_n)$. From the definition of $h, x_n \in g(n, y_n)$. It follows that $y_n \in g(n, x_n)$ and $x_n \in g(n, y_n)$ (4).

If we now combine (3) and (4), we see that $x \in g(n, y_n)$, $y_n \in g(n, x_n)$, $x_n \in g(n, y_n)$ and $y_n \in g(n, x)$ for all $n \in \mathbb{N}$. Hence by condition (1), $\langle x_n \rangle$ converges to x.

\textbf{Acknowledgement:} The author is grateful to Prof. David Gauld for his kind help and suggestions on this paper.

\section*{References}

The Department of Mathematics
The University of Auckland
Private Bag 92019
Auckland
New Zealand.
mohamad@math.auckland.ac.nz