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ABSTRACT

Riprap is the most commonly employed countermeasure where bridge piers need to be protected against
possible undermining by scour. An extensive review of available design techniques revealed a wide range
of equations and proposed design procedures but no generally accepted method for riprap sizing and
implementation. The aim of this study was to develop a design procedure for riprap protection at piers

which can be used in most river environments.

The failure mechanisms and stability of riprap layers around cylindrical and rectangular shaped piers were
examined in a comprehensive experimental study. The study assessed the importance of various riprap,
flow, sediment, and pier parameters. Parameters for investigation were determined by dimensional

analysis and included riprap placement and arrangement.

A riprap size prediction formula was developed based on an allowable maximum local scour depth of up to
20%. This equation has been incorporated in a design approach which was tested through a model study of
the Hutt Estuary Bridge. The influence of various parameters on riprap stability are incorporated in the

equation by way of adjustment factors.

The adjustment factors, Ky and Ko, represent the effects of riprap placement and pier/sediment size ratio
effects respectively. They were deemed the most important parameters in riprap layer performance and are
therefore included in the riprap size prediction formula. Additional experiments using synthetic filters
have shown their ability to eliminate local scour, however they are susceptible to failure under degrading

bed conditions.



I

Degrading bed conditions cause the riprap to subside as a layer with the downward movement of the
surrounding bed. Subsidence allows the layer to withstand rapid short term degradation. However long

term degradation will ultimately result in failure of the stone protection.

A preliminary experimental study of the use of submerged vanes as a scour countermeasure was
performed. Submerged vanes have been used previously in channel protection with much success. Results
indicate that vanes with a length to height ratio greater than one can reduce the maximum local scour depth
in live bed conditions by as much as 34%. Further testing is required to develop a complete design

procedure.
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List of Symbols

=

angle of the pier to the approach flow

pier alignment factor

width of the pier (for non cylindrical piers)

extent of lateral coverage of the riprap layer

pier diameter

riprap size (size for which 30% by weight is finer than the stated size)
mean sediment size (size for which 50% by weight is finer than the stated size)
mean riprap size

degradation level

depth of scour experienced by the riprap layer

depth of scour below original bed level

maximum depth of scour below original bed level

geometric standard deviation of sediment or riprap size

longitudinal spacing of vanes

flow Froude number

gravitational acceleration (g = 9.81 m?/s)

unit weight of stone

unit weight of water

height of submerged vanes measured from the average bed level

used to denote an adjustment factor for a specific flow, sediment, riprap or pier parameter

length of the pier (for non cylindrical pier)
length of submerged vanes in the streamwise direction
Manning’s roughness coefficient

number of vanes

stability number

density of the fluid

density of the riprap stones

density of the bed sediment

safety factor

shape factor

specific gravity of the riprap stones
specific gravity of the bed sediment

thickness of the riprap layer






