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Abstract

Numerically integrated ephemerides of the solar system and the Moon require

very accurate integrations of systems of second order ordinary di�erential equations�

We present a new family of 	
� pairs and assess the performance of two new 	
�

pairs on the equations used to create the ephemeris DE���� Part of this work is

the introduction of these equations as a test problem for integrators of initial value
ordinary di�erential equations�

� Introduction

Ephemerides for the solar system and the Moon can be obtained by numerically integrat�
ing a system of ordinary di�erential equations which model all signi�cant gravitational
attractions between the bodies� To take full advantage of the accuracy of modern as�
tronomical observations and to distinguish between competing analytical theories for the
motion of the planets and the Moon� the global error in the integrations must be very
small� Another characteristic of the integrations is that they often span a large interval
of astronomical time� necessitating many integration steps�

The requirement of a very small global error and the need to take many steps of�
ten means the integrations must be performed using extended precision such as ���bit
arithmetic or quadruple precision�

The ordinary di�erential equations for ephemerides are non�sti� and hence explicit
Runge�Kutta 	ERK
 pairs are suitable methods for performing the integrations� Of the
many ERK pairs available� the ���stage 
�� pair of Prince and Dormand ��� has proven
to be as e�cient as any other on many problems when using double precision arithmetic�
except possibly at low accuracy requirements�
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In particular� the pair is noticeably more e�cient than ��� pairs� We investigate
whether this result holds for numerically integrated ephemerides�

We begin our investigation with a search of an existing family of ���stage ��� pairs
for a near optimal pair� Next we derive a family of �
�stage ��� pairs and search this
for a near optimal pair� We then compare the new pairs and the 
�� pair of Prince and
Dormand on the equations of DE����

� Order nine pairs

��� De�nitions

Consider the initial value problem

y� � f	x� y
� y	x�
 � y�� 	�


where � � d�dx� f � R � R
n � R

n and the solution y	x
 is su�ciently di�erentiable�
The ��� ERK pairs we investigate have s�stages and generate an order nine approxi�

mation yi and an order eight approximation byi to y	xi
� i � �� �� � � � � according to

yi � yi�� � h
sX

j��

bjfj� 	�


byi � yi�� � h
sX

j��

bbjfj� 	�


where h � xi � xi�� and

fj � f	xi�� � hcj� yi�� � h

j��X
k��

ajkfk
� j � �� � � � � s 	c� � �
�

We refer to cj� j � �� � � � � s� as the abscissae and aij� j � �� � � � � i � �� i � �� � � � � s as the
interior weights� To retain the one step nature of the methods� we restrict the abscissae
to the interval ��� ���

The e�ciency of ��� pairs can be assessed using the size of the principal error coe��
cients� These can be written as

e��	�j
 �
�	�j


���
	�	�j


sX
k��

bk�k	�j
� �
� �j � T���

where T�� is the set of rooted trees of order ten� �	tj
 and �	tj
 are positive integers and
�k	�j
 are functions of the interior weights and abscissae� We use two measures of the
size of the principal error coe�cients

E�

�� � 	
X

�j�T��

e��	�j

�
���� E�

�� � max
�j�T��

fje��	�j
jg � 	�
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��� Sixteen stages

Verner �
� derived a family of ���stage ��� pairs with c�� c�� c�� c��� c��� c��� c�� and a���	
as free parameters 	To simplify what follows� we have interchanged the coe�cients for
the fourteen and sixteenth stages� this can be done without changing the properties of
the pairs�
 The order nine formula in the pairs uses the �rst �fteen stages and the order

eight formula uses all sixteen stages� The coe�cients bj�bbj� j � �� � � � � 
� b�	� bb�� and bb��
are identically zero�

Verner presented the coe�cients of a pair from this family which had c� � �����
c� � 	� � �

p
�
���� c� � ���� c�� � ���� c�� � ���� c�� � ���� c�� � ���� c�� � ��� and

a���	 � �� The pair has E�
�� � ���� ���� and E�

�� � ���� ���� and has been used when
comparing the numerical performance of ��� pairs with pairs of other orders� However the
pair was intended as an illustration of the derivation and not as one with a near optimal
value of E�

�� or E
�

�� �
To assess in a problem independent way if the ��� family of Verner contains more

e�cient pairs� and if so� how much more e�cient� we performed a minimisation of E�
��

over the free parameters� subject to the constraint that the coe�cients be no larger than
M in magnitude� This constraint is commonly used when selecting a pair from a family
and is intended to prevent the selection of a pair with poor round�o� error properties�
Although no one value of M is used� it is often �� or �� and we chose ���

We performed the minimisation using an interactive grid search and obtained a min�
imum of 
�� � ���
 when working with a grid size of approximately ������ The pair we
obtained had c� � ������ c� � ������ c� � ������ c�� � ������ c�� � ������ c�� � ���
��
c�� � ����� and a����� � ������ 	as a matter of preference we have used a����� in place
of a���	 as a free parameter
� The algorithms in �
� can be used to �nd the remaining
coe�cients�

A slightly smaller value of E�
�� is possible if a smaller grid size is used� but since the

number of derivative evaluations varies approximately as the ninth root of E�
��� the gain

in e�ciency is small� A signi�cantly smaller value of E�
��� approximately twice as small�

is possible if the abscissae are not constrained to the interval ��� ��� but this choice means
the pair is no longer a one step method�

A comparison of E�
�� for the new pair and the one of Verner suggests the new pair will

be approximately 
� percent more e�cient at small stepsizes� raising the possibility of it
being competitive with pairs of other orders�

��� Seventeen stages

The work of Sharp and Smart ��� for ��� and ��� ERK pairs shows a gain in e�ciency
is possible if an extra stage is used to form the pair� The extra stage means more free
parameters are available� permitting a smaller value of E�

��� but this is at the expense of
increasing 	by one
 the number of function evaluations required to take a step�

To investigate if a gain in e�ciency was possible for ��� pairs� we derived a family
of �
�stage ��� pairs� The family has six more free parameters 	three abscissae� three
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interior weights
 than the ���stage ��� pairs�
The key to the derivation is the vector of positive integers 	 � �	�� 	�� � � � � 	s���

T �

ck��i

k � �
�

i��X
j��

aijc
k
j � k � �� � � � � 	i � �� i � �� � � � � s� � 	�


aij � �� if 	i 
 	j � �� j � �� � � � � i� �� i � �� � � � � s� �� 	�


The ���stage pairs have 	 � ��� �� �� �� �� �� �� �� �� �� �� �� �� �� ��T� to obtain 	 for the �
�
stage pairs� one positive integer less than �ve must be inserted� We examined three choices
and found that inserting a � after the second � to give

	 � ��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��T

led to the largest number of free parameters�
With 	 speci�ed� the derivation is similar to that for the ���stage pairs� the main

di�erence being fewer constraints on the abscissae for the �rst nine stages� We took c��
c�� c	� c
� c�� c��� c��� c��� c��� c��� a��
� a������ a������ a����� as free parameters� other choices
are possible� but the number of free parameters remains the same� The abscissae c�� c��
c�� c�	 and c�
 are constrained as

c� �
�

�
c�� c� �

�c	 � �c�
�c	 � �c�

c	� c� � c�
��c	c
 � ��c	c� � ��c
c� � ��c��
�	�c�� � �c	c� � �c	c
 � �c
c�


� c�	 � c�
 � �� 	



and the expression for c�� is the same as for c�� in the ���stage pairs except c�� c�� c�� and
c�� are replaced by c�� c��� c�� and c�� respectively�

We performed a minimisation of E�
�� for the new family using an interactive grid search

and steepest descent 	a grid search by itself was impracticable because of the large number
of free parameters
 and obtained a pair with E�

�� � ���� ���
 and E�

�� � ���� ����� The
value of the free parameters to four decimal places are c� � ���
�
� c� � �����
� c	 �
������� c
 � ����
�� c� � ��
��
� c�� � ������� c�� � ������� c�� � ������� c�� � ���
���
c�� � ������� a��
 � �������� a����� � �����
�� a����� � �����
 and a����� � ��������
Equations 	

 together with 	 given above and the algorithms in �
� can be used to �nd
the remaining coe�cients�

A comparison of E�
�� for the new ���stage and �
�stage pairs suggests� after scaling by

the number of stages� the �
�stage pair will be �� percent more e�cient at small stepsizes�

��� Generalised

The families of ��� pairs described in the previous sub�section are readily generalised to
include either one or two extra free parameters�

One generalisation is to replace bbj� j � �� � � � � s by the convex linear combination

�bj�	���
bbj� This substitution is equivalent to making one of the previously identically

zero bb a free parameter� The local error estimate for the pair is changed� but since bj�
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j � �� � � � � s � � remain the same� the error coe�cients of the order nine formulae and
hence E�

�� 	and E�

��
 are unchanged�
The second generalisation is based on a transformation obtained by Verner ��� for two

families of ��stage ��� 	ERK
 pairs� Verner showed the family of Prince and Dormand

��� which has c�� c�� c�� c	� b� and bb
 as free parameters can be obtained from the class in
Verner �
� which has c�� c�� c� and c	 as free parameters using a simple transformation on
the last two rows of interior weights�

This transformation generalises 	Verner� private communication
 to other families of

pairs� including the ��� pairs in this paper� This means b�	 and bb��� previously zero in the
���stage ��� pairs� and b�
 and bb�	� previously zero in the �
�stage ��� pairs� can be free
parameters�

The introduction of these two free parameters changes the local error estimate and
the principal error coe�cients of the order nine formula� However� as is the case for the
��� pairs in �
�� the change in E�

�� and E�

�� is small for near optimal pairs�

� DE���

Newhall� Standish and Williams ��� presented DE ���� an ephemeris of the solar system
and the Moon� obtained by integrating a system of �� second order ordinary di�erential
equations of the form

y�� � f	t� y� y�
� 	�


The system 	�
 consists of equations of motion for the nine planets� the Moon together
with three equations for the lunar physical librations� The motion of the Sun is found
from the de�nition of the solar system barycentre� The equations contain contributions
from point�mass interactions� �gure e�ects for Earth and the Moon� Earth tides and
perturbations from the �ve asteroids 	�
 Ceres� 	�
 Pallas� 	�
 Vesta� 	

 Iris and 	���

Bamberga�

The calculations required for one evaluation of the second derivative for 	�
 are de�
scribed in Figure �� A fuller description is given in ��� and by inference in the program
DE���i�ARC of Moshier� available on the internet�

� Numerical experiments

We conducted numerical tests of the two new ��� pairs and the 
�� pair of Prince and
Dormand on the DE��� equations described in the previous section� The results are
illustrated below� The pairs are denoted by PD
� 	Prince and Dormand 
��
� P�� 	new
���stage
 and P�
 	new �
�stage
�

A computer which performed quadruple precision in hardware was unavailable and
hence we used the the multiprecision Fortran�� package MPFUN�� of Bailey ���� with
the precision level set at �� digits� approximately that of quadruple precision� The multi�
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�� Initialise

a� Calculate the heliocentric position and velocity for the asteroids and transform to approximate

barycentric values� These values are corrected once the correct position of the Sun is known�

b� Calculate the distance between the bodies� The distances involving the Sun or asteroids are

estimates only� These distances are corrected once the correct position of the Sun is known�
c� Use �xed
point iteration to �nd the correct position and velocity of the Sun and asteroids�

then correct the distances involving the Sun or asteroids�

d� Calculate the cube of the distances between all bodies�

�� Point�mass acceleration

a� Calculate the Newtonian acceleration of all bodies�

b� Calculate the post
Newtonian acceleration of the planets and the Moon�

�� Figure of the Moon

a� Form the rotation matrix for the transformation from space to body coordinates�

b� Calculate the e�ect of the point
mass Earth on the lunar �gure and add this to the lunar

acceleration�

c� Calculate the torque on the Moon due to the gravitational interaction between the lunar

�gure and the external point
mass Earth�
d� The acceleration from b� induces an acceleration in the Earth 
 add this to the Earth
s

acceleration�

e� Calculate the e�ect of the point
mass Sun on the lunar �gure and add this to the lunar

acceleration�

f� Calculate the torque on the Moon due to the gravitational interaction between the lunar

�gure and the external point
mass Sun�

g� Calculate the acceleration of the libration angles�

�� Figure of the Earth

a� Calculate the e�ect of the point
mass Moon on the Earth
s �gure and add this to the Earth
s

acceleration�

b� The acceleration from a� induces an acceleration in the Moon 
 add this to the lunar accel

eration�

c� Calculate the contribution to the acceleration of the Moon and the Earth due to the Earth

tides�

d� Calculate the e�ect of the point
mass Sun on the Earth
s �gure and add this to the Earth
s

acceleration�

The accelerations in this section are adjusted for the precession and nutation of the equinox and

obliquity of the ecliptic�

Figure �� A summary of the calculations required for one evaluation of the second deriva�
tive in the mathematical model of DE ����

�
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Problem DE102: Interval of integration of 20

Base 10 logarithm of the norm of the end−point global error
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Figure �� A log�log graph of the number of derivative evaluations against the norm of the
end�point global error for DE��� with a integration interval of ��� Prince and Dormand

�� pair � dashed line� new ���stage pair � dotted line� new �
�stage pair � solid line�

precision version of our program was �
� times slower than our double precision version
which makes the use of MPFUN�� impractical for long integrations�

The coe�cients of the 
�� pair as speci�ed in ��� are accurate to approximately ��
digits� We recalculated the coe�cients in ��� digit arithmetic� using the values of the free
parameters in ���� and used these coe�cients� rounded to �� digits� The global error in a
numerical solution was obtained by calculating a more accurate solution and taking the
di�erence between the two solutions�

The �rst example is for an integration interval of �� and local error tolerances of
��i� i � ���� � � � ����� Figure � contains the log�log graph of the number of derivative
evaluations against the norm of the end�point global error 	the points have been joined
for clarity
� Pair P�
 is more e�cient than P�� suggesting the e�ciency is improved by
adding a stage� The gain in e�ciency varies from �� to �� percent� in good agreement
with that predicted using E�

��� The pairs P�� and P�
 are more e�cient than PD� for
global errors smaller than 	approximately
 ����	� and ������� respectively� In addition
and as can be expected from the order of the pairs� the e�ciency of ��� pairs relative to
the 
�� pair increases as the global error decreases� For example� P�
 is �� percent more
e�cient for a global error of ����� and �� percent more e�cient for a global error of ������
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Figure �� A log�log graph of the number of derivative evaluations against the norm of the
end�point global error for DE��� with a integration interval of ��� Prince and Dormand

�� pair � dashed line� new �
�stage pair � solid line�

The second example is for an integration interval of �� using the same local error
tolerances as in the �rst example� The results are given in Figure �� P�� was excluded
because our test results such as those in Figure � showed P�� was less e�cient than P�

for the local error tolerances we were using�

The e�ciency of P�
 relative to PD
� as a function of the global error is similar to
that for the �rst example� except for a minor di�erence at the larger global errors� The
global errors are larger than in the �rst example� a result which is consistent with a larger
interval of integration�

� Discussion

The main aim of our work was to investigate if ��� explicit Runge�Kutta pairs were
more e�cient than lower order pairs� principally 
�� pairs� for numerically integrated
ephemerides� We derived a new family of ��� pairs� obtained near optimal ��� pairs from
this family and an existing one� and compared the performance of these pairs and the 
��
pair of Prince and Dormand on the equations of the ephemerides DE����

Our testing showed the ��� pairs were usually more e�cient than the 
�� pairs� The
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gain in e�ciency was not large� but given the amount of CPU time required to produce
ephemerides� the gain is signi�cant� Our testing also showed that near optimal �
�stage
��� pairs can be more e�cient than near optimal ���stage ��� pairs�

As part of this work we introduced the equations of DE��� as a test problem for
integrators of initial value ordinary di�erential equations� This problem� in addition to
being a realistic one� has several interesting numerical aspects� For example� the position
and velocity of the Sun is found by solving a system of nonlinear 	algebraic
 equations�
The question arises as to the most e�cient way of solving these equations�
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