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Reproducibility in science has become a very visible issue of late, with several key papers 
pointing out significant issues in reproducing highly cited research in the fields of psychology 
and bioinformatics.  The movement towards in-silico science (simulation and modelling) means 
that some experiments are ‘born digital’ and thus should have a valid digital representation by 
default (though not necessarily a complete one). Other forms of science still require laboratory 
work (in-vitrio), yet even here, reproducibility is making ground.   
 
Advanced computational workflows and scientific notebooks are now shrinking the 
reproducibility gap, though finally closing it represents a big challenge.  Web semantics have 
some key roles to play in supporting truly open and reproducible science, and to this end we 
here (i) provide a taxonomy of approaches to reproducibility, (ii) show how semantic web 
technologies help to empower them, and (iii) describe some of the as yet unaddressed 
challenges. 
 
 
Reusability and replication of analytical tasks and experiments can be supported at many levels. 
 
Throughout this paper we adopt an approach to open, reproducible science drawn from… 
 
 

• A model is replicable when re-running the source code produces a consistent result.  In 
this case, literally a digital replica of the original experiment produces the same answers. 
 

• A model is reproducible when its outputs can be reproduced by a machine from an 
unambiguous statement of the model equations, together with specified values of the 
model parameters, initial conditions and boundary conditions. In other words, the 
model can move from its originating source code implementation, and by means of an 
underlying representation based on domain theory (mathematics, logic or a mix of both) 
it can be successfully reproduced in some new system. 

 
• A model is reusable when it can be used independently or as a module within another 

model. This requires that the model is well documented, the source code is available  
and that its limitations and appropriate use are clear.  One way to describe these model 
features is by semantic annotation, which can provide unambiguous meaning to the 
variables, parameters and control sequences used.  This kind of annotation requires 
detailed model semantics to be developed and adopted by a research community.  
Many research communities aspire to these kind of model semantics, which are often 
more difficult to capture than data semantics (and those are hard enough) 

 
• A model is discoverable when it has been annotated with metadata that describe the 

purpose and use of the model sufficiently to allow it to be found and accessed via a 
webservice.  Exactly what kinds of metadata are needed here is an open question.  
Certainly, details of the meaning of the model (see reusable) can be helpful, as can 
example use-cases, user feedback, statements about accuracy and some idea of the 
context surrounding the research task.  Gahegan & Adams (2014) have some further 
ideas about how such semantics might be uncovered and used. 
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• A model is validated when its predictions under specified conditions match 
experimental observations.  In other words, validation requires that we test a model 
against real-world observations, not just for consistency within own internal logic or 
mathematics.  Models are typically validated within a range of ‘safe’ operating 
conditions (such as a scale interval, or between two temperature values). 
 

 
https://journal.physiomeproject.org/physiome-project.html  
 
 
Seeing firsthand what was done (Virtual witnessing) 
At the most basic level, journals such as JoVE 1 can be used to capture a live account of the 
process of investigation, that can be peer-reviewed and shared.  It does not guarantee 
repeatability, but it gives an insight into the mechanics of conducting research that is often 
missing from more traditional publications 
 
Replicating the computational environment used 
A further step towards repeatability is offered by virtualised computational infrastructure such 
as Docker2, which offer a ‘containerised’ approach to supporting research.  The container in this 
case is a place to store a computational image—a stack of software that might include an 
operating system, various databases, and application programs.  This stack is created by 
serializing a working application running on a virtual machine.  It has many advantages, (for 
example, it overcomes versioning and software integration issues for the new user) but chief 
amongst them for our purposes here is that the image can be moved to a completely separate 
virtual machine, in a different organisation or even country, where it can be opened, ‘re-
imaged’ and run in 2-3 minutes.  It will behave exactly the same as the original software did, 
thus it provides a very convenient way to ‘wrap-up’ and share a complete software 
environment with new users.  It is a mechanistic way to achieve some basic 
repeatability/refutability, and is mature enough now to be used reliably as part of a peer review 
process.   
 
Creating a virtual library of reusable software environments  
Perhaps the best example of the use of containerization for research is the Nectar Research 
Cloud3, developed and used in Australia for the last 4-5 years (and also used by the Centre for 
eResearch in Auckland).  As well as making it easy for researchers to create and share 
experiments, it also contains a huge library of existing research software images that can be 
easily discovered and quickly restarted.  For example, one can spin up a Hadoop cluster to 
conduct spatial data replication experiments in just 2 minutes.  Nectar has greatly increased the 
amount of sharing amongst Australian researchers and has been shown to enable replicability 
and reproducibility4 in terms of the software used (and all the complexities and dependencies 
that typically plague software-reuse). 
 
Virtual Laboratories—adding data to the software used 
Of course, having access to an identical software configuration does not guarantee 
reproducibility or replicability, though it removes a traditionally difficult burden.  But to fully 
replicate an analysis, the same data is also needed.  A virtual Laboratory extends the idea of a 
Research Cloud by also including the data and macros that are used as inputs and control / 
conditioning elements in an analysis.  The resulting environment provides a completely self-
contained environment where many analytic activities become reliably repeatable, 
reproducible and refutable (apart from any non-deterministic methods that use 
randomization).  An excellent example is the Biodiversity and Climate Change Virtual Laboratory 
(BCCVL)5 which supports some very sophisticated geospatial modelling, and visualisation, but in 
a controlled environment that essentially wraps together all of the tools, data, methods and 
scripts used in analysis so they can be shared within a community.  BCCVL has become a vital 
resource for the biodiversity research community in Australasia.  Community.  A similar Virtual 
Laboratory exists for Genomics.   Virtual Laboratories need sophisticated interfaces to allow 
new methods and datasets to be contributed, so that they can grow to encompass new 
analytical methods and new data opportunities.  But to do so, the methods and data need 
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careful curation, and in the case of methods, they must fit within specifically-designed 
templates in terms of how the connect together.  This is a current research challenge.   
 
Computational Workflows—flexibility for complex tasks 
Where a community does not have an agreed set of methods or data, or indeed is actively 
developing new methods that do not easily fit into the templates used in a Virtual Laboratory, a 
more generic form of repeatability can be obtained using a Computational Workflow such as 
Galaxy6.  Workflows completely describe all the analytical steps taken in an experiment or 
procedure, as a directed graph.  They are more flexible than Virtual laboratories, in that they 
can create complex workflows with loops and hierarchies of analytical methods, but are also 
more complex to use.  GeoVISTA Studio7 is an early example of a workflow environment for 
geographical analysis and visualisation.   
 
‘Executable’ Journals 
Perhaps the holy grail of repeatability is a journal article that is itself an executable 
experiment—that describes an analysis in words, formulae and code, but also allows the 
analysis to be repeated by the reader.  A good example is the Physiome journal8 that evaluates 
submissions “to determine their reproducibility, reusability, and discoverability.  At a 
minimum, accepted submissions are guaranteed to be in an executable state that reproduces 
the modelling predictions in the primary paper, and are archived for permanent access by the 
community.”  The journal uses shared method libraries, common workflow descriptions and 
packaged data to come good on its ambitious claims.  
 
Caveat 
All of these methods, by increasing levels of sophistication, record what was done in precise 
ways that can survive the process of sharing and enable researchers to reproduce the findings 
in a separate computational environment.  However, none of them describe why specific 
choices were made by their originator, which remains an ongoing challenge. 
 
____________________________________ 
References 

1 The Journal of Visual Experiments https://www.jove.com/  
2 https://www.docker.com/  
3 https://nectar.org.au/research-cloud/  
4 Sehrish Kanwal, Andrew Lonie, Richard O. Sinnott & Charlotte Anderson (2015).  Challenges of 
Large-Scale Biomedical Workflows on the Cloud -- A Case Study on the Need for Reproducibility 
of Results.  2015 IEEE 28th International Symposium on Computer-Based Medical Systems 
(CBMS) (2015), Sao Carlos, Brazil, June 22, 2015 to June 25, 2015, pp: 220-225, 
Bookmark: http://doi.ieeecomputersociety.org/10.1109/CBMS.2015.28   
5 http://www.bccvl.org.au/  
6 https://galaxyproject.org/learn/advanced-workflow/  
7 Masa Takatsuka and Mark Gahegan (2002).  GeoVISTA Studio: a codeless visual programming 
environment for geoscientific data analysis and visualization.  Computers and Geosciences 
28(10):1131-1144 2002.  
8 https://journal.physiomeproject.org/about.html  

 

https://www.jove.com/
https://www.docker.com/
https://nectar.org.au/research-cloud/
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Sehrish+Kanwal
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Andrew+Lonie
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Richard%20O.+Sinnott
https://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=Charlotte+Anderson
https://www.computer.org/csdl/proceedings/cbms/2015/6775/00/6775a220-abs.html
https://www.computer.org/csdl/proceedings/cbms/2015/6775/00/6775a220-abs.html
https://www.computer.org/csdl/proceedings/cbms/2015/6775/00/6775a220-abs.html
http://doi.ieeecomputersociety.org/10.1109/CBMS.2015.28
http://www.bccvl.org.au/
https://galaxyproject.org/learn/advanced-workflow/
https://journal.physiomeproject.org/about.html

