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Introduction 

Spatial Data Science facilitates new approaches to longstanding problems in health, policy, 
ecology and economy.  But to make the most effective use of it, we need analytical methods that 
are straightforward to apply, open to review and audit, and produce results that can be correctly 
interpreted by practicing researchers and policymakers.   

Leveraging data science presents many challenges that manifest in unique ways in the 
geospatial realm, including: the nature of errors and bias in data, the opportunities afforded by 
new and dynamic data sources, the need for transparency and the ability to question 
assumptions where outcomes are used for public policy.  The model-free nature of popular data 
science methods means they typically operate as black boxes.  As such it is difficult to validate 
their outcomes in ways that stand up to policy debates and foster public trust.  

The capacity of data science to help us explain and understand the underlying causes for the 
patterns we find in data has lagged behind the development of new analytical methods 
(Shmueli, 2010).  But better explanation and transparency are necessary to empower end-users 
to interpret outputs in ways that conceptually align with pre-existing knowledge (Doshi-Velez, 
and Kim, 2017; Lipton, 2016).   

From this perspective, there is currently an over-dependence on correlative models that neither 
represent process nor embed theory (O’Sullivan, 2018).  The most capable predictive methods 
are typically opaque, with no explanation, and no error distributions that connect back to the 
underlying mechanisms that are driving outcomes.  This limits the insights obtained, and our 
ability to understand the process and causal interactions in the underlying system.  By contrast, 
the focus here is on explanation, via methods that strive towards abductive reasoning that can 
offer an explanation (hypothesis) for a set of observations (Gahegan, 2009). 

Moving from prediction to explanation, specifically explanation based on feasible processes and 
their interactions, represents a significant and important step for the GIScience.  Models will 
then become useful in terms of their predictive power, and their ability to explain likely 
processes and mechanisms that generate those predictions.   

 

Searching for Explanations 

Inductive Process Modelling is an example of one kind of approach that can create explanatory 
models from complex data.  It does this using a kind of theory and data soup: the soup contains 
a set of theory fragments, rules, constraints, and observational data drawn from the system 
under investigation.  Using these building blocks, heuristic search and feedback are used to 
iteratively assemble pieces together into a chain that links observable variables with each other 
via causal mechanisms.  Since the model produced contains a set of equations with known links 
to current theory, then it becomes possible to ‘read’ the model; it is essentially a hypothesised 
mathematical description of the process under investigation.  See Asgharbeygi et al. (2006), 



Sozou et al. (2017) and Gahegan (2019) for more details.  When coupled with the descriptive 
richness of big data, this approach can produce complex and accurate models that can be 
readily understood, debated and validated.   

The inductive process modelling community has had good success in constructing models from 
complex data that describe various spatial and temporal processes.  As Langley showed nearly 
forty years ago, it is possible to ‘discover’ some well-known physical laws from data, such as 
acceleration due to gravity (Langley, 1981).  In this case, the model is simple: just one equation 
with one rate term, and it can indeed be learned autonomously from experimental data.  But 
more recent work includes discovering ecological models that can describe: complex predator-
prey relationships (Bridewell et al, 2008), the occurrence of large algal blooms (Džeroski et al., 
2007) and complex reaction networks in systems biology (Džeroski & Todorovski, 2008).   All of 
these examples not only demonstrate excellent results—they are every bit as good as those 
produced by expert scientists, and sometimes better—but they are also directly comparable 
with existing models and their correctness (or otherwise) can be debated rationally based on 
theory, not just on producing the best results following extensive training.  Recent work by 
Langley and Arvay (2016) demonstrates how Inductive Process Modelling can scale to very 
complex ecological food webs with 15 or more different interacting species, all successfully 
learned from data describing the observed counts of individual organisms.  That’s a very 
complex model, with an intricate and lagged set of co-dependencies. 

To give a specifically geographical example of model discovery, imagine that we wish to 
understand the mechanisms that drive overland water drainage and soil erosion.  Some simple 
examples of equations to add to the process library might be: exponential decay, simple 
geometric calculations of upslope area, water accumulation, soil erosion coefficients and 
equations governing fluid flow and saturation.  To guide the model discovery process we need a 
measure of success, which can be straightforwardly defined as a reduction of error in the 
model’s ability to correctly predict the observed data (say the outflow of the basin or the 
amount of soil eroded over time).  This provides the feedback needed to guide and refine the 
model’s development.  We will also need observation data that describes the variables that 
appear in the equations in the process library. 

At the core of the computational model discovery movement is the idea that not only can data 
be turned into knowledge, but that this knowledge can in turn be expressed as theory (Horacek, 
2017; Rule et al., 2018).  When the data mining or machine learning community refers to 
knowledge discovery, it typically means uncovering the patterns and categories that 
characterize trends or outliers in data; such ‘knowledge’ is usually expressed in the language of 
data (statistics) or machine learning method parameterisations and not the language of human 
explanation (domain theory).  But in the case of computational model discovery, the discovered 
knowledge is a mathematical model (e.g. a set of Partial Differential Equations) that 
characterises some phenomena of interest and that can be translated (via these equations) into 
rules and relations between data—for example as processes and causal links.  This is closer to 
theory, and can be interpreted from a theoretical perspective in many cases.  Over time, as 
additional layers of the science process are adequately represented in computational systems, 
these discovery systems will become capable of producing rich and detailed descriptions of 
solutions and their explanations, couched in relevant domain theory and the process of 
research. 
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