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Valuation of bonds and options under floating interest
rate.
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Abstract
The evolution operators, generators of which contain a numerical parameter forming
a Markov process, are considered in connection with problems of financial mathemat-
ics. Under certain conditions the exact and explicit expressions for the values of the
evolution operators averaged over trajectories of the process and for the correspond-
ing variances are derived. Obtained results are applied for valuation of some financial
products with account of floating interest rates.
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1 Introduction: Averaged evolution versus stochastic
calculus.

The standard Black-Scholes analysis, [1, 2, 3] usually is based on hypothesis, that asset price
follows lognormal random walk and the corresponding risk-free interest rate r = ro and asset
volatility are assumed to be known functions of time. The Black-Scholes algorithm for option
pricing is derived under assumption that there are no arbitrage possibilities, which means
that all risk- free portfolio earn the same return and trading of the underlying asset goes
continuously so that one can sell or buy any share of the asset immediately, if it is necessary.
By the fixed interest rate r = ry these assumption give the following standardized form of
Black-Scholes equation for European call option value C' normalized with respect to exercise

price E in logarithmic scale of prices S = Ee® and reverted time 7: ¢ =T — 2%:

oo (oo
or Oz

v
o2 or o2

with the initial condition
v(z,0) = max(e® —1,0)

and exponential asymptotics at £ — 0o. Here o is the volatility of the underlying asset’s
price and r is the interest rate, see for instance [3]. The analysis of Bond pricing requires



random interest rate, see for instance [4, 5]. In this case the interest rate is usually assumed to
be governed by some stochastic differential equation defining the local increment of interest
rate in dependence of time and absolute value of the interest rate, e.g.

dr = w(r,t)dX + u(r,t)dt.

For special choice of parameters u,w the equation for Bond price similar to Black- Scholes
equation was solved by different authors, see [6] via stochastic calculus approach.

In this note we study the problem of option pricing under floating interest rate using
remarkable properties of the averaged evolution noticed first by R. Griego and Hersh, see
[8]. For the mathematically similar problem of description of quantum evolution on the
Markov background these properties were rediscovered and intensely used by physicists for
investigation of the M&ssbauer Scattering in disperse media, see [9]. The rigorous analysis
of the models of quantum systems on Markov background was done in [10] and [11]. In
both papers [10, 11] the investigation of the averaged dynamics was successfully reduced to
study of the spectral properties of the well-defined nonselfadjoint ( dissipative) operator -
the generator of semigroup formed by the resolving operator for the Schroedinger equation
with random Hamiltonian averaged over all trajectories of the stochastic process.

The actual paper is an attempt to demonstrate that the same approach may be applied
to the problems concerning pricing of some financial products under random parameters in
stochastic differential equations for underlying assets. In Section 2 we consider the Cauchy
problem for the equation

{ %1/} = _H(t)¢) t>0, (1)

P(0) =,

in the Hilbert space K with densely defined closed operator function H (t), consequent values
of which form some stochastic process. Following the main idea of [8] for the problem (1)
we obtain under certain assumptions explicit formulae for the values of quadratic form and
for matrix elements of resolving operator averaged over all trajectories of the process and
for the corresponding variance at any moment of time ¢.In Section 3 the obtained general
formulae are used in the simplest case dim K = 1 for calculation (in frameworks of some
model) present values of zero-coupon bonds under assumption that spot values of interest
rates form a Markov process. In Section 4 under the same assumption the exact expression
for the analogue of the Black-Scholes formulas for averaged values of European options and
corresponding variances are presented.
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2 Operators of Averaged Evolution

If the variable interest rate r is a bounded measurable function of time, then the capital
gain from the investment of zy dollars under this variable interest rate can be calculated via



solution of the differential equation

dx
E - T(t) )
z(0) = xo,

which gives
m(T) — Xy = To I:ef[)T r(t)dt _ 1l .

We assume now that r(¢) is a Markov process governed by the Fokker-Plank equation for
transition probabilities w:

— + Mw = 2
dt+w0’ (2)

where M is a bounded operator acting in a Hilbert space of functions f(r) on the corre-
sponding stochastic space - the set of all values of 7(t). The operator M is submitted to
the condition that the Markov property for transition probabilities holds. For the purpose
of pricing of financial derivatives under the floating interest rate it is enough to consider
the case, where is a finite or countable set. Therefore we will assume that is realized
as Cn, N = card < oo, with the euclidean norm or as the space l; in countable case,
respectively. We will assume also that a finite or infinite matrix M has form

M= XTI -W), (3)

where A > 0 and W is a stochastic matrix. Actually (3) means that possible changes of r(t)
are only instantaneous random jumps between points of with the matrix of the transition
probabilities W, which may happen at random moments of time distributed according to
the Poisson law, that is the probability of occurance of n such moments in the interval (0, t)

is equal to
Y (At)"

n!

In other words 3 means that r(t) is a pseudo-Poisson process [14]. For such process the result
of averaging of the present values of financial derivatives over all anticipated trajectories
r(t),t > 0, which begin at 7(0) = r;,, may be calculated in general on the base of the
following special statement, Theorem 1 below, which is a result of application of the general
ideas of the theory of quantum evolution on the Markov background [8, 9, 10, 11, 12] to our
special case.

Let us consider operators H(r),r € , which acts in a Hilbert space and

e are closed and have r-independent dense domain ;

REHT)p,0) > vllel 0 €, (4)

where v > —o0 is also r-independent;

e there exists C' > 0 and a > 0 such that the evolution operators

Q(t;r) = exp (—tH(r)),t > 0, (5)



satisfy the following uniform estimate for arbitrary r,7' € and t € (0,7),0< T < o0

lQt; ) — Q)| < Cte. (6)
The transformation of the Cauchy data (0) € of the equation
LA oY .
ot ’

along the selected trajectory r(t) is formally produced by T - product

0(t) = U)o 0) = Texp | - [ Hi(s)ds | w(0) (®)
0

Under our assumptions r(t) and hence H (r(t)) with the probability equal to one are piecewise
constant functions having only a finite number of jumps on each interval [0, ¢].

Let t; < to < ... < ts be the set of all possible jumps on the time interval (0,¢) for the
fixed trajectory r(t). The evolution operator along this trajectory of the Markov process

Ut;r) = Q(t —ts;r(ts +0)) - Q(ts — ts—1;7(ts—1 +0)) - ... - Q(t1;7(0)) 9)

generally do not form a semigroup. Nevertheless averaging over trajectories generates a
semigroup of bounded operators which may be used to calculate the evolution operator
(9) averaged over all trajectories starting and finishing at the fixed points 7(0) = r;, and

r(t) = Tout :
(U(t;r)) |7'out,7'in

as described below.
Let diag, H be the linear operator in the tensor product x of the Hilbert spaces and ,
which acts on vectors of the form z ® f(r), where z € , f(-) €, as follows

diag, H (z @ f(-)) (r) = H(r)z ® f(r).

It is easy to see that ¥ diag,H is a densely defined closed operator in x and ¥ diag,.H >

a > —oo. Let M be the bounded operator in X defined as I x M, where I is the identity
operator in , Ie = e, e € . Under our assumptions each vector h € x can be represented
as vector functions h(r),r € , taking values in such that

2 2
Ifl* =" |1
re
We denote by P.,r € , operators from x onto , which acts on the vector h in x as

P.h = h(r).

Observe that (Prz)(r') =z ® d,p, @ € .



Theorem 1 Let operators H(r) and the process r(t) satisfy the above assumptions. Then
the evolution operator (9) averaged over all trajectories of the process with fized ends r(0) =
Tin, T(t) = Tout , is given by the expression

UE)) Irowe rin= Pron GO P, (10)

where G(t),t > 0, is the semigroup of bounded operators in x generated by diag,H + M s
i.€.

G(t) = exp (—t (diag,,H + 1\7)) > 0. (11)

Proof. Let us consider the evolution operator U (t;r) for the equation (9) on a fixed trajec-
tory 7(t) which has s jumps in (0,¢). This operator we approximately represent in the form
of a T-product

Un(t;r) = []exp(-ANH(r+0)),
k=1
A, = % re = r((k = 1)A, +0). (12)

According to (4), (6) and (7, 8) for the uniform error of this approximation we have the
estimate
s Ct¥e "t

nOé

Ut ) = Un(t;r)ll < (13)

To calculate the average of the evolution over the set of all trajectories with the fixed
ends 7, royt we form first the T-product (12) over all trajectories passing the prescribed
gates rg, k =1,..., N — 1 at the fixed moments leaving at t; = kA,. By (2) the emergency
probability of such trajectory is given by the product

w(rla cesTp—1 | rin(: TO)arout(: Tn)) = H G(Tka Tk—1, An)a
k=1

G(re, rk—1,A,) = (exp(—MA,)) (14)

g
Multiplying the evolution operator U(t;r)‘rmmv along a certain trajectory by the corre-
sponding emergency probability (14) and forming a sum of the obtained expressions over
all trajectories fitting the at the moments t; to all prescribed "gates’'r;,1 <k < N —1 we
receive P, (U(t;r)) PY. . Applying the same procedure to U(t;r)y yields the expression

P, (Utr)) Pro=> [ Gl rio1, An) exp (~AH(ry 1)) =

TRE k=1
n
Pr,.. [] (exp(=MA,) exp (—diag, HA,)) P, =
k=1
—~t . t\\" ..
P, ., (exp(—M—) exp <—dlagTH—>> Py . (15)
n n



By our assumptions the probability of some trajectory r(t) to have exactly s jumps on the
interval (0, t) is

At)®

)

s!

Therefore by (13)

KU &) frowerin = UG lrowesrin | <
SANUET) rowesrin —UET)0 rguerin ) <
At1+a
<AlU@tr) Ul < —3 e " (16)

Applying to (15) the Trotter formula [15], which is valid under our assumptions, we obtain
the following formula for the strong limit of the products 15

. —~1 ) t\\" ) —
s —limp 00 <exp(—Mﬁ) exp (—dlangﬁ>> = exp (—t (dlang + M)) ) (17)
Combining (17) and (16) yields the assertion of the theorem.

Corollary Let operators H(r) and the Markov process r(t) satisfy the above assumptions
and ;,(t),t > 0, be a random vector function defined by the expression

t
bin(t) = Ult; )by = Texp | - / H(r(s))ds | $ins i € -
0

For arbitrary v, € the value of the functional oyt in(t) = (¥, (1), Y our) averaged over
all trajectories r(t) beginning at ri, and ending at r,u: is equal respectively to

<\I"out,in (t)>,.ln = Z(Prout G(t)P:ln ¢in7 z:/}out) (18)
or
(‘I’out,in(t»,r.out = Z(PTout G(t)P:mizbznv wout)’ . (19)

We use the avaraging techniques to compute the variance of the random evolution. We
assume in addition now that

e the linear operator
diag,H x I x I +1I x diag, H x I

in the tensor product x x , which is defined on the linear set x x and acts on vectors
of the form z; ® 2 ® f(r), where z1,z5 €, f(+) €, as follows

(diag,.H x I x I + I x diag, H x I)) (z1 ® 22 ® f(-)) (1)
= Hrz @z f(r)+x1 @ H(r)za @ f(r)

is closable and its closure diag, W has the property
Rdiag, W > 2y > —c0.



e the semigroups generated by the operators H(r),diag,H,diag, W are real i.e. the
congugation operator J,
2 =1, (Jo,y) = (z,y)

defined on the whole space , commutes with operators of all above semigroups in
corresponding Hilbert spaces.

Let M be the bounded operator in X defined as I x I x M. Observe that M and M are
real operators. As above we represent each vector h € x x as vector functions hya(r),r €
,with values in x and denote by P*% r € , operators from x x onto , which acts on h €
X X as

PX?h = hyo(r).

Applying the same arguments as in proof of Theorem 1 we obtain in addition to (18) a
tool for calculation of the variance

_ ‘(q;out,m(mr, ’ (20)

in

Var[Zout,in (8)] = (Lot in(®)]”)

Tin
Theorem 2 Let operators H(r) and the Markov process r(t) satisfy the all above assump-
tions. Then the value of functional |,y in(t)|> averaged over all trajectories r(t) inceptive
at rip or ending at Ty equals

(outin®F) =D (P2, Goa P2 Vi © Wi Yo © W) (21)
o Tout
or
(outin®F) = S (P2, G OP2 Vin © Woins s @ Tpua) s (22)
out Tin

where G2 (t),t > 0, is the semigroup of bounded operators in x X generated by diag,,W+M\,
i.€.

G2(t) = exp (—t (diang + ]\7)) ,t > 0. (23)

Proof.  Under our assumption for a certain trajectory r(t) with arbitrary end r;, the
operator U(t;r) is real. Therefore

|ql0uhin(t) |2 = (U(t; r)d]in’ djout) (U(t; r)d]in? djout) =

= (U(t; r)d]in) djout) (U(t; T)J/‘/}inv J¢out) =
= (sz(t; T) (wzn ® szn)a djout @ deout) X ) (24)

where Ux2(t;r) = U(t;r) ® U(t;r) is the resolving operator for the Cauchy problem for the
equation

a J—

5V =
in x . Now using (24) and repeating word for word the reasonings given as a proof of the
Theorem 1 we obtain (21) with G2 (t) defined by (23).

(H(r(t)) x I+1x H(r(t))y



3 Bond valuation

Recall that a pure discount bond, or zero coupon bond, makes no intermediate payments
between its issue date and its maturity date 7. It promises only to pay a certain amount at
its maturity, which is called its par value, or face value. The difference at any intermediate
t between the par value Z and the lower selling price V' (¢,T) is the bond discount. If the
varying interest rate is deterministic, then

T

V(t,T) =exp —/r(s)ds Z. (25)

If values of interest rates r(s) form the Markov process governed by (2), r(t) = ry, and there
are no arbitrage opportunities, then

T

V(t,T):<exp —/r(s)ds Z> , (26)

t

Tin

where as before the brackets with subscript r,, denote the ensemble averaging over all tra-
jectories of the process inceptive at r;,.
Let us assume that r(s) takes only 2N + 1 or 2N equally spaced values

Ty =79 +md, m=0,+1,...,+N, § > 0, (27)
o 1 2N +1
Tm = To +md, m:ﬁzg,...,iT—F, 4 >0, (28)

respectively. Then for the problem of calculation of V' (¢,T) the operator M in (2) can be
considered as a (2N + 1) x (2N + 1) or 2N x 2N matrix ensuring the Markov property and
the conservation law for transition probabilities. If the space of states for each value r,,
is one-dimensional then the operator H(r,,) is simply the multiplication by r,, and hence
diag, H is the diagonal matrix rof + R with elements r,,0d,, ../, where d,, ../ is the Kronecker

symbol, I is the unity matrix.Applying Theorem 1 and Cofollary 2 we obtain the expression
for the averaged selling price of the Bond in form:

V(e,T) =Y (e*<R+M)<T*f>) eIt g (29)

m,Min
m
under present value of the interest rate r(t) = ro + m;nJ.
.From now on we shall consider the special case, where for r taking N' = 2N + 1 or
N’ = 2N values (27) or (28), respectively we have

1, 1, 1
11, 1, .1

M =XI-P),P= Nl oo A >0. (30)
1, 1, 1



Here I is the identity matrix; P is the rank one matrix, which represents the projection onto
the onedimensional subspace of column vectors with the all elements equal to each other.
Observe that such a choice of M provides the property

6_(T_t)M — P+ (I _ P)@*A(Tft)

T—oc0 ’

1, .. 1

1
S —(T-OM _ p _
i P=x

Using the notation

we get the representation for P in form
P =(xe)g_e.
and for the generator of the averaged evolution
R+M=A+R-Ae)_e.

Basing on the Theorem 1 we calculate now the averaged evolution of the investment
via the Riesz integral of the resolvent of R + M. Let us consider the resolvent of the
“nonperturbed’ diagonal operator R:

Gw=(R—w) "
Then the resolvent of R 4+ M is given by the Krein formula
(R+M —w)™" = Gyor + XO(w = N) 7' (x,Gu-re) ¢, Gu-re

involving the perturbation denominator

O(w) =1 — A(Gye,e) :1—12 L

N’ & mé —w
For N' =2N + 1 and N' = 2N we have
N
A 1 2w
S} = 14— — ==
2n+1(w) + 2N +1 (w +nz::1w2 _n252>’
Pyl w
(S = 14— .
QN(w) +an::1w2—(n—%)252

Considering the Riesz Integral over some simple contour A encircling all eigenvalues of the
operators R and R + M we may represent the evolution operator as

em(BEM)(T—t) _ _ 1 e=(T=0W(R 4 M — )~ duw =
21 A

10



1 T _
~5mi ¢ (1) (Gw,A+A®(w—/\) 1(*,G@,>\e)cN,Gw,>\e) dw. (31)
Since

3 (GUH +20(w — A) L (x, G re)e,, Gw,Ae)

m

= Ow-\""!

m,Min
1
Mind + A —w

Then for the present value of the interest rate ro + m;d from (29) and (31)we obtain the
sum of residues:

V,T) = e TN N )(w1 e A (32)

where w,runs over the set of all zeros of the perturbation determinant ©(w).
In the simplest case when the interest rate randomly jumps between two values rg + %,
applying (32) yields

1
V(t,T)= e’(’"0+%)(T*t){cosh —\/ A 4 0%(T —

At )

+\/2751nh \/X2+52 T—t)}2, r(t) =ro+ 3. (33)
P

Since in the case of bond valuation dim = dim XK = 1 Theorem 2 appers to be trivial for

calculation of the mean-square deviation of the bond price from the anticipated value of it

1
2

T
D, (V) = <exp 9 / r(s)ds > _ VLT (34)

t

Tin
Indeed, by (34) the average of the distribution of squares of the bond prices may be

found by the same formulas (32), (33), in which only rpand § must be redoubled.
For the model (33) under the condition § < A, A(T' —t) < 1 we have

%(g) =0 (\/W(T—t)%).

Note that the above obtained expressions may be used for specification of time values of
a series of payments, future values etc. with account of random jumps of interest rates.

4 The averaged formula for the Black-Scholes option
pricing model
. From the formal point of view calculation of averaged values of financial derivatives in the

frameworks of the Black-Scholes model is reduced to determination of the averaged resolving
operator of the Cauchy problem for the equation

ov 0% v _ 2r(7)
97 022 + (q(t) — 1) 9z q(T)v, q(1) = o2 »y —00 < T < 00, (35)

11



Here r(1) > 0,0 < 7 < 00,is the stochastic process with transition probabilities governed by
the equation
dw 2 o2

Under our assumption the set of values of r(7) is finite or countable. Equation (35) has form
(1) with densely defined closed operator

Hps(r) = =0 = (alr) = 1) 2 + 4(7)
BS T T o2 q o q
in the Hilbert space = L?(—o00,00), which is defined on the r-independent linear set of

all absolutely continuous functions with absolutely continuous first derivative and square
integrable second derivative.

Proposition 3 Operators H(r) satisfy conditions (4) and (6) with o= 1

Proof The standard unitary Fourier transform in L2(—o0, c0)

(S’f)( 7zsz dwv f € L2(—OO,OO),

Sk

grades Hpg(r) into the multiplication operator by the function
Hps(r;k) := k* + q — ik(g — 1).

We see that (4) holds since
RHps(r; k) = k% +q > 0.

The image of the semigroup of operators Q(¢; r) generated by Hpg(r) under the Fourier
transformation is the semigroup of the multiplication operators

Q(t;r)(k) = exp (—HBs(T; k)t) , t>0.
Taking into account that for different values r1, 79 satisfying the condition
|e_“t — e_r2t| <t

holds the inequality

2 (r1—1o
_ok2¢ . o2 (T1 — T2 _ 1 2 5, —op2) 4sin ( 2 kt)
de sm( 5 kt) = gl —ra)? (2K ) S

1
_(rl - T2)2t7

<
- 2e

we obtain for any f € L?(—o00,00) the estimate

/IQ(t;h)( QUt: ) () 1 ()2 dk

12



_ / ‘ef(ik+1)7‘1t _ o (ik+1)rat 2 o 2k%t |f(k)|2 dk
—00

< et e PP [ e (“;7“2kt) P d
< (2+Xe) o —m2 s
- 2e

Therefore
1Q(t;m1) — Q(E;2) |0 =O(V).

Due to Proposition 3 operators H(r) satisfy all conditions of the Theorem 1. Hence the
averaged resolving operator for the Cauchy problem for the equation (35) can be calculated
via the Theorem 1 and Corollary 2 using as a tool the related semigroup G(¢) in the space
L2(—o00,00) x £, which may be considered as the Hilbert space L?(—o0,00; L) of vector
functions f(x) on the real axis with values in £ and the norm

171 = [ @I da.

Under the unitary Fourier Transform the semigroup G(t) grades into the semigroup of
operators acting as ”multiplication” by the operator functions

G(t)(k) = exp (-(ﬁBS(r; k) + %Mﬁ) .

We assume now that r(7) takes only a finite number of different equally spaced values like
in (27), (28) and M has form (30) as in Section 3 and keep the notations rg, 7, introduced
there:

2T0 QTO

wk) = —5 —ik(= 1)+
ag (2
120 2A
k) = (A—ik)—,n=—.
(2 ag

Then for each k € (—00,00) we see that
diag, H (r; k) = qo(k) - I + R(k)

is the diagonal matrix with elements (go(k) + €(k)m)d,,,m/. With all this notations

~

G(t)(k) = e~ M7 exp (—(R(k) + nM)T). (37)

If M is defined by (30), then introducing as above the function

0= ) = 1= () ~=)e.0) =1~ 3 3

13



and repeating arguments resulted in (32) we obtain the following expression for the Fourier
transform of the resolving operator of the Black - Scholes equation (35) averaged over all
trajectories of r with r(¢) = ry,. For the problem with given data at time T' > ¢ this
coincides with the multiplication by the function

G(k,T —t) = exp (—U;qg(k)(T - t)) x

1
7(T7t)wn;k
; 6I(rwn;r: k) (wn;k — mme(k)) € ’ (38)

where wy,.;, runs the set of all zeros of ©(w, k).
Observe that the factor

Galk. T~ ) = exp (- Zan((T - 1))

in (38) is just the Fourier transform of the Green function for the Black-Scholes equation
with the constant interest rate roequal to the simple mean of those over the stochastic space
and a given value of a sought function at the moment 7'.

Let us introduce the Fourier transform of (38)

1 —(T— i
(T—t)wn;p+ike
D(:L’ T - t 7zn . § : / ‘371-@ wnr: )(wn;k —mme(lc))

and denote by C(S,T—t; E, 19, o) the price of simple European call option on some asset with
the present value S = Ee® calculated via the Black-Scholes formula[l] for the given strike
price E, volatility ¢ and the interest rate ro. The following assertion is an interpretation of
the expression (38).

Theorem 4 Let the random r(7) takes only a finite number of different equally spaced values
and the matriz of transition probabilities M for the stochastic process has form (30). Then
the present value of the simple European call option averaged over all trajectories of the
process r(t') inceptive at t' =t at r;, is given by the formula

. 7 ds’ S . , .
(C(S, T -t; E,r,0)),, = 5 —D(In SI,T—t,rm)C'(S,T—t,E,rO,U).

0

Now on the base of Theorem 2 let us calculate (C?(S,T — t; E,r 0’)> . In the part of
operator W appearing in this theorem now acts the properly deﬁned closed normal operator

0?2 9? 0 0
Hysps(r) = T 0l (q(r) = 1) (8—:1:1 + 6—x2> +2¢(7)

in the Hilbert space
= L?(—00,0) ® L?(—00,00) = L*(E>).

14



Using the two dimensional Fourier transformation we can prove as above that operators
H,»ps(r) satisfy conditions (4), (6) with a = %. Therefore the averaged resolving operator
for the Cauchy problem for the equation

Ov

a- = H><2BS(7°)U, —00 < x1,T2 < 00,

or
can also be calculated on basis of Theorem 1 and Corollary 2 . The image of resulted
semigroup Gy (t) under two-dimensional Fourier transformation acts as the multiplication
operator in L?(Es) ® on the matrix function

Ga(t) (k) = em kT =00 k)T oxp (—(R(Ky + ko) + nM)T) .
This yields the following assertion:

Theorem 5 Let the random r(7) is such as in Theorem 4. Then of the square of the present
value of the simple European call option averaged over all trajectories of the process r(t')
inceptive at t' =t at 1y, is given by the formula

< !
<02(S,T—t;E,r,a)>rin :/C%D(ln%,T—t;rm)Cz(S',T—t;E,ro,a).
0
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