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Abstract: In this paper we investigate the social choice
rule known as majoritarian compromise. We prove that
it is asymptotically strategy-proof for m > 3 alternatives
and that the ratio of the number of all manipulable pro-
files upon the total number of profiles is in the order of

O (1/v/n).

1. Introduction

Let IN stand for the set of all positive integers and let I, = {1,2,...,m}.
The elements of I,,, will be called alternatives. By £(I,,) we denote the set
of all linear orders on I,,,; they represent the preferences of agents over I,,.
The elements of the cartesian product

L(I,)" = L(L,) x ... x L(I,) (n times)

are called n-profiles or simply profiles. They represent the collection of pref-
erences of an n-element society of agents N = {1,2,...,n}. If a linear order
R; € L(I,,) represents the preferences of the i-th agent, then by aR;b, where
a,b € I,,, we denote that this agent prefers a to b.

A family of correspondences F' = {F,}, n € IN,

Fo: L(I,)" — P(In),

where P(I,,) is the power set of I,,,, we will call a social choice rule (SCR).
Normally it is assumed that F' represents a certain algorithm which, on
accepting a positive integer n and an n-profile R € L(1,,)", outputs a subset
FL.(R) of I,.



One of the SCRs is the majoritarian compromise procedure, which was
suggesteded by Sertel circa 1986 and has been widely discussed recently;
details can be found in [4, 9]. In this paper we study majoritarian compromise
from the following point of view.

The well-known impossibility theorem of Gibbard and Satterthwaite states
that every non-dictatorial singleton-valued SCR is manipulable [3, 6, 8]. This
result is also valid for arbitrary social choice rules with an appropriate con-
cept of manipulability (see [2] and the literature there, and also [11]). Thus
it is clear that for large groups of voters only those social choice rules must
be used, for which the probability of possibility to manipulate tends to zero
as the number of agents grows. We call such SCRs asymptotically nonma-
nipulable or asymptotically strategy-proof.

Since all non-dictatorial SCRs are manipulable, it would be useful to
know which SCRs are manipulable to a lesser extent. To this end, an ex-
perimental approach to the study of the degree of manipulability of SCRs
was initiated in [5] and continued in [1], where 26 different rules were investi-
gated by means of computer experiments. Another approach for evaluating
the degree of manipulability is theoretical. The author in [10, 11] proved the
asymptotic strategy-proofness of the plurality rule and the run-off procedure
and obtained that the asymptotics of the ratio of the number of manipulable
profiles upon the total number of profiles is in the order of O (1/4/n). In the
case of the plurality this asymptotics is exact.

The main result of this paper is that the majoritarian compromise is
asymptotically strategy-proof and that the speed of convergence to zero of the
probability to obtain a manipulable profile is also in the order of O (1/y/n).

2. Asymptotic Strategy-Proofness

The classical concept of manipulability was defined for singleton-valued
SCRs which are often called social choice functions [3, 8]. There are several
different definitions of manipulability for arbitrary SCRs. In [10, 11] the
author used the following one.

Definition 1 Let F be a SCR and let R = (Ry, ..., R,) be a profile. We say
that the profile R is manipulable for F if there exists a linear order R; such

that for a profile R = (Ry,..., R, ..., R,), where R; replaces R;, we have
one of the two possibilities:

1. For some a € F,(R) it is true that a R; b for all b € F,(R);
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2. The best element of F(R') relative to R; is the same as the best element
of F,,(R) relative to R; but F,(R') is strictly contained in F,(R).

The rational behind such definition is as follows. Suppose that the winners,
if we have more than one of them, will further participate in a lottery with
equal chances to win. Then every outcome can be viewed as a probability
vector. Introducing lexicographic ordering on probability vectors, we assume
that an agent will prefer one outcome to another if the probability vector of
the first outcome is lexicographically earlier than that of the second. This
definition was implicitely suggested in [3]. Another definition can be found,
for example, in [2].

The difficulty which causes these disagreements is clear. For any definition
of manipulability one has to know what changes of F,,(R) are advantageous
for the manipulating agent and hence one has to rank all subsets of alterna-
tives one way or another. The latter can be done in many different ways. To
avoid this difficulty we give the following definition.

Definition 2 Let F' be a SCR and let R = (Ry,...,R,) be a profile. We
say that the profile R is unstable for F if there exists a linear order R; such
that for a profile R = (Ry,...,R;, ..., R,), where R; replaces R;, we have
Fo(R) # Fu(R).

5yt -

Clearly every manipulable profile, no matter how the manipulability is de-
fined, is unstable. The reverse is, of course, not always true. Speaking about
manipulability we will have Definition 1 in mind.

The Kelly’s index of manipulability of F, as suggested in [5], is

Kp(n,m) = ", )

where dp(n,m) is the total number of all manipulable profiles for the set of

alternatives of cardinality m. Let us also define the index of instability of F

by the formula

er(n,m)
(mh)™

where ep(n, m) is the total number of all unstable profiles.

Lp(n,m) = (2)



Definition 3 We say that a SCR F' is asymptotically strategy-proof for m
alternatives if Kp(n,m) — 0 as n — oo and asymptotically fool-proof for m
alternatives if Lp(n,m) — 0 as n — 0o.

Of course, K(n,m) < Lp(n, m) and asymptotic fool-proofness implies asymp-
totic strategy-proofness.

3. The Majoritarian Compromise Procedure

Let us briefly review the majoritarian compromise procedure. According
to it, to determine the winner(s), first, a simple majority rule is used, i.e., an
alternative which was top-ranked by at least half of the voters will be chosen
and the procedure terminates. (Note that two of them might be chosen.) If
such an alternative does not exist, the first and the second preferences are
taken together and again any alternative which was ranked first or second
by at least half of the voters will be chosen. If this choice is nonempty, the
procedure stops. If such an alternative does not exist, we include the third
preferences and so on. In the k-th round every alternative which is ranked
no worse that k-th best at least by half of the agents will be chosen and the
procedure stops (if such an alternative exists).

If m is even, then at most £k = m/2 rounds will be needed to determine
the winner(s). Let n be arbitrary and let m = 2k — 1 be odd. Then it is easy
to see that & — 1 rounds may not be sufficient to determine the winner(s).
What then the last round must be? In [4, 9] this was not emphasised but we
need to make this clear because, as n approaches infinity, the procedure will
terminate in the last round with probability approaching 1.

In the sequel we will always consider that a profile is writen down in
a rectangular table with m rows and n columns in which the i-th column
contains the ranking of the i-th voter, her best alternative at the top, her
second best right below, etc. Since the upper k£ rows of the table contain
kn > m - 5 positions, then the average number of votes for each alternative
in the k-th round must be %n As we will show below, if we maintain
using the 1/2 majority rule in this last round, then, as n gets large, with
probability 1 all alternatives will get elected and everything will depend on
the tie-breaking rule (if it is employed). Therefore we should consider that
an alternative is elected if it gained at least the average number of votes, i.e.,
more than or equal to %n For example, for m = 3 the 2/3 majority rule
must be used, and for m = 5 we should use the 3/5 majority rule.
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We will need the following well-known in coding theory formula (see, for
example, [7])

(oznn> = (27a(1 — a)n) 22" (1 4 0(1)), (3)

where h(z) = —xlog,z — (1 — x)log,(1 — x) is the enthropy function, and

the inequality
n 2"
< —. 4
(wﬁ v “

Lemma 1 Suppose { < m/2. Then the probability that an alternative a € I,
is found in the upper { rows of the table at least n/2 —1 times is in the order
of O (a™), for some 0 < a < 1, when n — 0.

Proof: We consider that n is even; when n is odd, some minor and obvious
changes should be made. Suppose, first, that an alternative a € I, is found in
the upper £ rows of the table exactly s > n/2—1 times. Let i = m/2—¢ > 1/2.
Then the probability v, that an alternative a € I, is found s times in the
upper £ rows of the table is equal to

Gm—UD”(l

((mhHr  \s

When s > n/2, then n — s < s, and we get

1 (n 20\ 2i\"* 1 (n 42\"° 27\ 25"
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where @ = /(1 —1/m?). When s = n/2—1, then n—s = n/2+1, and
. s . n—s .2 S . 2
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for some C' > 1. The probability v = vy,/2_1 + V2 + - -+ + v, in question,
then, can be estimated as

The lemma is proved.

Corollary 1 As n approaches infinity, then the probability that the majori-
tarian compromise procedure terminates in the (-th round, for some { < m/2,
is in the order of O (a™), for some 0 < a < 1.

Corollary 2 Let R be a profile such that one of the agents can manipulate
with the magjoritarian compromise procedure either causing it to terminate in
the (-th round, for some ¢ < m/2, when it was not the case for R, or causing
it to continue to the ((+1)-th round, while the procedure was to terminate
in the (-th round, for some { < m/2. Then, as n approaches infinity, the
probability of drawing such a profile from the uniform distribution is in the
order of O (a™), for some 0 < a < 1.

Now we can prove the claim which was made earlier.

Proposition 1 If m = 2k—1 is odd and the 1/2 majority rule is used in the
last k-th round, then, as n approaches infinity, with probability approaching 1
all m alternatives will be chosen by the majoritarian compromise procedure.

Proof: By Corollary 1 it follows that the probability to get a profile for
which the majoritarian compromise procedure terminates earlier than in the
k-th round is negligible. Suppose that a certain alternative a is not chosen
in the k-th round. Then we have more than n/2 a’s in the lower k—1 rows of
the table. By Lemma 1, applied to the table reflected in the k-th row, this
probability is also negligible. The proposition is proved.

We are ready to prove our main result.

Theorem 1 The majoritarian compromise is asymptotically fool-proof for
m > 2 alternatives with the probability of an unstable profile being in the

order of O (1/+/n).



Proof: By Lemma 1 and Corollaries we may consider only those profiles
for which the procedure terminates in the last round. In general we have to
consider four cases depending on the parities of n and m. The parity of n is
not really important although the formulae will differ slightly depending on
the parity of n. We will assume that n is even. It will be absolutely clear
what changes should be made for the other case. The parity of m is more
important since the last round is different for even and odd m. Here we have
to consider two cases.

a) m = 2k is even. Then a profile is unstable if and only if, for some
alternative a, there are either n/2 or n/2—1 entries of a in the upper half of
the table. Thus by (4)

22) (/2 2(m 22 (m=1)))"
(m!)r

(/o) (m/2)"/2 (m/2)/241 (m—1))" n\1 _om
m <2m — < —.
(m!)m n/2)2" ~ \/n

b) m = 2k — 1 is odd. Then a profile is unstable if and only if, for some

alternative a, there are either (m;;)" (m; Ln

k rows of the table. Thus, using (3)

(m+1)n (m—1)n
m—1)H" n m+1\  zm m—1\ " zm
by € (1) (o) ) S
2
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Since h (m—_l) =h (—“) we obtain that L(n,m) = O (1//n) as required.

2m 2m
O

3. Conclusion.

There is a strong indication that all “natural” social choice rules are
asymptotically strategy-proof but what “natural” means is yet to be estab-
lished. It is also quite clear that the slow speed of convergence, in the order
of 1/4/n is quite typical for “natural” rules such as plurality and run-off [11]
and might be a consequence of some common property. We see that the
majoritarian compromise follows the same pattern and hence must be also
“natural.”
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