Developable Spaces and Problems of Fletcher and Lindgren*

A.M. Mohamad

September 28, 1999

Abstract

In this paper, we answer two questions of P. Fletcher and W. Lindgren [1]. We prove that a space X is $w\Delta$ and has a quasi-G^*_δ-diagonal if and only if it is developable, a space X is β-space with a quasi-G^*_δ-diagonal if and only if it is semi-stratifiable, a space X is β, quasi-γ-space and has a quasi-G^*_δ-diagonal if and only if X is developable and a space X is metrizable if and only if it is paracompact β-space with a quasi-G^*_δ-diagonal.

1 Introduction

In this brief note we present some conditions which imply developability, and consequently we give full positive answers for two questions of Fletcher and Lindgren [1]: is every quasi-developable space c-semi-stratifiable and is every quasi-developable β-space developable?

In [12], the author makes it possible to factorize quasi-developability into two parts: a space X is quasi-developable if and only if it is a quasi-$w\Delta$-space with a quasi-G^*_δ-diagonal. This result plays an important role in getting the results in this paper.

A COC-map (= countable open covering map) for a topological space X is a function from $N \times X$ into the topology of X such that for every $x \in X$ and $n \in \mathbb{N}$, $x \in g(n, x)$ and $g(n + 1, x) \subseteq g(n, x)$. It is well known that many important classes of generalized metrizable spaces can be characterized in

*The author acknowledge the support of the Marsden Fund Award UOA 611, from the Royal Society of New Zealand. AMS (1991) Subject Classification: 54E30, 54E35. Keywords and phrases: quasi-$w\Delta$-space, quasi-developable space, quasi-γ-space, β-space, quasi-G^*_δ-diagonal, semi-stratifiable, c-semi-stratifiable.
terms of a COC-map. In particular, \(X \) is developable \([4](w\Delta\text{-space})\) if and only if \(X \) has a COC-map \(g \) such that if \(\{p, x_n\} \subseteq g(n, y_n) \) for all \(n \), then \(\langle x_n \rangle \) converges to \(p \) (then \(\langle x_n \rangle \) has a cluster point).

A space \(X \) is called quasi-\(\gamma \) \([9]\) if and only if \(X \) has a COC-map \(g \) such that if \(x_n \in g(n, y_n) \) for each \(n \in \mathbb{N} \), and the sequence \(\langle y_n \rangle \) converges in \(X \), then the sequence \(\langle x_n \rangle \) has a cluster point; a space \(X \) is called semi-stratifiable \([6]\) \((\beta\text{-space} \[5]\)) if and only if \(X \) has a COC-map \(g \) such that if for each \(x \in g(n, x_n) \) for each \(n \in \mathbb{N} \) then \(x \) is a cluster point of \(\langle x_n \rangle \) (\(\langle x_n \rangle \) has a cluster point).

Let \(\mathcal{G} = \{\mathcal{G}_n\}_{n \in \mathbb{N}} \) be a sequence of open families of \(X \). Define \(c(x) = \{n : x \in \mathcal{G}_n^* = \bigcup\{G : G \in \mathcal{G}_n\}\} \). A space \(X \) has a quasi-\(G_\delta^s \)-diagonal \([12]\) if there is such a sequence \(\mathcal{G} \) such that for any distinct \(x, y \in X \), there exists \(n \in \mathbb{N} \) such that \(x \in \text{st}(x, \mathcal{G}_n) \subset X - \{y\} \); a space \(X \) is called a quasi-\(w\Delta\)-space \([12]\) if \(X \) has such a sequence \(\mathcal{G} \) such that

1. for all \(x \), \(c(x) \) is infinite,
2. if \(\langle x_n \rangle \) is a sequence with \(x_n \in \text{st}(x, \mathcal{G}_n) \) for all \(n \in c(x) \) then \(\langle x_n \rangle \) has a cluster point.

A space \(X \) is called \(c \)-semi-stratifiable \([9]\) if there is a sequence \(\langle g(n, x) \rangle \) of open neighborhoods of \(x \) such that for each compact set \(K \subset X \), if \(g(n, K) = \bigcup\{g(n, x) : x \in K\} \) then \(\cap\{g(n, K) : n \geq 1\} = K \). The COC-map \(g : \mathbb{N} \times X \to \tau \) is called a \(c \)-semi-stratification of \(X \). All spaces will be regular, unless we state otherwise.

2 Main Results

Theorem 2.1 A space \(X \) is \(\beta \)-space with a quasi-\(G_\delta^s \)-diagonal if and only if it is semi-stratifiable.

Proof. The necessity of the condition is obvious because every regular semi-stratifiable space is \(\beta \) and has a \(G_\delta^s \)-diagonal. To prove the sufficiency of the condition, let \(\{\mathcal{V}_n : n \in \mathbb{N}\} \) be a quasi-\(G_\delta^s \)-diagonal sequence of \(X \) and let \(g : \mathbb{N} \times X \to \tau \) be a \(\beta \)-map of \(X \). Set \(c_{\mathcal{V}}(x) = \{n : \text{st}(x, \mathcal{V}_n) \neq \emptyset\} \). Then \(\cap_{n \in c_{\mathcal{V}}(x)} \text{st}(x, \mathcal{V}_n) = \{x\} \). Let \(\mathcal{F} \) denote the non-empty finite subsets of \(\mathbb{N} \), and for \(F \in \mathcal{F} \) put

\[
\mathcal{G}_F = \bigcap_{i \in F} \mathcal{V}_i \in \mathcal{V}_i.
\]

For \(n \in \mathbb{N} \) and \(F \in \mathcal{F} \), set \(F_n(x) = c_{\mathcal{V}}(x) \cap \{1, 2, \ldots, n\} \). Then \(\text{st}(x, \mathcal{G}_{F_n}) \subseteq \text{st}(x, \mathcal{V}_m) \) for each \(n \in \mathbb{N} \), each \(F \in \mathcal{F} \) and each \(m \in F \). Put \(d(x) = \{F_n(x) : \)
\[n \in \mathbb{N} \}. \text{ Note that } d(x) \subseteq c_G(x). \text{ Since } c_V(x) \text{ is infinite, } d(x) \text{ is infinite.}

Because \(F_m \subseteq F_n \) for \(m \geq n \), \(st(x, G_{F_m}) \subseteq st(x, G_{F_n}) \) for \(m \geq n \).

Define a map \(h : \mathbb{N} \times X \rightarrow \tau \) by

\[
h(n, x) = \begin{cases}
g(n, x) \cap st(x, G_{F_n}) & \text{if } x \in G_{F_n}^*,
g(n, x) & \text{if } x \notin G_{F_n}^*.
\end{cases}
\]

We prove that \(h(n, x) \) is a semistratifiable-map. Let \(x \in h(n, x_n) \). It is clear that \(h \) is a \(\beta \)-map, so, \((x_n) \) has a cluster point, say \(p \). Suppose that \(x \neq p \). Choose \(k \) large enough that \(x \in st(x, V_k) \) but \(p \notin st(x, V_k) \).

For each \(n \geq k \), we have \(k \in F_n \) so

\[
x_n \in h(n, x) \subseteq st(x, G_{F_n}) \subseteq st(x, V_k).
\]

Thus the open neighborhood \(X - st(x, V_k) \) of \(p \) contains at most \(k - 1 \) members of the sequence \(\langle x_n : n \in \mathbb{N} \rangle \), which contradicts the fact that \(p \) is a cluster point of \((x_n) \).

\textbf{Corollary 2.2} Every quasi-developable \(\beta \)-space is developable.

\textbf{Proof.} This follows from [12, Theorem 3.1 (a space is a quasi-developable if and only if it is a quasi-\(w \Delta \)-space with quasi-\(G_\delta^* \)-diagonal)], Theorem 2.1 and since every semistratifiable space is perfect the proof done.

\textbf{Corollary 2.3} A space \(X \) is \(w \Delta \) and has a quasi-\(G_\delta^* \)-diagonal if and only if it is developable.

\textbf{Proof.} This follows from [12, Theorem 3.1], Corollary 2.2 and since every \(w \Delta \)-space is \(\beta \)-space.

From [12, Corollary 3.4 (Every paracompact \(w \Delta \)-space with quasi-\(G_\delta \)-diagonal is metrizable)], and Theorem 2.1 we have the following metrization result:

\textbf{Corollary 2.4} A space \(X \) is metrizable if and only if it is paracompact \(\beta \)-space with a quasi-\(G_\delta \)-diagonal.

\textbf{Lemma 2.5} Let \(X \) be a space with a quasi-\(G_\delta^* \)-diagonal sequence. Then \(X \) has a quasi-\(G_\delta^* \)-diagonal sequence \(\langle G_n : n \in \mathbb{N} \rangle \) such that for each \(x \in X \) there is an infinite subset \(d(x) \subseteq c_G(x) \) such that if \(x_n \in st(x, G_n) \) for each \(n \in d(x) \) then \((x_n) \) either clusters at \(x \) or it does not cluster at all.
Proof. Let \(\langle \mathcal{H}_n : n \in \mathbb{N} \rangle \) be a quasi-\(\mathcal{G}_d^* \)-diagonal sequence of \(X \). Without loss of generality we may assume that \(c_{\mathcal{H}}(x) \) is infinite for each \(x \in X \) and \(\mathcal{H}_1 = \{X\} \). Let \(\mathcal{F} \) denote the non-empty finite subsets of \(\mathbb{N} \). For each \(F \in \mathcal{F} \) set

\[
\mathcal{G}_F = \{ \bigcap_{i \in F} H_i : H_i \in \mathcal{H}_i \}.
\]

For \(n \in \mathbb{N} \) and \(x \in X \), set \(F_n(x) = c_{\mathcal{H}}(x) \cap \{1, 2, \ldots, n\} \). Put \(d(x) = \{F_n(x) : n \in \mathbb{N}\} \). Note that \(d(x) \subseteq c_\mathcal{G}(x) \). Since \(c_{\mathcal{H}}(x) \) is infinite, \(d(x) \) is infinite. Because \(F_n(x) \subseteq F_m(x) \) for \(m \geq n \), \(st(x, \mathcal{G}_{F_n(x)}) \subseteq st(x, \mathcal{G}_{F_m(x)}) \) for \(m \geq n \).

For each \(n \in \mathbb{N} \) suppose that \(x_n \in st(x, \mathcal{G}_{F_n(x)}) \). Then for \(m \geq n \) we have

\[
x_m \in st(x, \mathcal{G}_{F_m(x)}) \subseteq st(x, \mathcal{G}_{F_n(x)}),
\]

so

\[
\{x_m / m \geq n\} \subseteq st(x, \mathcal{G}_{F_n(x)}).
\]

Since \(\cap_{n \in \mathbb{N}} st(x, \mathcal{G}_{F_n(x)}) = \{x\} \) it follows that either \(\langle x_n \rangle \) clusters at \(x \) or does not cluster at all. \(\blacksquare \)

Remark 2.6 Let \(X \) be a space and \(\langle \mathcal{G}_n : n \in \mathbb{N} \rangle \) a countable family of collections of open subsets of a space \(X \), such that for all \(x \), \(c(x) = \{n \in \mathbb{N} : x \in \mathcal{G}_n^*\} \) is infinite. Consider the following condition on \(\langle \mathcal{G}_n : n \in \mathbb{N} \rangle \): if \(\langle x_n : n \in \mathbb{N} \rangle \) is a sequence with \(x_n \in st(x, \mathcal{G}_n) \) for all \(n \in c(x) \) then \(x \) is a cluster point of \(\langle x_n : n \in \mathbb{N} \rangle \).

For all spaces, this condition is equivalent to the following condition: for each point \(x \in X \) the set \(st(x, \mathcal{G}_n) \) is nonempty for infinitely many \(n \) and the nonempty sets of the form \(st(x, \mathcal{G}_n) \) form a local base at \(x \) for all \(x \in X \). Thus the condition (2) is a characterization of a quasi-developable space.

Theorem 2.7 Every quasi-developable space is a \(c \)-semi-stratifiable space.

Proof. Let \(\langle \mathcal{G}_n : n \in \mathbb{N} \rangle \) be a quasi-development sequence in a space \(X \). Define

\[
g(n, x) = \begin{cases}
st(x, \mathcal{G}_n) & \text{if } x \in \mathcal{G}_n^*, \\
X & \text{if } x \notin \mathcal{G}_n^*.
\end{cases}
\]

Let \(h(n, x) = \cap_{i=1}^n g(i, x) \). We prove that \(h(n, x) \) is a \(c \)-semi-stratifiable-map. We claim that \(C = \cap_{n \in \mathbb{N}} h(n, C) \) for any compact \(C \subset X \), where \(h(n, C) = \bigcup_{c \in C} h(n, c) \). As \(\mathcal{G}_1 = \{X\} \) it follows readily that \(C \subset \cap_{n \in \mathbb{N}} h(n, C) \) so it is appropriate concentrate on the reverse inclusion. To prove that, let \(y \in \bigcap h(n, C) \), so \(y \in h(n, c_n) \) for some \(c_n \in C \). Then \(y \in st(c_n, \mathcal{G}_n) \) for infinitely many \(n \in \mathbb{N} \). It follows that \(c_n \in st(y, \mathcal{G}_n) \) for infinitely many \(n \in \mathbb{N} \). From Remark 2.6, \(\langle c_n \rangle \) clusters at \(y \). Hence, \(y \in C \). \(\blacksquare \)
Theorem 2.8 A space X is developable if and only if it is β, quasi-γ and has a quasi-\(G^*_\delta\)-diagonal.

Proof. The necessity of the conditions is obvious. To prove the sufficiency of the conditions, let f be a β-map and g a quasi-γ-map of X. Define $h(n,x) = f(n,x) \cap g(n,x)$. It is clear that h is a β and quasi-γ-map of X. We prove that h is a $w\Delta$-map of X. Let $\{x,x_n\} \subset h(n,y_n)$. By the β-condition, $\langle y_n \rangle$ converges and so by the quasi-γ-condition $\langle x_n \rangle$ has a cluster point. Thus h is $w\Delta$-map of X. From Corollary 2.3, X is a developable space.

Now, it is natural to ask:

Question 2.9 Is every quasi-$w\Delta$-space with G^*_δ-diagonal developable?

We answer this question in negative manner.

Example 2.10 There is a p-adic analytic manifold which is separable, submetrizable, quasi-developable, but not perfect ([11, Example 7.4.7]). This example also can serve as a quasi-semi-stratifiable space (see [7] for the definition) which has a G^*_δ-diagonal but which is not semi-stratifiable.

Example 2.11 There is a quasi-developable manifold which has a G_δ-diagonal but not a G^*_δ-diagonal (see [3, Example 2.2]). This example also can serve as a quasi-$w\Delta$ manifold which is not $w\Delta$. (It is not even a β-manifold).
Figure 1: Relationships between some generalized metric spaces and quasi-G^*_δ-diagonal.

Acknowledgement: The author is grateful to Prof. David Gauld for his kind help and valuable comments and suggestions on this paper.

References

Department of Mathematics
The University of Auckland
Private Bag 92019
Auckland
New Zealand.
mohamad@math.auckland.ac.nz