
A relation between the spectrum of the

Laplacean and the geometry of a compact

graph

Mark Stuart Harmer

email� harmer�math�auckland�ac�nz

Department of Mathematics

University of Auckland

New Zealand

May �� ����

Abstract

For the Laplacean on a compact graph with edges of commen�

surate length and �ux�conserved boundary conditions we provide a

description of the spectrum in terms of the geometry of the graph�

� Introduction

We consider the Laplacean on a compact graph with edges of commensurate
length and �ux�conserved boundary conditions� For this simple operator we
are able to �nd the relationship between the spectrum and the geometry of
the graph on which the operator is de�ned�
Speci�cally� suppose we are given a compact graph �c which we decompose
into the set of subgraphs �d�i� each with one vertex� This set is speci�ed
by a projection P � while the way in which they are connected to form �c

is speci�ed by an �adjacency	 matrix �� Then we are able to show that the
spectrum of the operator corresponds to the spectrum of the matrix P��P�

up to the dimension of a couple of the eigenspaces�

� The spectrum on a compact graph with

edges of commensurate length

Here we consider the case of minus the Laplacean with �ux�conserved bound�
ary conditions 
�� �� 
� on a compact graph �c with edges of commensurate

�



length� By �ux�conserved boundary conditions we mean that at each vertex�
�� of the graph the functions on the graph are continuous

��j� � ��j� � � � � � �dj�

and conserve �ux around the vertex

dX
i��

��ij� � ��

In the above formulae we assume that the vertex � of �c has degree d� �i is
the value of the function on the i�th edge incident on �� ��i is the x�derivative
of �i and in evaluating the derivative we assume that the orientation of each
edge incident on � is the same�ie� all edges are either leaving or entering
the vertex ��
This operator is also considered in the paper by Carlson 
��� where the author
also establishes some basic results on the spectrum�see below� In particular
it is shown 
��that this operator �minus the Laplacean with �ux�conserved
boundary conditions on a compact graph� is self�adjoint and has non�negative
eigenvalues of �nite multiplicity�
We assume that �c is connected �for a disconnected graph each connected
component may be treated separately�� These are the only restrictions we
place on �c� particularly �c may have multiple edges� edges with end�points
connected to the same vertex and vertices with degree one� In the case of a
vertex with degree one we need to be speci�c about the boundary conditions
as there is obviously some ambiguity in assigning �ux�conserved boundary
conditions to such a vertex� For our purposes� we always assume that a ver�
tex with degree one has Neumann boundary conditions �ie� zero slope��

As �c has edges of commensurate length we can rescale and split edges
so that �c has only edges of length one� Let us suppose that this rescaled
graph� which for convenience we also denote as �c� hasm vertices and p edges�
Consider splitting �c into m subgraphs �d���� � � � ��d�m� each consisting of a
single vertex with d�i� edges attached where d�i� is the degree of the i�th
vertex of �c� Precisely we split each edge of �c in half getting m subgraphs
�d���� � � � ��d�m� each with one vertex and d�i� edges which each have length
����
In this way the vertices are indexed by the integers f�� � � � � mg� We would
also like to index the �p edges of the subgraphs �d���� � � � ��d�m�� We do this
in the obvious way� the �rst d��� edges are from the subgraph �d���� the next
d��� edges are from �d���� etc� In general� the edges in the range

Ei � fD�i� � �� � � � � D�i� � d�i�g

where
D�i� � d��� � � � �� d�i� ���

�



are from subgraph �d�i��
Using this scheme of indexing the edges the following �p � �p �adjacency	
matrix naturally appears

�ij �

�
� � if edge i and j are linked in �c

� � otherwise
�

This is not really the adjacency matrix� Indeed the adjacency matrix is not
strictly de�ned for a graph with multiple edges�which we have allowed�
and� furthermore� from the adjacency matrix we can recover the structure of
the graph to which it belongs while � will not allow us to recover �c unless
we also have the d�i��
Some properties of � are immediate� It is idempotent and therefore has only
eigenvalues ��� It has p eigenvalues �� and p eigenvalues �� as can be seen
by considering the matrices �� I both of which have rank p� The eigenvec�
tors are easily constructed from the form of � �if �ij � � then ei � ej� where
felg is the usual basis of C �p � is an eigenvector with eigenvalue ����

Choosing an arbitrary edge j � Ei we can write the general solution on
this edge as

�j � 	i cos�kx� � 
j sin�kx��

The subscript i is an index of the vertex and the subscript j an index of the
edge� This solution is continuous and in order for it to satisfy conservation
of �ux at the vertex we need X

j�Ei


j � �� ���

All that remains is to ensure that these solutions match at the points at
which the subgraphs �d���� � � � ��d�m� link� Recalling that each edge of �c has
length �� these matching conditions are expressed using � as

	i cos�k��� � 
j sin�k��� � 	r cos�k��� � �js
s sin�k���

	i sin�k���� 
j cos�k��� � �	r sin�k��� � �js
s cos�k���� ���

where we assume summation over repeated indices� The index r is uniquely
speci�ed by j�
We consider three cases�

I� sin�k��� �� �� cos�k��� �� �� Then writing z � tan�k��� the matching
conditions become

	i � 
jz � 	r � �js
sz

	iz � 
j � �	rz � �js
s�

Eliminating 	r and solving for 	i gives us

�	i � 
j

�
�

z
� z

�
� �js
s

�
�

z
� z

�






or� using

� �
�
z
� z

�
z
� z

� cos�k��

we write this as
�	i

�
z
� z

� 
j� � �js
s�

This gives us d�i� equations for each vertex i of �c� Actually� since the
left hand side ��	i�����z� � z�� of each equation is the same� we can
eliminate the 	i to get d�i�� � equations in the 
j� Speci�cally�


D�i���� � �D�i����s
s � � � � � 
D�i��d�i�� � �D�i��d�i��s
s�

II� sin�k��� � �� Here equations ��� become

	i � 	r

�
j � �js
s�

This gives us


D�i��� � �D�i����s
s � � � � � 
D�i��d�i� � �D�i��d�i��s
s � �

plus the fact that all of the 	i are equal �this condition merely adds
one to the dimension of the eigenspace��

III� cos�k��� � �� Here equations ��� become


j � �js
s

	i � �	r�

This gives us


D�i��� � �D�i����s
s � � � � � 
D�i��d�i� � �D�i��d�i��s
s � �

plus the fact that the 	i �alternate	� This condition adds one to the
dimension of the eigenspace i� there are no cycles of odd length in �c�

These equations along with equation ��� characterise the discrete spectrum�

Let us introduce the projections Pi in C d�i� onto the subspace spanned
by the vector ��� � � � � ��T �the same projection which we used above in our
discussion of �ux�conserved boundary conditions�� Then we can de�ne the
projection

P � P� 	 P� 	 � � � 	 Pm � C
�p

where the Pi appear down the diagonal� De�ning this projection allows us
to write equation ��� in the simple form

P
 � �

�



where 
 � C
�p is the vector of coe�cients of the general solution� Not only

that but we can use P� to express the matching conditions� equations ����
derived for the above three cases in equally simple forms� Let us consider case
I above� then it is not hard to see that for this case the matching conditions
become

P���� ��
 � ��

or� using the fact that P
 � �� this becomes

�P��P� � ��
 � ��

We summarise these results for the spectrum of minus the Laplacean in the
following theorem�

Theorem ��� The spectrum of minus the Laplacean with �ux�conserved bound�
ary conditions on an arbitrary compact graph with edges of length one corre�
sponds to the spectrum of the matrix

P��P�

inside the open interval ���� �� where the eigenvalues �l of this matrix are
related to the eigenvalues of the original operator �l � k�l via

��l � cos kl�

Moreover� the dimension of the eigenspaces of the matrix �in P�C �p� and the
operator coincide�
At the endpoints of the interval we get� for � � ��� ie� k � �
n� the
dimension of the eigenspace of the operator coincides with the dimension of
the kernel of

�� I

�in P�C �p� plus one	consequently this eigenvalue always appears�
For � � �� ie� k � ��n���
� the dimension of the eigenspace of the operator
coincides with the dimension of the kernel of

�� I

�in P�C �p� and� as long as there are no cycles of odd length� plus one �

Really� each eigenvalue �l of the matrix corresponds to a family� f�kl��
n��g
where n � Z� of eigenvalues of the original operator� This fact is established
in the paper by Carlson 
�� where� furthermore� it is shown that there are at
most �p families of eigenvalues� counting multiplicity� We are able to re�ne
that result here�

Corollary ��� The number of families of eigenvalues of the operater� count�
ing multiplicity� does not exceed �p�m � � when there are no cycles of odd
length in �c and �p�m� � if there are�

�



Proof� The matrix P��P� has rank at most �p�m� We only need to note
that at the endpoints� ��� of the interval this matrix overestimates the num�
ber of eigenvalues� �

Corollary ��� The dimension of the eigenspace of the operator correspond�
ing to � � ��� ie� k � �
n� is in the range 
p�m� �� p� ���
The dimension of the eigenspace of the operator corresponding to � � �� ie�
k � ��n� ��
� is in the range 
p�m� �� p� �� if there are no cycles of odd
length or the range 
p�m� p� is there are�

Proof� These statements follow simply from the fact that the nullity of the
matrices �� I is p and the rank of P� is �p�m� Hence� the spaces

ker��� I�
 P�
C
�p

have dimension at least p�m� �

This description allows us to describe the spectrum of the operator on a
compact graph in terms of purely geometrical properties� � and P � of the
graph� This may be useful in investigating the spectral problem� ie� the
problem of recovering the structure of the graph from the spectrum�

Acknowledgements

The author would like to thank Prof B�S� Pavlov for his advice and many
useful conversations�

References


�� R� Carlson� The second derivative operator for a weighted graph� preprint�


�� N� I� Gerasimenko� The inverse scattering problem on a noncompact
graph� Teoret� Mat� Fiz�� ����������� �����



� M� S� Harmer� The Matrix Schr
odinger Operator and Schr
odinger Oper�
ator on Graphs� PhD thesis� University of Auckland� �����

�


