

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

University of Auckland ENGINEERING LIBRARY

Pier Scour Countermeasures

by

Christine S. Lauchlan

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

> Supervised by Dr. B.W. Melville

Department of Civil and Resource Engineering The University of Auckland Private Bag 92019 Auckland New Zealand

January 1999

University of Auckland ENGINEERING LIBRARY

Π

ABSTRACT

Riprap is the most commonly employed countermeasure where bridge piers need to be protected against possible undermining by scour. An extensive review of available design techniques revealed a wide range of equations and proposed design procedures but no generally accepted method for riprap sizing and implementation. The aim of this study was to develop a design procedure for riprap protection at piers which can be used in most river environments.

The failure mechanisms and stability of riprap layers around cylindrical and rectangular shaped piers were examined in a comprehensive experimental study. The study assessed the importance of various riprap, flow, sediment, and pier parameters. Parameters for investigation were determined by dimensional analysis and included riprap placement and arrangement.

A riprap size prediction formula was developed based on an allowable maximum local scour depth of up to 20%. This equation has been incorporated in a design approach which was tested through a model study of the Hutt Estuary Bridge. The influence of various parameters on riprap stability are incorporated in the equation by way of adjustment factors.

The adjustment factors, K_{Y} and K_{D} , represent the effects of riprap placement and pier/sediment size ratio effects respectively. They were deemed the most important parameters in riprap layer performance and are therefore included in the riprap size prediction formula. Additional experiments using synthetic filters have shown their ability to eliminate local scour, however they are susceptible to failure under degrading bed conditions. Degrading bed conditions cause the riprap to subside as a layer with the downward movement of the surrounding bed. Subsidence allows the layer to withstand rapid short term degradation. However long term degradation will ultimately result in failure of the stone protection.

A preliminary experimental study of the use of submerged vanes as a scour countermeasure was performed. Submerged vanes have been used previously in channel protection with much success. Results indicate that vanes with a length to height ratio greater than one can reduce the maximum local scour depth in live bed conditions by as much as 34%. Further testing is required to develop a complete design procedure.

Acknowledgments

This study was carried out under the supervision of Associate Professor B. W Melville to whom I express my sincere appreciation for all the guidance, encouragement, advice and general help throughout. His ideas and direction have been invaluable.

The financial support provided by the University of Auckland, Transit New Zealand and the National Cooperative Highway Research Program - Project 24-7 is gratefully acknowledged.

During the project many people have helped and guided me and I would like to thank the following people:

Dr S. Coleman for his advice, ideas and friendship along the way. His encouragement and commiseration especially in the lab have been priceless.

Carlos Toros Escobar for his ideas and advice throughout the project. I hope that the final report has not caused you too many gray hairs.

Jim Bickner, Mark Byrami, and Ray Hoffmann for all their assistance in the laboratory. Hopefully from now on there will be no need to replace more equipment as I'm sure I managed to break most of it at some stage.

My fellow room mates: Darrin Bell, Anna Hadfield, Paul Corney and Carla Harris for their help, encouragement, humour and friendship along the way.

And finally to my parents, Tracey, Steven, and best friends Alison and Hera for support and patience as this project has developed.

TABLE OF CONTENTS

INTRODUCTION	12
1.1 TYPES OF SCOUR	12
1.2 HISTORICAL REVIEW	14
1.3 SCOPE OF PRESENT STUDY	15
2.0 LITERATURE REVIEW	17
2.1 INTRODUCTION	17
2.2 RIPRAP AS A SCOUR COUNTERMEASURE	20
2.2.1 FAILURE MECHANISMS	20
2.2.2 ASPECTS OF SEDIMENT MECHANICS WHICH INFLUENCE RIPRAP BEHAVIOUR	23
2.2.3 SIZING AND STABILITY OF RIPRAP MATERIALS	25
2.2.3 LATERAL EXTENT OF RIPRAP PROTECTION	48
2.2.4 THICKNESS OF RIPRAP PROTECTION LAYER	53
2.2.5 PLACEMENT OF RIPRAP	54
2.2.6 FILTER EFFECTS	56
2.2.7 SUMMARY OF RIPRAP PARAMETERS	60
2.3 ALTERNATIVE SEDIMENT BED ARMOURING COUNTERMEASURES	63
2.3.1 HIGH DENSITY RIPRAP	63
2.3.2 BLOCKS - LOOSE, CABLE TIED AND GEOTEXTILE BONDED	64
2.3.3 CONTAINER SYSTEMS	72
2.3.4 SUMMARY OF ALTERNATIVE SEDIMENT BED ARMOURING COUNTERMEASURES	80
2.4 FLOW ALTERING TECHNIQUES	84
2.4.1 FLOW DEFLECTING VANES	83
2.4.2 PIER SHAPE	88
2.4.3 PIER SLOT	91
2.4.4 COLLARS AND HORIZONTAL PLATES	93
2.4.5 SUCTION	98
2.4.6 EXTENDED FOUNDATIONS	102
2.4.7 SACRIFICIAL PILES	102
2.4.9 SUMMARY OF FLOW ALTERING TECHNIQUES	108
3.0 EXPERIMENTAL INVESTIGATIONS	111
3.1 INTRODUCTION	111
3.2 RIPRAP RESPONSES TO LOCAL SCOURING	112
3.2.1 LIVE BED EXPERIMENTS	112
3.2.2 BED AND RIPRAP MATERIALS	118
3.2.3 PIERS AND SCOUR DEPTH MEASUREMENTS	120
3.2.4 APPROACH FLOW	124
3.2.5 FORMING RIPRAP PROTECTIVE LAYERS	127
3.2.6 SYNTHETIC FILTER FABRICS	130

3.2.7 EXPERIMENTAL TECHNIQUE FOR CYLINDRICAL AND RECTANGULAR PIERS	133
3.3 GENERAL BED DEGRADATION	136
3.3.1 0.457 M FLUME	136
3.3.2 BED AND RIPRAP MATERIALS	138
3.3.3 PIERS AND SCOUR DEPTH MEASUREMENTS	140
3.3.4 RATE OF DEGRADATION	140
3.3.5 VELOCITY MEASUREMENT	141
3.3.6 EXPERIMENTAL PROCEDURE	141
3.4 SUBMERGED VANE EXPERIMENTS	142
3.4.1 INTRODUCTION	142
3.4.2 2.4 M FLUME	143
3.4.3 PIERS AND SCOUR DEPTH MEASUREMENT	146
3.4.4 APPROACH FLOW	148
3.4.5 VANE DEFINITION AND MATERIALS	149
3.4.6 SUBMERGED VANE ARRANGEMENTS	151
3.4.7 EXPERIMENTAL PROCEDURE	158
4.0 RIPRAP RESPONSES TO LOCAL SCOURING	160
A 1 EDAMEWORK FOR ANALVER	160
4.1 FRAMEWORK FOR ANALISIS 4.2 DIDDAD FAILURE MECHANISMS DESPONSES AND SIZE PREDICTION	164
4.2 KIPKAP FAILURE MECHANISMS, RESPONSES AND SIZE I REDICTION	164
4.2.1 INTRODUCTION 4.2.2 IDENTIFICATION OF FAILURE MECHANISMS	164
4.2.2 IDENTIFICATION OF FAILURE WECHANISMS	167
4.2.5 KIPKAP RESPONSES TO FLOW VELOCITY 4.2.4 DEVELOPMENT OF BIDDAD SIZE PREDICTION FOLIATION	173
4.2.5 SUMMARY AND RECOMMENDATIONS	177
4.2.5 SUMMART AND RECOMMENDATIONS	179
4.3.1 INTRODUCTION	179
4.3.2 PLACEMENT DEPTH FEFECTS ON FAILURE MECHANISMS	180
4.3.3 PLACEMENT LEVEL FEFECTS ON SCOUR REDUCTION	181
4.3.4 DETERMINATION OF PLACEMENT DEPTH FACTOR KV	188
4.3.5 SUMMARY AND RECOMMENDATIONS	190
4.4 THE EFFECT OF PIER DIAMETER AND SEDIMENT SIZE	192
4 4 1 INTRODUCTION	192
4 4 2 EFFECT OF PIER SIZE ON LOCAL SCOUR DEPTHS	193
4 4 3 THE EFFECT OF PIER SIZE ON RIPRAP PERFORMANCE	195
4 4 4 DEVELOPMENT OF PIER/SEDIMENT SIZE FACTOR	199
4.4.5 SUMMARY AND RECOMMENDATIONS	199
4.5 RECTANGULAR PIER EXPERIMENTS	201
4.5.1 INTRODUCTION	201
4.5.2 LOCAL SCOUR DEPTHS FOR UNPROTECTED PIER	201
4.5.3 THE EFFECTS OF PIER SHAPE ON RIPRAP PERFORMANCE	204
4.5.4 FLOW ALIGNMENT EFFECTS ON SCOUR DEPTHS FOR A RECTANGULAR PIER	211
4.5.5 THE EFFECT OF FLOW ANGLE ON THE PERFORMANCE OF RIPRAP LAYERS.	214
4.5.6 SUMMARY AND RECOMMENDATIONS	217
4.6 RIPRAP LAYER THICKNESS EFFECTS	219
4.6.1 INTRODUCTION	219
4.6.2 LAVER THICKNESS EFFECTS ON RIPRAP FAILURE MECHANISMS	220

4.6.3 HOW LAYER THICKNESS AFFECTS SCOUR REDUCTION ABILITY OF RIPRAP LAYER	s 222
4.6.4 SUMMARY AND RECOMMENDATIONS	227
4.7 FLOW DEPTH	228
4.7.1 INTRODUCTION	228
4.7.2 FLOW DEPTH INFLUENCES ON UNPROTECTED LOCAL SCOUR DEPTHS	228
4.7.3 THE INFLUENCE OF FLOW DEPTH ON RIPRAP PROTECTION LAYER PERFORMANCE	230
4.7.4 SUMMARY AND RECOMMENDATIONS	234
4.8 THE USE OF FILTERS TO ENHANCE RIPRAP PERFORMANCE	235
4.8.1 INTRODUCTION	235
4.8.2 440 MM FLUME EXPERIMENTS	236
4.8.3 1.52 M WIDE FLUME	243
4.8.4 SUMMARY AND RECOMMENDATIONS	246
4.9 PIER RIPRAP PROTECTION - SUMMARY	248
4.9.1 PROPOSED RIPRAP SIZE PREDICTION EQUATION	248
4.9.2 RIPRAP FAILURE MECHANISMS	248
4.9.3 SAFETY FACTOR	249
4.9.3 RIPRAP LAYER PLACEMENT EFFECTS	250
4.9.4 PIER SIZE/SEDIMENT SIZE EFFECTS	250
4.9.5 RECTANGULAR PIERS - ALIGNED AND NON-ALIGNED WITH APPROACH FLOW	250
4.9.6 RIPRAP LAYER THICKNESS EFFECTS	251
4.9.7 FLOW DEPTH EFFECTS	251
4.9.8 THE USE OF FILTER LAYERS	252
4.9.9 DESIGN GUIDE FOR RIPRAP PROTECTION LAYERS	252
5 A GEDIMENT DED DECDADATION FEFERCES ON DIDDAD	254
5.0 SEDIMENT BED DEGRADATION EFFECTS ON RITRAT	434
5.1 INTRODUCTION	<u>254</u> 254
5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT	254 254 256
5.1 SEDIMENT BED DEGRADATION EFFECTS ON KITKA 5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS	254 256 256
5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS	254 256 256 258
5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE	254 256 256 258 262
5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT	254 256 256 258 262 262 266
5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT 5.3.1 INTRODUCTION	254 256 256 258 262 266 266
 5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT 5.3.1 INTRODUCTION 5.3.2 FAILURE MECHANISMS UNDER DEGRADATION IN A NON-UNIFORM BED 	254 256 256 258 262 266 266 266
 5.0 SEDIMENT BED DEGRADATION EFFECTS ON KITKAT 5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT 5.3.1 INTRODUCTION 5.3.2 FAILURE MECHANISMS UNDER DEGRADATION IN A NON-UNIFORM BED 5.3.3 LOCAL SCOUR DEVELOPMENT IN A DEGRADING, NON-UNIFORM SEDIMENT 	254 256 256 258 262 266 266 266 266
 5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT 5.3.1 INTRODUCTION 5.3.2 FAILURE MECHANISMS UNDER DEGRADATION IN A NON-UNIFORM BED 5.3.3 LOCAL SCOUR DEVELOPMENT IN A DEGRADING, NON-UNIFORM SEDIMENT 5.3.4 LAYER THICKNESS EFFECTS FOR A NON-UNIFORM SEDIMENT 	254 256 256 258 262 266 266 266 268 271
 5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT 5.3.1 INTRODUCTION 5.3.2 FAILURE MECHANISMS UNDER DEGRADATION IN A NON-UNIFORM BED 5.3.3 LOCAL SCOUR DEVELOPMENT IN A DEGRADING, NON-UNIFORM SEDIMENT 5.3.4 LAYER THICKNESS EFFECTS FOR A NON-UNIFORM SEDIMENT 	254 256 258 262 266 266 266 266 268 271 272
 5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT 5.3.1 INTRODUCTION 5.3.2 FAILURE MECHANISMS UNDER DEGRADATION IN A NON-UNIFORM BED 5.3.3 LOCAL SCOUR DEVELOPMENT IN A DEGRADING, NON-UNIFORM SEDIMENT 5.4 SUMMARY AND RECOMMENDATIONS 	254 256 258 262 266 266 266 266 268 271 272 274
 5.0 SEDIMENT BED DEGRADATION EFFECTS ON KITKAT 5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT 5.3.1 INTRODUCTION 5.3.2 FAILURE MECHANISMS UNDER DEGRADATION IN A NON-UNIFORM BED 5.3.3 LOCAL SCOUR DEVELOPMENT IN A DEGRADING, NON-UNIFORM SEDIMENT 5.4 LAYER THICKNESS EFFECTS FOR A NON-UNIFORM SEDIMENT 5.4 SUMMARY AND RECOMMENDATIONS 	254 256 256 258 262 266 266 266 268 271 272 274
 5.0 SEDIMENT BED DEGRADATION EFFECTS ON KITKAT 5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT 5.3.1 INTRODUCTION 5.3.2 FAILURE MECHANISMS UNDER DEGRADATION IN A NON-UNIFORM BED 5.3.3 LOCAL SCOUR DEVELOPMENT IN A DEGRADING, NON-UNIFORM SEDIMENT 5.3.4 LAYER THICKNESS EFFECTS FOR A NON-UNIFORM SEDIMENT 5.4 SUMMARY AND RECOMMENDATIONS 6.0 MODEL STUDY OF THE HUTT RIVER ESTUARY BRIDGE 6.1 INTRODUCTION	254 256 258 262 266 266 266 266 268 271 272 274 274
 5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT 5.3.1 INTRODUCTION 5.3.2 FAILURE MECHANISMS UNDER DEGRADATION IN A NON-UNIFORM BED 5.3.3 LOCAL SCOUR DEVELOPMENT IN A DEGRADING, NON-UNIFORM SEDIMENT 5.4 SUMMARY AND RECOMMENDATIONS 6.0 MODEL STUDY OF THE HUTT RIVER ESTUARY BRIDGE 6.1 INTRODUCTION 6.2 PIER AND RIPRAP MODEL DESIGN 	254 256 256 258 262 266 266 266 268 271 272 274 274 274
 5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT 5.3.1 INTRODUCTION 5.3.2 FAILURE MECHANISMS UNDER DEGRADATION IN A NON-UNIFORM BED 5.3.3 LOCAL SCOUR DEVELOPMENT IN A DEGRADING, NON-UNIFORM SEDIMENT 5.3.4 LAYER THICKNESS EFFECTS FOR A NON-UNIFORM SEDIMENT 5.4 SUMMARY AND RECOMMENDATIONS 6.0 MODEL STUDY OF THE HUTT RIVER ESTUARY BRIDGE 6.1 INTRODUCTION 6.2 PIER AND RIPRAP MODEL DESIGN 6.2.1 DEVELOPMENT OF APPROPRIATE MODEL SCALES 	254 256 256 258 262 266 266 266 268 271 272 274 274 274 275 275
 5.0 SEDIMENT BED DEGRADATION EFFECTS ON KITRAT 5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT 5.3.1 INTRODUCTION 5.3.2 FAILURE MECHANISMS UNDER DEGRADATION IN A NON-UNIFORM BED 5.3.3 LOCAL SCOUR DEVELOPMENT IN A DEGRADING, NON-UNIFORM SEDIMENT 5.3.4 LAYER THICKNESS EFFECTS FOR A NON-UNIFORM SEDIMENT 5.4 SUMMARY AND RECOMMENDATIONS 6.0 MODEL STUDY OF THE HUTT RIVER ESTUARY BRIDGE 6.1 INTRODUCTION 6.2 PIER AND RIPRAP MODEL DESIGN 6.2.1 DEVELOPMENT OF APPROPRIATE MODEL SCALES 6.2.2 MODEL CONSTRUCTION 	254 256 258 262 266 266 266 266 266 268 271 272 274 274 274 275 275 278
 5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT 5.3.1 INTRODUCTION 5.3.2 FAILURE MECHANISMS UNDER DEGRADATION IN A NON-UNIFORM BED 5.3 LOCAL SCOUR DEVELOPMENT IN A DEGRADING, NON-UNIFORM SEDIMENT 5.4 LAYER THICKNESS EFFECTS FOR A NON-UNIFORM SEDIMENT 5.4 SUMMARY AND RECOMMENDATIONS 6.0 MODEL STUDY OF THE HUTT RIVER ESTUARY BRIDGE 6.1 INTRODUCTION 6.2.1 DEVELOPMENT OF APPROPRIATE MODEL SCALES 6.2.2 MODEL CONSTRUCTION 6.2.3 APPROACH FLOW 	254 256 258 262 266 266 266 266 266 266 268 271 272 274 275 275 278 280 281
 5.1 INTRODUCTION 5.2 RIPRAP RESPONSES TO DEGRADATION IN A UNIFORM SEDIMENT 5.2.1 FAILURE MECHANISMS 5.2.2 LOCAL SCOUR DEPTHS EXPERIENCED BY RIPRAP LAYERS 5.2.3 INFLUENCE OF LAYER THICKNESS ON RIPRAP PERFORMANCE 5.3 RIPRAP RESPONSES TO DEGRADATION IN A NON-UNIFORM SEDIMENT 5.3.1 INTRODUCTION 5.3.2 FAILURE MECHANISMS UNDER DEGRADATION IN A NON-UNIFORM BED 5.3 LOCAL SCOUR DEVELOPMENT IN A DEGRADING, NON-UNIFORM SEDIMENT 5.4 LAYER THICKNESS EFFECTS FOR A NON-UNIFORM SEDIMENT 5.4 SUMMARY AND RECOMMENDATIONS 6.0 MODEL STUDY OF THE HUTT RIVER ESTUARY BRIDGE 6.1 INTRODUCTION 6.2.1 DEVELOPMENT OF APPROPRIATE MODEL SCALES 6.2.2 MODEL CONSTRUCTION 6.2.3 APPROACH FLOW 6.2.4 SEDIMENT BED LEVELS AND SCOUR DEPTH MEASUREMENTS 	254 256 256 258 262 266 266 266 266 268 271 272 274 274 275 275 275 278 280 281

6.3 LOCAL SCOUR AT EXISTING BRIDGE PIERS	285
6.4 PHYSICAL MODELLING OF RIPRAP PROTECTION MEASURES	288
6.4.1 TEST 1	289
6 4 2 TEST 2	291
6.4.3 TEST 3	291
6 4 4 TEST 4	293
6.4.5 TEST 5	294
6.4.6 SUMMARY OF RIPRAP PROTECTION LAYER RESULTS	295
6.5 SUMMARY AND RECOMMENDATIONS	297
6.5.1 LOCAL SCOUR DEPTHS	297
6.5.2 RIPRAP PROTECTION DESIGN	298
U.S.2 TURRER I ROTBONON DEGISION	
7.0 SUBMERGED VANES	299
7.1 INTRODUCTION	299
7.2 CLEAR WATER EXPERIMENTS - TYPE I VANES	300
7.2.1 INTRODUCTION	300
7.2.2 OBSERVATIONS AND THE EFFECTS OF VANE AND LAYOUT PARAMETERS	303
7.3 MOBILE RED EXPERIMENTS - TYPE I VANES	307
7.5 MOBILE BED EXPERIMENTS - TYPE II VANES	310
7.4 1 INTRODUCTION	310
7.4.2 PARAMETER INFLUENCES	312
7.5 SUMMARY AND RECOMMENDATIONS	314
1.5 SUMMART AND RECOMMENDATIONS	
8.0 SUMMARY AND CONCLUSIONS	317
8.1 RIPRAP AS A PIER SCOUR COUNTERMEASURE	317
8.2 A DESIGN GUIDE FOR RIPRAP INSTALLATIONS TO PROTECT BRIDGE PIERS	322
8.3 SUGGESTIONS FOR FURTHER RIPRAP RESEARCH	324
8.4 SUBMERGED VANES AS A SCOUR COUNTERMEASURE	324
8.5 SUGGESTIONS FOR FURTHER RESEARCH OF SUBMERGED VANES	325
REFERENCES	327
APPENDIX 1: UNPROTECTED SCOUR DEPTH MEASUREMENTS	337
A1-1 SCOUR DEPTHS RECORDED FOR CYLINDRICAL PIER IN THE 0.44 M WIDE FLU	ME 337
A1-2 SCOUR DEPTH MEASUREMENTS FOR THE RECTANGULAR PIER IN THE 0.44M	FLUME 343
A1-3 COMPARISON OF PROBE AND PERISCOPE SCOUR MEASUREMENTS	346
A1-4 SCOUR DEPTH MEASUREMENTS FOR THE 1.52 M WIDE FLUME	347
APPENDIX 2: VELOCITY MEASUREMENTS	349
A2-1 VELOCITY PROFILES RECORDED IN THE 0.44 M WIDE FLUME	349

A2-2 VELOCITY PROFILES RECORDED IN THE 1.52 M WIDE FLUME	355
APPENDIX 3 - RIPRAP EXPERIMENTAL RESULTS	357
A3-1 RIPRAP EXPERIMENTS IN 0.44 M WIDE FLUME	357
A3-2 EXPERIMENTS IN THE 1.52 M WIDE FLUME	359
A3-3 EXPERIMENTS PIER/SEDIMENT SIZE RATIO	360
A3-4 RESULTS OF RECTANGULAR PIER EXPERIMENTS	361
A3-5 RIPRAP THICKNESS EXPERIMENTAL RESULTS	363
A3-6 RIPRAP FLOW DEPTH EXPERIMENTAL RESULTS	364
APPENDIX 4 - RIPRAP RESPONSES TO A DEGRADING BED	366
A4-1 EXPERIMENTAL SETUP FOR DEGRADATION EXPERIMENTS	366
A4-2 VELOCITY MEASUREMENTS IN THE 0.457 M WIDE FLUME	366
APPENDIX 5 - HUTT ESTUARY BRIDGE STUDY DATA	368
APPENDIX 6 - SUBMERGED VANE EXPERIMENTAL DATA	376
A6-1 VELOCITY MEASUREMENTS	376
A6-2 SCOUR DEPTH PROFILES	377

List of Symbols

α	angle of the pier to the approach flow
Al	pier alignment factor
b	width of the pier (for non cylindrical piers)
с	extent of lateral coverage of the riprap layer
D	pier diameter
D ₃₀	riprap size (size for which 30% by weight is finer than the stated size)
d ₅₀	mean sediment size (size for which 50% by weight is finer than the stated size)
D ₅₀	mean riprap size
DG	degradation level
d _r	depth of scour experienced by the riprap layer
d _s	depth of scour below original bed level
d _{smax}	maximum depth of scour below original bed level
σ	geometric standard deviation of sediment or riprap size
e	longitudinal spacing of vanes
Fr	flow Froude number
g	gravitational acceleration (g = $9.81 \text{ m}^2/\text{s}$)
γ_s	unit weight of stone
γ _w	unit weight of water
Н	height of submerged vanes measured from the average bed level
'K' factors	used to denote an adjustment factor for a specific flow, sediment, riprap or pier parameter
1	length of the pier (for non cylindrical pier)
L	length of submerged vanes in the streamwise direction
n	Manning's roughness coefficient
N	number of vanes
N _{sc}	stability number
ρ	density of the fluid
ρ _r	density of the riprap stones
ρ_s	density of the bed sediment
S_{f}	safety factor
Sh	shape factor
Sr	specific gravity of the riprap stones
Ss	specific gravity of the bed sediment
t	thickness of the riprap layer

4