A relation between the spectrum of the
Laplacean and the geometry of a compact
graph

Mark Stuart Harmer
email: harmer@math.auckland.ac.nz
Department of Mathematics

University of Auckland
New Zealand

May 1, 2000

Abstract

For the Laplacean on a compact graph with edges of commen-
surate length and flux-conserved boundary conditions we provide a
description of the spectrum in terms of the geometry of the graph.

1 Introduction

We consider the Laplacean on a compact graph with edges of commensurate
length and flux-conserved boundary conditions. For this simple operator we
are able to find the relationship between the spectrum and the geometry of
the graph on which the operator is defined.

Specifically, suppose we are given a compact graph I', which we decompose
into the set of subgraphs I'y;) each with one vertex. This set is specified
by a projection P, while the way in which they are connected to form T'.
is specified by an ‘adjacency’ matrix ¢. Then we are able to show that the
spectrum of the operator corresponds to the spectrum of the matrix PtoP+
up to the dimension of a couple of the eigenspaces.

2 The spectrum on a compact graph with
edges of commensurate length

Here we consider the case of minus the Laplacean with flux-conserved bound-
ary conditions [2, 1, 3] on a compact graph I'. with edges of commensurate



length. By flux-conserved boundary conditions we mean that at each vertex,
v, of the graph the functions on the graph are continuous

¢1|ll = ¢2|V == ¢d|l/

and conserve flux around the vertex

d
i=1

In the above formulae we assume that the vertex v of I',. has degree d, ¢; is
the value of the function on the i-th edge incident on v, ¢! is the x-derivative
of ¢; and in evaluating the derivative we assume that the orientation of each
edge incident on v is the same—ie. all edges are either leaving or entering
the vertex v.

This operator is also considered in the paper by Carlson [1], where the author
also establishes some basic results on the spectrum—see below. In particular
it is shown [1]that this operator (minus the Laplacean with flux-conserved
boundary conditions on a compact graph) is self-adjoint and has non-negative
eigenvalues of finite multiplicity.

We assume that I'. is connected (for a disconnected graph each connected
component may be treated separately). These are the only restrictions we
place on I';, particularly I', may have multiple edges, edges with end-points
connected to the same vertex and vertices with degree one. In the case of a
vertex with degree one we need to be specific about the boundary conditions
as there is obviously some ambiguity in assigning flux-conserved boundary
conditions to such a vertex. For our purposes, we always assume that a ver-
tex with degree one has Neumann boundary conditions (ie. zero slope).

As I', has edges of commensurate length we can rescale and split edges

so that I'. has only edges of length one. Let us suppose that this rescaled
graph, which for convenience we also denote as I'., has m vertices and p edges.
Consider splitting I'; into m subgraphs Ty, ..., yum) each consisting of a
single vertex with d(i) edges attached where d(7) is the degree of the i-th
vertex of I'.. Precisely we split each edge of I'. in half getting m subgraphs
La1ys - -+ Dagmy each with one vertex and d(i) edges which each have length
1/2.
In this way the vertices are indexed by the integers {1,...,m}. We would
also like to index the 2p edges of the subgraphs 'y, ..., [gom). We do this
in the obvious way; the first d(1) edges are from the subgraph Iy, the next
d(2) edges are from T4y, etc. In general, the edges in the range

& ={D@i)+1,...,D() +d(i)}

where



are from subgraph I'g(;).
Using this scheme of indexing the edges the following 2p x 2p ‘adjacency’
matrix naturally appears

] 1 :ifedge and j are linked in I,
Yii =1 0 :otherwise '

This is not really the adjacency matrix. Indeed the adjacency matrix is not
strictly defined for a graph with multiple edges—which we have allowed—
and, furthermore, from the adjacency matrix we can recover the structure of
the graph to which it belongs while ¢ will not allow us to recover I'. unless
we also have the d(37).

Some properties of ¢ are immediate. It is idempotent and therefore has only
eigenvalues 1. It has p eigenvalues +1 and p eigenvalues —1 as can be seen
by considering the matrices ¢ + I both of which have rank p. The eigenvec-
tors are easily constructed from the form of ¢ (if ¢;; = 1 then e; & e;, where
{e;} is the usual basis of C?, is an eigenvector with eigenvalue +1).

Choosing an arbitrary edge ;7 € &£ we can write the general solution on
this edge as
Y; = o cos(kx) + B sin(kx).
The subscript ¢ is an index of the vertex and the subscript j an index of the
edge. This solution is continuous and in order for it to satisfy conservation
of flux at the vertex we need
> Bi=0. (1)

JEE&i

All that remains is to ensure that these solutions match at the points at
which the subgraphs I'y1), ..., 4 link. Recalling that each edge of I'; has
length 1, these matching conditions are expressed using ¢ as

a;cos(k/2) + Bjsin(k/2) = a,cos(k/2) + ;s sin(k/2)
a;sin(k/2) — Bicos(k/2) = —a,sin(k/2) + ;s cos(k/2), (2)

where we assume summation over repeated indices. The index r is uniquely
specified by j.
We consider three cases:

I. sin(k/2) # 0, cos(k/2) # 0. Then writing z = tan(k/2) the matching
conditions become

o; + ﬁjz = o + Spjsﬁsz
oz — ﬁj = —opz+ Sojsﬁs-

Eliminating . and solving for a; gives us
1 1
z z
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or, using

1_,
=2z = cos(k),
(=5 = o)
we write this as 5
Qg
= B:C+ ©; .
1 T2 /BJC (Pjsﬁs

z
This gives us d(i) equations for each vertex i of I'.. Actually, since the
left hand side (2c;/((1/2) + 2)) of each equation is the same, we can
eliminate the a; to get d(i) — 1 equations in the ;. Specifically,

Bp(iy+1¢ + ©p(iy+1,50s = =+ = Bp(i)y+di)C + ©DG)+d(i),s Ps-

sin(k/2) = 0. Here equations (2) become

o = O
—Bi = ¥jshs-
This gives us
5D(i)+1 + ¢D(i)+1,sﬁs == 5D(i)+d(i) + SOD(i)+d(i),sﬁs =0

plus the fact that all of the «; are equal (this condition merely adds
one to the dimension of the eigenspace).

cos(k/2) = 0. Here equations (2) become

Bi = @ijsbs
o = —Q.
This gives us
Bp(i)+1 — ©D(i)+1,s0s =+ = Bp(i)+d(i) — PD(i)+d(i),sPs = 0

plus the fact that the «; ‘alternate’. This condition adds one to the
dimension of the eigenspace iff there are no cycles of odd length in I'..

These equations along with equation (1) characterise the discrete spectrum.

Let us introduce the projections P; in C*%) onto the subspace spanned

by the vector (1,...,1)T (the same projection which we used above in our
discussion of flux-conserved boundary conditions). Then we can define the
projection

P=P®P® - QP,C?

where the P, appear down the diagonal. Defining this projection allows us
to write equation (1) in the simple form

P3=0
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where 3 € C? is the vector of coefficients of the general solution. Not only
that but we can use P+ to express the matching conditions, equations (2),
derived for the above three cases in equally simple forms. Let us consider case
I above, then it is not hard to see that for this case the matching conditions
become

PHp+¢)B =0,
or, using the fact that P = 0, this becomes

(PPt + ()3 =0.

We summarise these results for the spectrum of minus the Laplacean in the
following theorem:

Theorem 2.1 The spectrum of minus the Laplacean with flux-conserved bound-
ary conditions on an arbitrary compact graph with edges of length one corre-
sponds to the spectrum of the matrix

Ptypt

inside the open interval (—1,1) where the eigenvalues ; of this matriz are
related to the eigenvalues of the original operator \; = k? via

—(; = cos k.

Moreover, the dimension of the eigenspaces of the matrixz (in PTC? ) and the
operator coincide.
At the endpoints of the interval we get: for ( = —1, ie. k = 27n, the
dimension of the eigenspace of the operator coincides with the dimension of
the kernel of

p+1I

(in PC? ) plus one—consequently this eigenvalue always appears.
For (=1, ie. k= (2n+1)m, the dimension of the eigenspace of the operator
coincides with the dimension of the kernel of

p—1I
(in P-C?® ) and, as long as there are no cycles of odd length, plus one .

Really, each eigenvalue ¢; of the matrix corresponds to a family, {(k;+2mn)?}
where n € Z, of eigenvalues of the original operator. This fact is established
in the paper by Carlson [1] where, furthermore, it is shown that there are at
most 2p families of eigenvalues, counting multiplicity. We are able to refine
that result here.

Corollary 2.1 The number of families of eigenvalues of the operater, count-
ing multiplicity, does not exceed 2p — m + 2 when there are no cycles of odd
length in T, and 2p — m + 1 if there are.



Proof: The matrix Pt¢P~* has rank at most 2p — m. We only need to note
that at the endpoints, £1, of the interval this matrix overestimates the num-
ber of eigenvalues. O

Corollary 2.2 The dimension of the eigenspace of the operator correspond-
ing to ¢ = —1, ie. k= 2mn, is in the range [p — m+ 1,p + 1].

The dimension of the eigenspace of the operator corresponding to ¢ = 1, ie.
k = (2n+ 1)7, is in the range [p — m + 1,p + 1] if there are no cycles of odd
length or the range [p — m,p| is there are.

Proof: These statements follow simply from the fact that the nullity of the
matrices ¢ + I is p and the rank of P+ is 2p — m. Hence, the spaces

ker(p £ 1) N P-C%
have dimension at least p — m. O

This description allows us to describe the spectrum of the operator on a
compact graph in terms of purely geometrical properties, ¢ and P, of the
graph. This may be useful in investigating the spectral problem, ie. the
problem of recovering the structure of the graph from the spectrum.
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