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Abstract

We generalise the asymptotic formula for the scattering matrix
in ��� to the case of non�simple spectrum� This asymptotic formula
is used to identify a simple family of switches and investigate the
properties of a member of the family using numerical techniques�

� Introduction

Here we generalise the idea in ��� where the scattering matrix of a non�
compact graph is written in terms of the spectral properties of its compact
part� In this paper the authors consider an annulus to which n semi�in�nite
rays are attached using a certain self�adjoint boundary condition� Under the
assumption that the spectrum of the compact graph is simple� the authors of
��� provide an asymptotic formula for the scattering matrix at an eigenvalue
of the compact graph in the limit of weak interaction between the rays and
the compact part of the graph� To be precise it is shown that the scattering
matrix can be written in terms of a projection onto the space spanned by
the vector of values of the eigenfunction at the nodes of the rays�
Here we lift the restriction that the spectrum of the compact graph is simple�
We �nd that their formula generalises in the obvious way where now we have
a projection onto a space which may be more than one�dimensional� Further�
more we show that all but the �rst two terms of the asymptotic expansion
of the scattering matrix depend on the orthogonal complement of the above
projection� This allows us to prove the corollary that if the projection is
the identity 	ie� we have perfect re
ection� then the scattering matrix is the
identity independent of the interaction between the rays and the compact
part of the graph�
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In the �nal section we use this asymptotic formula to identify a family of
switches� Using a simple numerical simulation we investigate the properties
of a member of this family and compare it to a similar switch where the
switching property is achieved by simply raising a potential barrier to the

ow of current�
We note that our construction was anticipated by Exner et al ��� In this
paper the authors consider a �quantum interference transistor� which uses
the same basic construction as our switch� The di�erence is that� in our
approach� we have used the asymptotic formula described above to guide our
choice of resonance parameters ��� �� ���
An interesting property of our switch is that as the size of the switch decreases
the e�ciency of the switch increases without bound�unlike a switch based
on simply raising a potential barrier where the e�ciency has an upper bound
due to tunneling� This is due to our assumption that the switch operates in
the resonance case ��� �� ���

� Asymptotics of the scattering matrix of a

non�compact graph in terms of the spectral

properties of its compact part

In this section we generalise the result in the report ��� which describes the
asymptotics of the scattering matrix of a non�compact graph in terms of the
spectrum of its compact part� in the case where the spectrum is simple� Here
we extend this result to the case of spectrum with arbitrary �nite multiplicity�
Consider the case of an arbitrary compact graph �c with n semi�in�nite rays
attached to points on the edges of �c� The interaction between each ray
and the compact graph is speci�ed by a particular self�adjoint boundary
condition 	see equation 	�� below� at the point of attachment� Here we will
be investigating the limit as the interaction between the compact graph and
the rays goes to zero�
The component of the i�th scattering wave solution on the j�th ray is denoted
by �ij� and has the form

�ij � �ije
�ikxj � Sije

ikxj � 	��

It is assumed that the potential on the rays is zero�
We denote the i�th scattering wave solution on the compact part of the
graph by �i�� The scattering wave solutions satisfy the following self�adjoint
	theorem � of ���� boundary conditions at each connection point aj

���i��jaj � ����ijj�

�ijj� � ��i�jaj 	��

where j � �� � � � � n� The notation ��� denotes the jump in the value of the
function� It is clear that these boundary conditions are invariant with respect
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to the orientation chosen on the edge of the compact graph�
It is clear 	theorem � of ���� that we can use the ansatz

�i� �
nX

j��

�ij	k�g�	x� aj� k�

for the scattered wave on the compact subgraph where g�	x� y� k� is the
Green�s function of the 	unperturbed� compact graph and the aj � �c is
the connection point of the j�th ray�
The scattering matrix can be found from the above equations 	theorem � of
���� by eliminating �ij and solving

S	k� � �
�
I� ikj�j�G

� �
I� ikj�j�G

���
� 	�

Here the matrix G is given by the unperturbed Green�s function on the
compact graph evaluated at the nodes of each of the rays

Gij � g�	ai� aj��

Now since the unperturbed compact graph has only discrete spectrum� we
may expand the Green�s function 	theorem � of ���� in terms of an absolutely
and uniformly convergent series

g�	x� y� �
X
i

�i	x��i	y�

	i � 	

of orthonormalised eigenfunctions� f�ig� Consequently we can write G as

Gij �
X
i

�i	ai��i	aj�

	i � 	
�

Let us choose a particular eigenvalue� 	l� In general 	l will not be a simple
eigenvalue� let us assume that it has a p�dimensional eigenspace

Rl �
�
f�l�ig

p
i�� � H�

Here H is just the space of complex functions on �c� We de�ne the mapping
P � H � C

n � where n is the number of rays� by taking the values of an
element of H at the nodes of each of the n rays� Let us use the notation

P	�� � j�i � C
n �

In particular� we will be interested in the map of the eigenspace Rl � P	Rl�
which is in general an m�dimensional subspace of C n � m � p �take for
instance the case where one of the eigenfunctions �l�i is zero on the nodes of
each of the rays� We claim





Proposition ��� It is possible to choose an orthonormal basis f
ig
p
i�� for

Rl which forms an orthogonal� but not necessarily normalised� basis for Rl

under the map P�

Proof� Given an orthonormal basis f�l�ig
p
i�� for Rl we note that any unitary

matrix U � U	p� gives us another orthonormal basis via


i �

pX
j��

Uij�l�j

Mapping by P and then forming the inner product in C n

h
ij
ji �

pX
r�s��

�Uirh�rj�siUjs

so that �nding an orthogonal basis for Rl amounts to �nding the unitary
matrix U which diagonalises the hermitian matrix Ars � h�rj�si� �

This observation is useful in that it allows us to write the matrix G in
�diagonal� form

G �
�

	l � 	
�j
�ih
�j� � � �� j
mih
mj� �

X
i��l

j�iih�ij

	i � 	

�
Dl

	l � 	
�Kl 	��

Using this notation� we can easily prove the following�

Theorem ��� If 	l is an eigenvalue of the compact graph �c then� for van�
ishing coupling between �c and the rays �j�j � ��� we have

S		l� � �I� �Pl � �
X
s��

	iklj�j
�P�

l KlP
�
l �s

� �I� �Pl �O	j�j�� 	��

where Pl is the orthogonal projection onto Rl�

Proof� Using the notation of equation 	��� the scattering matrix has the form

S		� � �

�
I�

ikj�j�Dl

	l � 	
� ikj�j�Kl

� �
I�

ikj�j�Dl

	l � 	
� ikj�j�Kl

���
�

Since Dl � D�
l � the matrix El � I� ikj�j�Dl

�l��
has an inverse� Using the basis

of C n where the �rst k vectors are the normalised vectors j
ii��i� where we
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have used �i 	
p
h
ij
ii� Dl is diagonalised with the �rst k diagonal entries

equal to ��i and the remaining n�m entries zero� Consequently in this basis

E��
l �

�
BBBBBBBB�

��
ikj�j���

�

�l��
� � � �

��
ikj�j���

k

�l��

� �
� � �

�

	
CCCCCCCCA

��

�

�
BBBBBBBB�

�l��
�l���ikj�j��

�

�

� � � �
�l��

�l���ikj�j��
�

k

� �
� � �

�

	
CCCCCCCCA
�

From this representation we can easily see that the following limit applies

lim
���l

E��
l � P�

l � I� Pl� 	��

Using the same basis we see that

E�
l E

��
l �

�
BBBBBBBBB�

�l���ikj�j
���

�

�l���ikj�j��
�

�

� � � �
�l���ikj�j

���
k

�l���ikj�j��
�

k

� �
� � �

�

	
CCCCCCCCCA
�

This gives us the limit

lim
���l

E�
l E

��
l � P�

l � Pl � I� �Pl� 	��

Now the denominator of the scattering matrix can be written�
I�

ikj�j�Dl

	l � 	
� ikj�j�Kl

���
�

�
�I� ikj�j�KlE

��
l �El

���
� E��

l

�
I� ikj�j�KlE

��
l

���
�

Again� the matrix I� ikj�j�KlE
��
l has an inverse for 	 � 	l since Kl � K�

l �
This gives the following expression for the scattering matrix

S		� � �
�
E�
l E

��
l � ikj�j�KlE

��
l

� �
I� ikj�j�KlE

��
l

���
�



� �
�
E�
l E

��
l � ikj�j�KlE

��
l

�X
s��

	ikj�j�KlE
��
l �s

�



�I�

mX
j��

�ikj�j�j
jih
jj

		l � 	�� ikj�j���j
� ikj�j�KlE

��
l

�X
s��

	ikj�j�KlE
��
l �s�

where in the last two lines we assume that j�j is small enough so that the
expansion of the inverse is valid� Then� using the limits of equations 	�����
we immediately get the desired relation

S		l� � �
�
I� �Pl � iklj�j

�KlP
�
l

�X
s��

	iklj�j
�KlP

�
l �s

� �I� �Pl � �
X
s��

	iklj�j
�P�

l KlP
�
l �s

� �I� �Pl �O	j�j���
�

This formula may look surprising for j�j � � as it implies that there
may be non�zero transmission in the case of zero connection between the
rays� Actually the transmission coe�cients are not continuous with respect
to 	 uniformly in � ���� The physically signi�cant parameters of the system
are obtained by averaging of functions of the transmission coe�cients with
respect to the Fermi distribution�we discuss this in connection with the
example considered in the next section�

Corollary ��� If 	l is an eigenvalue of �c such that Pl � I then the above
formula is independent of j�j� ie�

S		l� � I

Proof� If Pl � I then P�
l � �� Putting this into the formula for S		l� in the

theorem gives the result� �

� Example of a simple quantum switch

��
��
�
�

�
�

�

�
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Figure �� The family of switches

Let us consider a device with two leads�rays incident on an annulus of
circumference �� where the angle between the rays is n���m� n and m are
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integers 	see �gure ��� The potential is a constant on the annulus� It is clear
that the eigenfunctions on the annulus are just the trigonometric functions
and the multiplicity of the spectrum is two�
Let us consider two states of the device corresponding to di�ering constant
values of the potential� q 	 qc and q 	 qo� For q 	 qc the scattering matrix
has zero re
ection coe�cient 	a closed switch� and for q 	 qo it has zero
transmission coe�cient 	an open switch�� We need to identify some 	 � 	l
which is an eigenvalue on the annulus for both states q 	 qc and q 	 qo�
Furthermore� from equation 	��� we require that for q 	 qc� Rl is spanned by
either one of the vectors 	�� �� or 	������ while for q 	 qo� Rl is the whole of
C � �
For 	l to be an eigenvalue in both states it must satisfyp

	l � qc � ncp
	l � qo � no 	��

where nc and no are integers� The eigenspaces on the unperturbed annulus
will be spanned by the functions

For q 	 qc fcos	ncx�� sin	ncx�g

For q 	 qo fcos	nox�� sin	nox�g

Projecting these eigenspaces onto C � to get Rl gives

For q 	 qc Rl �
��

�
cos	ncn���m�

�
�


�

sin	ncn���m�

��

For q 	 qo Rl �
��

�
cos	non���m�

�
�


�

sin	non���m�

��
�

Then it is easy to see that to get the required subspaces we need

ncn�

�m
�

l�

�
l is even

non�

�m
�

l�

�
l is odd�

We must choose n�m� 	l and qc� qo so that nc and no from equation 	��
satis�es

ncn

m
is even�

non

m
is odd� 	 �

In fact any no such that non�m is not even will do although we consider the
stronger condition here�
Clearly� we have described a family of quantum switches with the property
that at some prescibed energy 	l the switch has full transmission in the closed
state 	jT j � �� and full re
ection in the open state 	jRj � ��� However� for
practical purposes this only gives the behaviour of the switch as the tem�
perature approaches zero� For �nite temperature we need to consider the
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properties of the switch averaging over the Fermi distribution�

Following Landauer ��� �� �� the e�ective conductance of an elementary
scatterer may be written

�s �
e�

h

jT j�

jRj�
�

e�

h

jT j�

�� jT j�
�

Combining this with the basic conductance of the quantum wire �� � e��h
��� in accordance with the Matiessen rule

��� � ���� � ���s

we can write the quantum conductance as

� �
e�

h
jT j��

The conductance may be estimated for �nite temperature by taking the in�
tegral with respect to the Fermi distribution over the continuous spectrum

!� �
�

�	�c�

Z
�c�L�

�		�d�		�

�
e�

h

�

�	�c�

Z
�c�L�

jT j�		�d�		�� 	���

Here the distribution d��the Fermi distribution�describes the occupancy
of energy levels

d� �
�

��
sech�			� 	F �����d	�

Also �c	L� is the continuous spectrum of the operator� 	F is the Fermi energy
and � represents the temperature� The distribution d� is peaked around the
Fermi energy� the width of the peak depending on the temperature � � and
the integral is normalised by the measure of the spectrum� �	�c��

The properties of our switch are calculated in the resonance case ��� �� ��
when the Fermi energy in the wires 	F coincides with the eigenvalue of the
unperturbed operator on the annulus 	l� A consequence of this is that� as we
consider an annulus of smaller area� so the de Broglie wavelength represented
by 	l becomes smaller and consequently we have to design the wires so that
the Fermi energy increases� To see precisely how the Fermi energy scales with
respect to the radius of the annulus let us consider the Schr"odinger equation

�
��

�me

d��

dx�
� V � � EF�

where EF is the Fermi energy in units of energy� Let us suppose that the
annulus has radius r and we rescale the above equation so that it becomes

�



dimensionless and the radius is normalised to unity� Normalising the radius
is achieved by making the change of variables

� �
x

r

and then multiplying through by the factor �mer
���� gives us the dimen�

sionless equation

�
d��

d��
�

�mer
�

��
V � �

�mer
�

��
EF��

Then we see that 	l� which is just the coe�cient on the right hand side� is

	l �
�mer

�

��
EF

and so the Fermi energy scales as

EF �
	l
�me


�

r

��

� 	���

ie� the wires have to be chosen so that the Fermi energy is inversely propor�
tional to the area of the annulus�

In calculating properties of the device� in particular when we integrate
over the Fermi distribution� we see that the important parameter is the ratio
between the deviation of the energy from the Fermi energy and the temper�
ature in units energy� That is the Fermi distribution depends on the energy
and temperature as

	� 	F
��

�
E � EF

�kBTK

where EF is the Fermi energy in units energy� TK is the temperature in Kelvin
and kB is the Boltzmann constant� Multiplying top and bottom by the factor
�

�me

�
�

r

��
we get the following relationship between TK and �

kBTK �
�

�me


�

r

��

� 	���

We interpret equations 	������ in the following way� The Fermi energy
in the wires is assumed to match the eigenvalue of the unperturbed operator
on the annulus�the resonance case� Consequently� as a smaller annulus is
considered the wires must be chosen so that the Fermi energy is proportionaly
higher�
Now suppose we �x the operating temperature TK and consider annuli of
di�ering radii� As the area enclosed by the annulus gets smaller� so EF

increases and� as we have �xed TK� � decreases� Clearly in the limit � � �

 



the distribution becomes the Dirac distribution at the Fermi energy� so the
integral simply becomes

jT j�		l��

But we have constructed our switch so that at 	 � 	l this quantity is zero in
the open state and unity in the closed state� In other words� for �xed operat�
ing temperature TK the e�ciency 	the ratio between the conductance in the
closed state and the conductance in the open state� of the switch increases
without bound as the area enclosed by the annulus goes to zero�
This switch has quite di�erent properties from a switch based on simply rais�
ing a potential barrier to create the open state� Here the e�ciency of the
switch has an upper bound due to quantum tunneling e�ects�

Let us now consider the simplest member of the family of switches de�
scribed above� We choose m � n � 	l � �� qc � � and qo � �� It is easy
to see that this choice satis�es the condition 	 � and� for q � qo � �� the
scattering matrix has identically zero transmission coe�cient for all values
of ��this last result holds generaly as can be seen from corollary ����
To describe the behavior of this device we consider the averaged quantum
conductance given in equation 	���� We reproduce some of the steps in the
calculation of jT j� here� Let us de�ne the scattering solution by

�� � e�ikx �Reikx

�� � a� cos	kqx� � b� sin	kqx�

�� � a� cos	kqx� � b� sin	kqx�

�	 � Teikx

where kq �
p
k� � q� The scattering solutions on the rays are ��� �	� ��

is the scattering solution on the interior edge of length ��� and �� is the
scattering solution on the interior edge of length ���� We assume that
x � � in ��� �� corresponds to the node of the ray on which �� is de�ned�
The boundary conditions at the nodes of the graph 	equation	��� give us

� �R � ��a� � ��a�

T � ���a� cos	kq���� � b� sin	kq�����

� ���a� cos	kq���� � b� sin	kq�����

so we may put a � a� � a�� The �rst order derivative terms give us

ik���� R� � b�kq � b�kq

ik�T � �b�kq cos	kq����� akq sin	kq�����

� �b�kq cos	kq����� akq sin	kq������

We use the �rst of these boundary conditions to solve for R and then using
the unitarity of the scattering matrix we have

jT j� � �� j��a� �j�

��
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It is easy to eliminate T and R in the remaining boundary conditions so that
we can solve for a

a �
�ik� 	ikj�j� sin	kq���� sin	kq����� kq sin	�kq���

��ikj�j�kq sin	�kq��� �k�q 	�� cos	�kq��� � 	ikj�j��� sin	kq���� sin	kq����

to �nally obtain

jT j� �
p� � p� cos	kq�� � p� cos	�kq�� � p� cos	kq��

q� � q� cos	kq�� � q� cos	�kq�� � q� cos	kq�� � q	 cos	�kq��

p� � �j�j	k�k�q

p� � ��j�j	k�k�q

p� � ��j�j	k�k�q

p� � ���j�j	k�k�q

q� � �j�j
k	 � ��j�j	k�k�q � ��k	q

q� � ��j�j
k	 � �j�j	k�k�q

q� � j�j
k	 � ��j�j	k�k�q � ��k	q

q� � ��j�j
k	 � �j�j	k�k�q

q	 � j�j
k	 � �j�j	k�k�q � ��k	q �

This is used in equation 	��� for the averaged quantum conductance to
produce graphs of this quantity with respect to j�j and at di�erent values of
the temperature� � with Fermi energy 	F � 	l � ��see �gures ���� These
plots were produced using Maple�the source has been included in the Ap�
pendix�
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In these �gures we show the averaged current in the closed state !�c� the av�
eraged current in the open state !�o 	in units of e��h�� and the ratio !�c�!�o�

In order to interpret these results� we should choose a realistic range of
values for the radius r 	so that the resonance case can be achieved using
suitable materials� and then� using equations 	������ deduce the operating
temperature TK associated with the values of � chosen in the simulation� For
the relevant details of properties of semiconducting materials see ��� ��  ��

For the purposes of comparison we consider a switch similar in structure
to the above example� but where the open state is achieved by raising a
potential barrier to the 
ow of electrons�
Constructing the switch using an annulus with two incident rays we choose�
m � � and n � �� 	the angle between the rays is � radians� 	l � kl � ��
qc � � and qo � �these parameters are chosen so that they are similar
to the parameters in the �rst example� The modulus of the transmission
coe�cient is given by

jT j� �
��	k� � q�k�j�j	

	�	k� � q� � k�j�j	�� � 	�	k� � q�� k�j�j	�� cos�	kq��
�

We use this in equation 	��� to produce graphs of the conductance with re�
spect to j�j and at di�erent values of the temperature� � with Fermi energy
	F � 	l � ��see �gures ���� The additional Maple source is also included
in the Appendix�

We note that the switch based on raising a potential barrier 	�gures ����
preforms much better than the switch based on interference e�ects 	�gures

�
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�����at least in the temperature ranges that we consider�especialy in the
limit of weak coupling between ring and rays� small j�j� Both switches have
good properties in the closed state 	�gures ���� however the open state�
possibly due to tunneling e�ects�appears to be more di�cult to achieve�
This also appears to explain why� in the limit of small j�j� the properties of
the switches improve� weak coupling between the ring and rays improves the
open state of the switches� On the other hand� in the limit j�j � � the ratio
!�c�!�o for the second example rapidly decreases to a bound due to tunneling
which may be calculated from the transmission coe�cient

lim���
!�c
!�o

����
j�j��


 ����� ����

see �gure �� The �rst switch� as we have shown� does not have this bound and
consequently for su�ciently low temperature or small radius we conjecture
that it will have better properties�
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Appendix� Maple Code

The �rst segment of code produces the numerical simulation for the �rst
model of a switch�

lc���b��x�

lc���x	
�

kc���lc�������

pc��� 
��lc��lc��

pc��� ���lc��lc��

pc����
��lc��lc��

pc
������lc��lc��
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data�arr���i�j���aCoN�

od�
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save data�arr� �ring��m��

The second segment of code produces the numerical simulation for the
switch realised by a simple potential barrier on an annulus�
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data�arr���i�j���aCoN�

od�
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save data�arr� �ringe��m��
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