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Abstract

We compare the efficiency, stability properties, overhead and storage require-
ments of fixed-stepsize, high order Stormer and explicit Runge-Kutta Nystrom
methods for N-body simulations of the solar system. The comparisons of the ef-
ficiency are made using realistic problems, one of which requires over 500 million
integration steps.

We find high order ERKN methods have better stability properties and smaller
overhead than Stormer methods. Our numerical tests suggest ERKN methods are
more efficient than Stormer methods for shorter simulations such as one that simu-
lates ten million years of the jovian planets. However, the superior error propagation
of the Stormer method means they are more efficient on longer simulations.
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1 Introduction

Simulations of N bodies interacting under Newtonian gravitational forces are used exten-
sively to study the dynamics of the solar system. The studies includes those of the main
asteroid belt, Kuiper’s belt, the Oort cloud, the long term behaviour of the planets and
the origin of the solar system.

These simulations often require the solution of the initial value problem

§t) = f(y(), wylto) =wo, y(to) = Yo, (1)
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where the dot operator denotes differentiation with respect to ¢ and f : R* — R".

High order methods are used to solve (1) when the truncation error on each step must
be small. Often the stepsize is chosen so that the truncation error is at or below the limit
of double precision accuracy (about 16 significant figures). These simulations can have n
large and can require copious CPU time. For example, the simulation of 10° years of the
outer solar system describe in [6] had n = 600,030, required 9 x 10'° integration steps
and took the equivalent of three months of CPU time on a single workstation.

Some simulations use more than one type of particle, with massive and massless par-
ticles being the most common types. Massive particles are used to model large bodies in
the solar system such as the Sun and the planets and massless particles to model small
bodies such as planetesimals, small asteroids and comets. Massive particles attract both
types of particles, massless particles do not attract other particles. In many simulations
the number of massive particles is small, frequently no more than 10; large values of n
usually come from having a large number of massless particles.

For a simulation of /NV); massive particles and N, massless particles the cost of evalu-
ating f using direct summation is proportional to

(Nas — 1)Nas + Nag N, 2)

The first term represents the interactions between massive particles and the second term
the interactions between massive and massless particles. For large N,,/Ny, the cost of
evaluating f varies linearly with n and the cost of evaluating each component of f is then
small if N,; is small.

Pride of place among high order methods are fixed-stepsize, fixed-order Stormer meth-
ods. Grazier, Newman, Kaula and Hyman [6] state: In the mid-1960s through the early
1990s, Stormer schemes became the standard integration methods for celestial mechanics.
Concurrently and subsequently, many other astronomical and planetary dynamicists have
employed this methodology.

Another possible class of high order methods is non-symplectic explicit Runge-Kutta
Nystrom (ERKN) methods. These methods are considerably more efficient than explicit
Runge-Kutta methods applied to the equivalent first order problem. This raises the
interesting question of whether ERKN methods are more efficient than Stérmer methods.
Given the large amount of CPU time required for some simulations, even a small gain in
efficiency is worth having.

We compare the efficiency, stability properties, overhead and storage requirements of
high order fixed-stepsize ERKN and Stormer methods. We measure efficiency by the
amount of work required to achieve a prescribed accuracy. Two obvious measures of work
are the number of f evaluations and the amount of CPU time. The number of evaluations
has the advantage of being machine independent. However, if the cost of evaluating each
component of f is small, the overhead of the integration method will make a significant
contribution to the total CPU time. It could then be argued that CPU time is a fairer
measure of work for these problems. Both measures of work have their merits and we use
both in our comparisons.



We define the methods in §2 and compare their stability properties, overhead and
storage requirements in §3. We also summarise techniques for controlling the growth of
round-off error. In §4 we present our numerical comparisons of the methods. We end in
65 with a summary of our work and a discussion of its possible implications.

2 Methods

Each method forms a numerical approximation to y(¢;) and y(¢;) at t; = to + th, i =
1,2,...,. The approximations are denoted by y; and ; respectively.
An order k£ + 1 Stormer method when written in the function form, is defined as
k

vi = 201 —yic2 + B2 iy,
=0
(3)

k
U = h_l(yi—l — Yi—2 + h? Z Bifii—1-1),
1=0

where §j; = f(y;). The starting values y,ys, ..., yx are often calculated using a one-step
method. We use the extrapolation method described on pages 271 and 273 of [7].

The velocity is not required in some simulations. The update formula for ¢ can then
be omitted, reducing the overhead. We return to this point later.

Numerical experiments (see, for example, [5]) suggest the order 13 Stérmer method is
often more efficient than Stormer methods of other orders and we use it in our comparisons.
To illustrate the dependence on order, we also use the Stormer methods of orders 9 and
11.

An s-stage ERKN method forms the approximations y; and g; using

Vi = Yot +hiio 7Y bif,

. (4
Ui o= G +h Y bif,

=1

j—1
fi=fiz1),  fj = fyio +cjhy; + Zajlfl)a J=2,...,s.
=1
The coefficients b;, ¢; and aj; are chosen so the method has the required order and
desirable properties such as small error coefficients. Unlike Stérmer methods, 1; must be
calculated on each step.

The numerical experiments of Dormand, El-Mikkawy and Prince [2] suggest the 17-
stage, order 12 ERKN method in [2] is often the most efficient among high order ERKN
methods and we use it in our comparisons. To illustrate the dependence on the order, we
also use the order 8 ERKN method in [2].

We denote the order 8 and order 12 ERKN methods by the acronyms ERKNS8 and
ERKN12 respectively, and the Stormer method of order ¢ by Sq.



3 Non-numerical comparisons

3.1 Stability

The equation of motion for orbital dynamics is related to the equation for an harmonic
oscillator
j=—-wly, w>D0. (5)
When the Stérmer method (3) is applied to (5), the resulting difference equation is
k41

> i =0, (6)
=0

where 79 = 1, 11 = =2 + A%, 72 = 1 + h2ay, Y; :]_7,2&]'_1, j=3,....,k+1and h = hw.

The stability polynomial P(z; h) is defined as vor*** + -+ - +~41. When h = 0, P has
two principal roots at z = 1 and k£ — 1 extraneous roots at z = 0. The interval of absolute
stability is defined (see, for example, [4]) as the interval [0, k] such that all extraneous
roots of P(z;h) are no greater than one in magnitude.

The interval of stability for S9, S11 and S13 is [0,0.334], [0,0.175] and [0, 0.090] re-
spectively, where the right end point is given to three decimal places.

When an s-stage ERKN method is applied to (5), we obtain

Yi = R(2)Yi_1,
where
- Yi _ 12 2
1/;_|:h'yz:|, z = hw:

R(z) = [ 142071 —2A)"'e 1+20" (1 —2zA)" ¢
T (I —2A)"'e 142011 —2A)7¢ |7
b=1[b,....0]", V' =1[bh,....0. )", c=cr,...,c]", A= {aij}i =, e=11,..., 17,
with C1 = 0, A5 = 0,] 2 1.

If p(R) denotes the spectral radius of R(z), the interval [0, /—2p], 2o < 0, on which
p(R) < 1 is called the interval of stability.

This interval is [0,3.292] and [0,8.326] for ERKN8 and ERKN12 respectively. To
make a fair comparison with the Stormer methods, we need to scale the intervals by the
amount, of work done on each step. One possible measure is the number of derivative
evaluations. The intervals for the ERKN methods become [0,0.411] and [0, 0.490] which
compare favourably with the intervals for S9, S11 and S13.

Another test equation used to investigate the stability is

y=2Ay, Re(\)<0. (7)

The interval of absolute stability becomes a region of absolute stability.
Figure 1 gives the scaled stability regions for the five methods. The stability regions
for the Stormer methods decrease in size with order and the region for ERKNS8 is larger

than that for ERKN12. The regions for ERKN8 and ERKN12 are larger than those for
the Stormer methods.



0.8

0.7 ERKNE -~ IR
-7 \
0.6 ]
s _ - N
0.5F " ERKNI12 -~ E
/ g
< / e
EOA* /// // :
/ Ve
031 / L/ S9 i
// /
/ /
0.2+ / / B
/
J , S11
0.1F P ! 1
. /. | - | ‘ S13
-1 -0.8 -0.6 -0.4 -0.2 0
Re(A)

Figure 1: The scaled stability regions of S9, S11, S13, ERKN8 and ERKN12 for (7).

3.2 Round-off error

The growth in round-off error for Stormer methods can be limited by using the backward
difference form of the methods, and by implementing these differences in the summed
form and adding them from the highest to lowest order. These techniques for limiting the
round-off error do not increase the overhead. The propagation of the round-off error for
Stérmer methods is discussed in detail in [5].

The backward difference form of the formulae for y; and ; are

vi = 201 —yiea + B2 % Vo,
(=0

k
yi = hil(yi_l — Yi—2 + h2 Z 61 Vi gi—1)7
=0

where /%1 = §i—1 and V41 = Vj-1¥i-1 — Vj-1Ui—2- The coefficients v; and 57, can
be calculated from the generating functions

St <[] o 2 ®

In the summed form, the formula for y; becomes

k
Yi = Yio1 + biy Gi = Gia + 1 Z% Vili-i-t;  $1= Y1 = Yo- (9)



There has been little work on developing techniques to limit the growth of round-off
error in ERKN methods. However, the form of an ERKN method has much in common
with an explicit Runge-Kutta method and the techniques of Gill [3] and Mpller [9], [10] are
relevant. Kouya [8] compared these two techniques for a selection of explicit Runge-Kutta
methods and concluded that Mgller’s technique was just as effective as Gill’s technique.
We chose Mgller’s technique because it has less overhead.

In Moller’s technique, the update formula for y; is replaced by the sequence

S
T= ijfj —€6 Y=Y thyia+7, =W —vin— 1) =T, vi=y
j=1

where ¢ = 0 at the start of an integration. The update formula for ¢ is modified in a
similar way.

3.3 Overhead

For an order k Stormer method in which the position and velocity are calculated, (2k+3)n
multiplications and (2k + 3)n additions are required to form y; and ;. Another (k —1)n
additions are required to update the differences. Hence the overhead for one step is
(2k + 3)n multiplications and (3% + 2)n additions. This overhead is also the overhead per
derivative evaluation since one evaluation is performed per step.

The overhead for an ERKN method is not easily expressed as a function of the order
because more than one method of the same order is possible and these methods may differ
in the number of stages and non-zero coefficients. ERKNS8 requires 60n multiplications
and 51n additions per step. The overhead per derivative evaluation is 7.5n multiplications
and 6.4n additions. The corresponding figures for ERKN12 are 6.5n multiplications and
5.7n additions.

The above counts per evaluation show ERKNS8 requires fewer than half the number of
multiplications of S8 and ERKN12 requires one quarter the number of multiplications of
S12. The differences are greater for additions.

If the velocity is not calculated when using a Stormer method, the number of multi-
plication is reduced by one half and the number of additions by one third. ERKNS8 then
requires one third fewer multiplications than S8 and ERKN12 requires less than one half
the number of multiplications of S12.

3.4 Storage

In simulations of a large number of bodies, the amount of storage required by an integra-
tion method can be a limiting factor.

An order k£ Stormer method requires kn locations to store the divided differences and
n locations for each of y;_; and ¢;_; (which are overwritten by y; and ¢; respectively), to
give a total of (kK + 2)n locations. Since in general divided differences are independent of
one another, the only way to reduce the storage requirements of a Stormer method is to



reduce its order. This often leads to more evaluations of f being required to achieve the
same accuracy.
If no storage reduction techniques are used, ERKN12 requires 17n locations for f;,

Jj =1,...,17, together with n locations for the argument of f;, and n locations for each of
yi—1 and 9;_1, to give a total of 20n locations. This total is easily reduced to 18n because
aip = a;3 = 0,7 =6,...,17 which means f; and f3 are not needed to evaluate fg, ..., fi7.

A further 6n locations can be saved by re-ordering the calculations of the arguments to
fj» j > 11. The overhead changes marginally. This last technique for reducing storage
requirements is illustrated in the integrator DOPRI8 on page 437 of [7]. Reductions in
the storage requirements for ERKNS8 can also be made.

We observe from the above arguments that the storage requirements are similar for
the Stormer and ERKN methods we are interested in.

4 Numerical comparisons

The numerical comparisons were made on a single processor of a SGI Origin 2000 com-
puter. The programs were written in Fortran 90 and compiled using the compiler options
-64, -mips4, -r10000 and -03. Some integrations were performed in double precision
(about 16 significant figures), others in quadruple precision (about 32 significant figures).
We used quadruple precision to help us assess the effects of round-off error for simulations
in double precision.

The Stormer methods were implemented in the backward difference summed form and
the differences were added from the highest to lowest order. The ERKN methods were
implemented using the round-off control of §3.2.

As noted in §1, the stepsize is often chosen so that the truncation error on each step
is at or below the limit of double precision accuracy. We used such stepsizes in most of
our simulations.

The energy is a conserved quantity in all of our simulations. At time ¢, the energy

E(t) is defined as
N

1 2 i Gmimj
E(t) = §ijvj — Z Z T,

j=1 i=1 j=i+1

where IV is the number of bodies in the simulation, m; is the mass of the jth body, v; is
its speed at time ¢, GG is the gravitational constant and 7;; is the distance between the ith
and jth particle.

The relative error in the energy is defined as

GE(t) — GE(0)
GE(0) ’

where we have multiplied the energy by G because the product Gm; of celestial bodies is
usually known far more accurately than either G' or m;.



The energy requires little CPU time to calculate. In addition, since the true value is
known, the true error in the energy can be calculated. However, the error in the energy
is usually less than that in the solution. This gives a false impression of the accuracy of
a solution. Hence, in the results below we have (where appropriate) given the estimated
error in the solution.

In some graphs, we have used the scaled stepsize as the abscissa. This stepsize is the
stepsize used in an integration divided by the number of derivative evaluations per step.
For a Stormer method, the stepsize and the scaled stepsize are the same; for ERKNS8 and
ERKN12 the scaled stepsize is 1/8 and 1/17 of the stepsize respectively.

4.1 Kepler’s problem

The first set of comparisons is for Kepler’s problem with eccentricities less than one. The
solution of this problem is used in a number of important applications including the orbit
determination of new asteroids, and the calculation of the orbit for the two primary bodies
in a restricted three-body problem.

The equations of motion are

. Y1 . Yo
Yy = _7"_3’ Y2 = _7"_3’ r= (y% + y%)l/Qv

where the subscripts on y here refer to the equation number and not the step number. The
initial conditions are y;(0) = 1 — ¢, 1(0) = 0, y2(0) = 0 and 2(0) = /(L +¢e)(1 —¢)~!
where e is the eccentricity (0 < e < 1). The solution is y;(t) = cos E — e, ya(t) =
V1.0 —e?sin E, ,(t) = —sin E(1—ecos E)™", and 95(t) = /(1 — €2) cos E(1—ecos E)™!,
where the eccentric anomaly E satisfies Kepler's equation E — esin(E) —t = 0. The
solution is periodic with period 2.

Figure 2 shows the maximum error in y;(10000) as a function of the scaled stepsize
for e = 0 and 0.5 (the osculating eccentricity of the planets in the solar system are less
than 0.26). The integrations were performed in quadruple precision. For e = 0, the
methods rank in efficiency according to their order, except near limiting precision where
it appears the accumulated round-off error alters the relative efficiency. This ranking
holds for e = 0.5 except there is little difference between the efficiency of ERKN12 and
S11, and the accumulated round-off error does not appear significant (for the stepsizes
we used). The relative efficiency when ys, 3; or ¢, are used to make the comparisons is
almost identical to that for y;.

Figure 3 shows the relative error in the energy at ¢ = 10000. The relative efficiency of
the methods is similar to that in Figure 2.

Using the error at one point to compare methods can be misleading if the error oscil-
lates with ¢. Figure 4 shows the absolute error in y; and the relative error in the energy
as a function of ¢ for e = 0.5. The scaled stepsize was 0.00125 for each method. The
methods rank in efficiency as in Figure 3 with the error growing as t? for large t. More
interestingly, the error in y; is oscillatory with a period of about 185 times the orbital
period of the two bodies. The reason for this oscillatory behaviour is unknown to us.




4.2 Jovian problem

The next set of comparisons is simulations of the Sun and the four jovian planets (Jupiter,
Saturn, Uranus and Neptune). Simulations of these bodies are of tremendous importance
because these bodies play a fundamental role in the solar system. For example, Jupiter,
by sweeping up debris which may have bombarded the Earth, was crucial to the evolution
of life on Earth.

Let r;, = 1,...,5, be the position in three dimensions of the ith body. Then

5
r; = Z w, ry = (r; —1;) - (r; —15).

=1, j#i gl
We used the initial conditions in Table 1. Rows 1, 3, 5, 7, 9 give the position Sun, Jupiter,
Saturn, Uranus and Neptune respectively; rows 2, 4, 6, 8, 10 give the velocity. The initial
conditions are those supplied with the integrator NBI [12]. The units of distance and time
are one astronomical unit and one Julian day respectively.

4.5144118714356666407e-003  7.2282841152065867346e-004  2.4659100492567986271e-004
-2.8369446340813151639e-007  5.1811944086463255444e-006  2.2306588340621263489e-006
-5.3896824544609061333e+000 -7.7026549518616593034e-001 -1.9866431165907522014e-001
1.0053452569924098185e-003 -6.5298425191689416643e-003 -2.8258787532429609536e-003
7.9527768530257360864e+000 4.5078822184006553686e+000 1.5201955253183338898e+000
-3.1594662504012930114e-003  4.3714634278372622354e-003  1.9441395169137103763e-003
-1.8278236586353147533e+001 -9.5764572881482056433e-001 -1.6132190397271035415e-001
1.7108310564806817248e-004 -3.7646704682815900043e-003 -1.6519678610257000136e-003
-1.6367191358770888335e+001 -2.3760896725373076342e+001 -9.3213866179497290101e+000
2.6225242764289213785e-003 -1.5277473123858904045e-003 -6.9183197562182804864e-004

Table 1: The initial conditions for the Jovian problem.

The product Gm; for the five bodies is

Gmy = 2.95912208285591102582e — 4, Gmy = 2.82534210344592625472¢ — 7,
Gms = 8.45946850483065929285e — 8, Gmy = 1.28881623813803488851e — 8,
Gms; = 1.53211248128427618918e — 8,

where the mass is in solar masses. These values are supplied with the integrator DE1181
[11].

Figure 5 gives the relative error in the energy for a simulation in quadruple precision
of one million years. The stepsize for the Stormer methods was four days, a value very
similar to that used in [6]. The stepsize for ERKN8 and ERKN12 was 32 and 68 days
respectively which meant the scaled stepsize was the same for all five methods. The
methods rank in efficiency by order except for S11 and ERKN12 which are of similar
efficiency. We examined the error in more detail and found it grew linearly with ¢ for all
methods (see, for example, [1]).



We repeated the previous simulation in double precision and found there was a marked
difference between the Stormer and ERKN methods. The relative error in the energy for
the Stormer methods appeared to grow stochastically t/2, as was found in [5] and [6]. In
contrast, the growth was linear for the ERKN methods.

We examined the apparent stochastic behaviour for the Stormer methods by using a
sampling technique similar to that in [5]. For each method we performed sixteen simu-
lations. The initial conditions for the first simulation were those given in Table 1. The
initial conditions for the i*h simulation, ¢ > 1, were the position and velocity of the bodies
at t = (i — 1)h. The positions and velocities were obtained by taking i — 1 steps of size
h with ERKN12. After some experimentation, we chose h = 28. This value ensured the
truncation error on each step was well below the limit of double precision accuracy.

For each method, we used the sixteen simulations to calculate the root mean square
(rms) in the relative error of the energy as a function of . To gain a clearer understanding
of the behaviour of the error, we extended the integration from one million years to six
million years, six million being a compromise between increased insight and availability
of computer resources.

The results are displayed in Figure 6 with the errors for S9, S11 and S13 represented by
+, O and { respectively. Out to approximately 10,000 years (912,500 integration steps),
the rms error is almost constant. For larger £, the rms error increases steadily. The lines
through the data points are lines of linear regression for ¢ > 10* years. The slopes of the
lines are 0.48, 0.41 and 0.44 for S9, S11 and S13 respectively, in good agreement with the
theoretical value of 0.50 for stochastic growth (see, for example, [5]).

Figure 7 is Figure 6 with the relative error in the energy for ERKN8 and ERKN12
added. The error for each ERKN method was calculated from one integration. The error
for ERKNS is less than that for ERKN12, suggesting ERKNS8 has better round-off error
propagation properties than ERKN12. Another interesting observation is that although
the error for ERKNS8 grows linearly with ¢ as against the square root of ¢ for S9, S11 and
S13, ERKNS is more accurate than the Stérmer methods for the six million years. An
extrapolation of the data in Figure 7 suggests the Stérmer methods do not become more
efficient than ERKNS until at least ten million years.

Figure 8 gives the error (rms error for S9, S11 and S13) in the position of Jupiter. The
errors for the Stormer methods are similar and grow approximately as t*2, agreeing with
the results in [5] and [6]. The error for ERKN8 and ERKN12 grows approximately as 2.
An extrapolation of the data in Figure 8 suggests ERKNS8 will be more efficient than the
Stormer methods until approximately 20 million years.

4.3 Nine Planets problem

The third set of comparisons is simulations of the Sun and the nine planets. The equations
of motion are the same as for the Jovian problem, except there is ten bodies instead of
five. The initial conditions and Gm; are listed in the Appendix.

The orbital period of the terrestrial planets (Mercury, Venus, Earth and Mars) are
shorter than for the jovian planets. This means the scaled stepsize must be smaller than
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for the Jovian problem. A comparison of the period for Mercury (88 days) and Jupiter
(4333 days) suggests the stepsize should be 50 times smaller. Using this value as a guide,
we did some numerical testing and found a stepsize of 0.1 days (40 times smaller than for
the Jovian problem) was satisfactory.

Figure 9 shows the relative error in the energy for a simulation in double precision of
50,000 years (equivalent to approximately two million years for the Jovian problem). The
error for S9, S11 and S13 is the rms error and the error for ERKN8 and ERKN12 is from
one integration. The error for S9, S11 and S13 varies little over the 50,000 years and is
similar for the three methods. The error for ERKN8 and ERKN12 is smaller than for the
Stormer methods, but grows linearly with time.

4.4 CPU time

Table 2 gives the average CPU time per step for the Jovian and Nine Planets problems.
The times are in seconds. A single estimate of the time was found by measuring the time
for a large number of integration steps and then dividing by the number of steps. Five
estimates were found for each method and problem, and averaged to give the values in
Table 2. The large number of steps meant we could neglect the extra time required by
the extrapolation method at the start of an integration with a Stormer method.

Problem S9 S11 S13 ERKN8 ERKN12
Jovian 238 x107° 265 x 107° 2.84x107° | 583 x 107" 1.30 x 10~*
Nine Planets | 5.83 x 107 6.39 x 107> 6.83 x 107 | 1.96 x 107" 4.25 x 107"

Table 2: The average CPU time (in seconds) per step.

Since the overhead for Stormer methods increases with order and they perform the
same number of derivative evaluations per step, we expect the time per step for Stormer
methods to increase with order. The times in Table 2 support this expectation.

The operation counts of §3.3 show the overhead per derivative evaluation for ERKN8
and ERKN12 are similar. This suggests the ratio of the time for ERKN12 and ERKNS
should be close to 17/8(= 2.125), the ratio of the number of stages. In addition, the
evaluation of f for the Nine Planets problem requires approximately four times the CPU
time as the evaluation for the Jovian problem. This implies the ratio of times for the
Nine Planet problem should be closer to 17/8 than the ratio for the Jovian problem. The
ratios are 2.22 and 2.17, in very good agreement with expectations.

The Stormer methods require more time than the ERKN methods than predicted by
the ratio of the number of derivative evaluations per step. This still holds if the velocity
is not calculated when using Stormer methods, although the difference is not as large.
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4.5 Massless

The last set of simulations is of the Sun, the jovian planets and N,, massless particles,
where several values of N, in the range 100 to 1000 were used. Since Nj; = 5, the cost
of evaluating f is (from (2)) proportional to 20 + 5N,,. For the values of N,, we are
interested in, the cost is effectively linear in N,,.

The initial conditions and Gm; were those for the Jovian problem. The initial condi-
tions of the massless particles were specified as in [6]. The inclination of the orbits were
normally distributed about the ecliptic, the semi major axes were normally distributed
between the orbits of Jupiter and Saturn, the eccentricity was chosen from a negative
exponential distribution, and the remaining three orbital elements were randomly and
uniformly distributed on the interval [0, 27].

The results of these comparisons supported the results of the previous comparisons.

5 Discussion

We compared the Stormer methods of orders 9, 11 and 13 with two non-symplectic explicit
Runge-Kutta Nystrom (ERKN) methods, one of order 8 and one of order 12. The two
ERKN methods were selected as being representative of ERKN methods of high order.
Our main aim was to assess the relative efficiency of high order ERKN and Stormer
methods on N-body simulations of the solar system. We also compared the size of the
stability intervals and regions, the overhead and the storage requirements.

There are clear differences between the ERKN and Stormer methods. The scaled
stability intervals for the harmonic oscillator test equation §j = —w?y, where the scaling
is by the number of derivative evaluations, are larger for the ERKN methods. This
advantage also holds for the more general test equation j = A%y, Re(\) < 0.

The overhead per derivative evaluation is smaller for the ERKN methods than for the
Stormer methods. If the position and velocity are calculated on each step of the Stérmer
method, the overhead of the ERKN methods is no more than half that of the Stormer
methods. If just the position is calculated, the overhead of the ERKN methods is at least
one third smaller than for the Stormer methods. Hence when the same scaled stepsize is
used for the Stormer and ERKN methods, the ERKN methods require less CPU time to
complete the simulation.

Another clear difference is the propagation of error for simulations in double precision
with the truncation error at or below the limit of double precision accuracy. This was
well illustrated by the error in the energy. If a Stormer method is implemented in the
backward difference summed form with the differences added from the highest to lowest
order, the error grows approximately as the square root of time. For an ERKN method
implemented with Mgller’s technique, the error grows linearly with time.

We performed some simulations in quadruple precision. This permitted truncation
errors at the limit of double precision accuracy without round-off error being significant
and provided valuable information on the efficiency. We found the methods could usually
be ranked in efficiency according to their order, with the method of highest order being
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the most efficient. One exception was that the order 11 Stormer method and the order
12 ERKN method were often of similar efficiency.

We found ERKN methods could be more efficient for the first part of long simulations
when the calculations were done in double precision (as most simulations would be). For
example, in a simulation of the Sun and jovian planets, the order 8 ERKN method was
more efficient than the Stormer methods for the first six million years. An extrapolation
of our data suggests the ERKN method would be more efficient until at least ten million
years.

The above conclusions on the relative efficiency were made using the number of deriva-
tive evaluations as the measure of work. If CPU time is used, the efficiency of the ERKN
methods relative to the Stormer methods increases. As noted above, this increase will de-
pend on whether the velocity is calculated on each step when using the Stormer methods.
There is also the caveat that the increase depends on the implementation of the methods
and is machine dependent.

Our overall conclusion is that when simulations are done in double precision, high
order ERKN methods are potentially more efficient than high order Stormer methods for
short simulations, but are less efficient for long simulations.
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Appendix

Table 3 contains the initial conditions for the Nine Planets problem. The odd number
rows are the initial positions and the even numbered rows are the initial velocities. The
bodies are ordered Sun, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune
and Pluto.

The values of Gm; for the Nine Planets problem are given below. The bodies are
ordered as for Table 3. The values of Gm; for the Sun and the jovian planets are the
same as for the Jovian problem.

Gmy, = 2.95912208285591102582e — 4, Gmy = 4.91254745145081175785¢e — 11,
Gms = 7.24345620963276523095¢ — 10, Gmy = 8.88769273403302327042¢ — 10,
Gms = 9.54952894222405763492e — 11, Gmg = 2.82534210344592625472¢ — 7,
Gm; = 8.45946850483065929285¢ — 8, Gmg = 1.28881623813803488851e — 8§,
Gmg = 1.53211248128427618918e — 8, Gmyy = 2.27624775186369921644e — 12.

The initial conditions and values of Gm; are supplied with the integrator DE118i [11].
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4.5144118714356666407e-003  7.2282841152065867346e-004  2.4659100492567986271e-004
-2.8369446340813151639e-007  5.1811944086463255444e-006  2.2306588340621263489e-006

3.6030663368975339466e-001 -9.4812876741771684223e-002 -8.7466840117233140436e-002
3.7085069798210382186e-003  2.4854958767430945324e-002  1.2929109014677844626e-002

6.0786466491731583464e-001 -3.5518362463675619232e-001 -1.9824142909855515515e-001
1.1156645711264016669e-002  1.5494075513638794325e-002  6.2773904546696609267¢e-003

0.1082176318288926413e+4-000 -0.9270869831537622570e+000 -0.4020803162138249869e+4-000
0.1682597583356446303e-001  0.1562319686603147364e-002  0.6775367895532445041e-003

-1.2796408611369531836e-001 -1.3262618005333617013e+-000 -6.0530808652523961512e-001
1.4481919298277924969e-002  8.0528538390447499843e-005 -3.5188931029397090065e-004

-5.3896824544609061333e+000 -7.7026549518616593034e-001 -1.9866431165907522014e-001
1.0053452569924098185e-003 -6.5298425191689416643e-003 -2.8258787532429609536e-003

7.9527768530257360864e+000 4.5078822184006553686e+-000 1.5201955253183338898e+000
-3.1594662504012930114e-003  4.3714634278372622354e-003  1.9441395169137103763e-003

-1.8278236586353147533e+001 -9.5764572881482056433e-001 -1.6132190397271035415e-001
1.7108310564806817248e-004 -3.7646704682815900043e-003 -1.6519678610257000136e-003

-1.6367191358770888335e+001 -2.3760896725373076342e+4-001 -9.3213866179497290101e+000
2.6225242764289213785e-003 -1.5277473123858904045e-003 -6.9183197562182804864e-004

-3.0447680255169362534e+001 -5.3177934960261367037e-001 9.0596584886274922101e+000
2.8177758090360373050e-004 -3.1469590804946202045e-003 -1.0794238049289112837e-003

Table 3: The initial conditions for the Nine Planets problem.
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Figure 2: A log-log graph (base 10) of the maximum error in y; at ¢ = 10000/(27) periods
against the scaled stepsize for Kepler’s problem, quadruple precision. Top: e = 0, bottom:
e =0.5.
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Figure 3: A log-log graph (base 10) of the maximum error in the relative energy against the
scaled stepsize at ¢ = 10000/ (27) periods for Kepler’s problem, quadruple precision. Top: e = 0,
bottom: e = 0.5.
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Figure 4: A semi-log graph (base 10) of the absolute error in y; (top) and the relative error in
the energy (bottom) as a function of ¢ for Kepler’s problem with e = 0.5, quadruple precision.
The scaled stepsize is 0.00125 and the time is in periods.
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Figure 5: Semi-log graph (base 10) of the relative error in the total energy against ¢ in units of
10° years for the Jovian problem, quadruple precision.
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Figure 6: Log-log graph (base 10) of the relative error in the energy against ¢ in years for S9,
S11 and S13 applied to the Jovian problem, double precision.
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Figure 7: Log-log graph (base 10) of the relative error in the energy against ¢ in years for S9,
S11, S13, ERKNS8 and ERKN12 applied to the Jovian problem, double precision.

Figure 8: Log-log graph (base 10) of the error in the position of Jupiter against ¢ in years for
59, S11, S13, ERKN8 and ERKN12 applied to the Jovian problem, double precision.
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Figure 9: Log-log graph (base 10) of the relative error in the energy against ¢ in units of one
thousand years for S9, S11, S13, ERKN8 and ERKN12 applied to the Nine Planets problem,
double precision.
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