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Abstract

In this paper we show that two important generalized metric prop-
erties are generalizations of first countability. We give some conditions
on these generalized metric properties which imply metrizability. We
prove that, a space X is metrizable if and only if X is a strongly-
quasi—-N-space, quasi—y—space; a quasi—y space is metrizable if and
only if it is a pseudo wN-space or quasi-Nagata—space with quasi-
Gj—diagonal; a space X is a metrizable space if and only if X has a
CWBC-map g satisfying the following conditions:

1. g is a pseudo-strongly—quasi-N-map;

2. for any A C X, A C Y{g(n,z):z € A}.

1 Introduction

A COC-map (= countable open covering map) for a topological space X is
a function from N x X into the topology of X such that for every x € X and
n €Nz € g(n,z) and g(n+ 1,2) C g(n,x).

Consider the following conditions on g.

(A) If z € g(n,x,) for every n € N, then x is a cluster point of the sequence
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(B) If for each n € N, = € g(n,y,) and y,, € g(n,z,), then z is a cluster
point of the sequence (x,).

(C) If for each n € N, {z,z,} C g(n,y,), then z is a cluster point of the
sequence ().

(D) If for each n € N, {z,z,} C g(n,y,) and y, € g(n,x), then z is a
cluster point of the sequence (z,).

(E) If for each n € N, z,, € g(n,y,) and the sequence (y,) converges in X,
then the sequence (x,) has a cluster point.

(F) If for each n € N, y,, € g(n,z,) and the sequence (y,) converges to x
in X, then x is a cluster point of the sequence (z,,).

Let (S) be any of the conditions (A), (B), (C), (D), (E), or (F), and
(S~!) be the statement obtained by formally interchanging all memberships
(e.g., (C™') is the condition: If for each n € N, y,, € g(n,x)Ng(n,x,), then x
is a cluster point of the sequence (z,,)). If the COC—map ¢ satisfies condition
(S)(resp. (S7Y)) for S= A, B, C, D, E, or F, we say that g is an S—map
(resp. S~!-map). If there is an S-map (resp. S~'-map) for X then we say
that (X, 7) is an S—space (resp. S~'—space). Corresponding to each of the
conditions S above except (F) is the weaker condition, denoted wS, in which
‘then z is a cluster point of the sequence (z,)’ is replaced by ‘then the se-
quence (x,) has a cluster point’. If g satisfies wS, we say that ¢ is an wS—map.
If there is an wS-map for X then we say that (X, 7) is a wS-space. wS !~
maps and wS~'-spaces are defined analogously. The following are known,
A =semi—stratifiable space, B =o—space, C' =developable space,
D =0-space, F =quasi—y—space, F' =strongly—quasi Nagata space
(= strongly—quasi—-N space), A~! =first—countable space, B! =~—
space, C~! =Nagata space (= N-space), F~! =quasi—Nagata space
(= quasi—N space), wA =B-space, wB =wo—space, wD =w6-space,
wA~! =g-space, wB~! =w~y—space, wC~! =wN-space.

A CWBC—map (= countable weak base covering map) for a topological
space X is a function from N x X into P(X) such that for every z € X and
n € N we have = € g(n,x),g(n+1,2) C g(n,z) and a subset U of X is open
if and only if for every x € Uthere is an n € N such that g(n, z) is contained
in U. A space with a CWBC-map is called weakly first countable.

H.W. Martin in [33] introduced weakly developable spaces. A space X is
called a weakly developable space if there is a sequence {G, },en of covers
of X such that G, refines G, for all n and {st(x, G,,) }nen is a local weak base
at « for each x € X; the sequence {G, },cn is said to be a weak—development
for the space X.



A space X has a quasi—G—diagonal (resp. quasi—S,;—diagonal) (resp.
quasi—a;—diagonal) if there exists a countable family G = {G,}nen of
collections of open subsets (resp. of collections of subsets and for each
r € X, st(x,G,) is open for all n € N) (resp. of collections of subsets and
for each x € X,z € Int st(x,G,)) such that for any distinct z,y € X, there
exists n € N such that x € st(z,G,) C X — {y}.

A space X is called e—semi—stratifiable [34] if there a sequence (g(n, z))
of open neighborhoods of x such that for each compact set K C X, if
gn,K) = U{g(n,z) : € K}, then ({g(n,K) : n > 1} = K. The
COC—map g : N x X — 7 is called a c—semi—stratification of X.

A space X which has a CWBC-map that satisfies condition (wC™!) is
called pseudo—wN space.

A space X which has a CWBC-map that satisfies condition (C' 1) is called
pseudo—N space.

A space X which has a CWBC-map that satisfies condition (wB™") is
called pseudo—quasi—y space.

A space X which has a CWBC-map that satisfies condition (B~1) is called
pseudo—y space.

From the papers [15], [17], [26] and [31], the relationship between the
classes of spaces above can be summarized in the following diagram:

metrizable

/ L ﬁly developable
v developable/
Nagata
¢ o-semimetrizabl pseudo N
wy wN
pseudo wry ¢ l

semimetrizable l
quasi vy quasi N pseudo wN

semistratifiable

Figure 1: Relationships between some generalized metric spaces.

A space X is called an N—space if it has a o—locally finite K—network,
where a collection B of subsets of X is a K—network if for any compact set
C' and open neighborhood U of C there is a finite subcollection B’ of B such
that C' C B C U, where B = |J{B : B € B'}. The following implications

are well-known.



Frechet X = Lasnev = stratifiable = strongly—quasi-N = o = semi-
stratifiable.
In this paper all spaces will be Hausdorff, unless we state otherwise.

2  Generalization of first countable spaces

A space X is sequential [7] if every sequentially open set is open, where a
set U is said to be sequentially open if every sequence converging to a point
in U is eventually in U. A space is Frechet [7] if every accumulation point
of a set is the limit of a sequence in the set. X is called strongly Frechet
if, whenever {F,, : n € N} is a decreasing sequence of subsets of X with a
cluster point z, then there are x,, € F,,n € N such that (z,,) converges to x.

Lemma 2.1 [40] A space X is first countable if and only if X is Frechet and
weakly first countable.

Example 2.2 [40] A Frechet space which is not weakly first countable and
so not first countable.

The space of rational numbers with the integers identified to a point and the
quotient (or identification) topology. The one—point compactification of an
uncountable discrete space. [

Example 2.3 [40] A ¢, and weakly first countable space which is not Frechet
and so not first countable.

Let X be obtained from [0, 00) by identifying 1/n and n for all n € N. We
denote by x, the point {1/n,n} in the identification space X. All other
points of X are singleton equivalence classes, i.e. real numbers.

This example is also quasi—N space but neither wN nor strongly—quasi—N.
[ |

Note that every Nagata space is first countable; every ~ space is first
countable and every Frechet, pseudo wN—space is a wN—space.

The proof of the following theorem is straightforward:

Theorem 2.4 (1) Every quasi-N-space is (3.
(2) Every quasi—y space is q.

Theorem 2.5 The following are equivalent for a first countable space X



1. X 1is a quasi—y—space.
2. X is a pseudo y—space.

3. X is a pseudo quasi—y—space.

Proof. It is clear that, (1) = (2) = (3). We prove that every Frechet,
pseudo quasi—y-space is a quasi—y-space. Let g : N x X — P(X) be a
pseudo quasi—y—map. We can use same proof as for Lemma 2.1 to prove that
for each = € X, g(n, ) is a neighborhood of x for each n € N. Thus z is in
the interior of g(n,z). Now, put h(n,x) = Int g(n,x) for each n € N and
x € X, then h: N x X — 7 satisfies the quasi—y—condition. [

Y. Inui and Y. Kotake [22] proved the following result:
Theorem 2.6 The following are equivalent for a first countable space X
1. X is a wN—space.
2. X is a quasi N —space.
3. X is a pseudo N —space.

4. X is a pseudo wN —space.
Lemma 2.7 A q space with quasi—S, is first countable.

Proof. Let f be a ¢-map and (G, : n € N) a quasi-Sy—sequence of X. Define
g by

| st(x,G,) ifzegp.
g(n.7) =1 x ifz¢gr.

For each z € X and n € N, let h(n,z) = f(n,xz) N g(n,z). Then h is a
first countable map. Let x, € h(n,z). Then (z,) has a cluster point, say
y (because g is ¢-map). For all n € N,y is a cluster point of {z,, : m >
N}nen, 50 Y € h(n,z) as x, € h(n,x) for all m. Thus y € (), yh(n,7) C
ﬂneNm = {z}, so y = x and z is a cluster point of (z,,). [ |

Theorem 2.8 (Lutzer [29]) Let X be a regular q space. If every point in X
is a G then X 1is first countable.

Corollary 2.9 A regular q space with quasi—aq—diagonal is first countable.



3 Stability of Strongly—quasi—IN Spaces

Theorem 3.1 Fvery subspace of a strongly—quasi—N—space is a strongly—
quasi—N-space.

Proof. Let g be a COC-map on X satisfying the condition for a strongly—
quasi—-N—space. Let Y be a subspace. Then the restriction h of g on N x Y,
h(n,z) = g(n.x) NY is a COC-map. |

Theorem 3.2 FEvery countable product of strongly—quasi—N—spaces is a strongly—
quasi—N—space.

Proof. For each i, let X; be a strongly—quasi-N space with a COC-map
g; satisfying the strongly—quasi-N condition. Let X = [] X; be the product
space, and let m; : X — X, be the projection. For each i,n and z € X, let
hi(n,z) = gi(n,m(x)) if ¢ < j,and X;if7 > j. Now let g(n, z) = [[:2,hi(n, z)
for each (n,x) € Nx X. That is, g(n,x) = g1(n, z1) X g2(n, x2) X gs(n, x3) X
egn(n, xy,) X Hj>an for each n € N, where z = (21, 29, 3, ..).

Clearly each g(n,z) is open, z € g(n,x) and g(n+1,z) C g(n,x) for each
(n,z) e Nx X.

To verify ¢ is a strongly—quasi-N-map for X, let (z,) and (y,) be two
sequences in X = [[ X; such that y, € g(n,z,) and the sequence (y,,) con-
verges to x in X, we only need to prove that x is a cluster point of the
sequence (z,). Put, z, = (2,)i, Yn = (yn); and z = (z);. For each fixed
i € N, we have (y,); € g(n, (x,);) when n > i and and the sequence ((y,);)
converges to x; in X;. Since each X, is a strongly—quasi—-N space, z; is a
cluster point of ((z,);). Thus, x is a cluster point of ((z,)) in X. Hence,
X =[] X; is a strongly—quasi-N-space. [

Theorem 3.3 Closed images of reqular strongly—quasi—N-spaces are strongly—
quasi—N—spaces.

Proof. Let f : X — Y be closed surjective map such that X is a strongly—-
quasi-N—space. We want to show that Y is also a strongly—quasi—N—space.
Since X is a strongly—quasi-N-space, there is a COC-map g satisfying the
strongly—quasi—-N—condition. In other words, if x, € g(n,y,) for each n € N
and (x,) converges to z, then (y,) converges to z. Define h(n,y) =Y —
(X = (U{gn,z) : = € f~'(y)})). Tt is clear that h is a COC-map. Let
z," € h(n,y,"). Suppose (z,) converges to 2’. We want to prove that (y,")
converges to x’.

Let ¢, € f~(z,) for each n € N, so every subsequence of (z,,) has at least
a cluster point in f~'(z') since f is closed. Note that, since X is a strongly—
quasi-N-space, any singleton set is a Gs—set, in other words, {z} is a Gs—set
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for each x € X and since f is closed, {z'} is a Gs—set for every 2’ € Y. Now
every subsequence of (x,) has at least one cluster point because f is closed.
So, x € f1(a') is a cluster point of (z,,). Note that, {z} = 2 ,G,, where
G, is a closed neighborhood of z (X is regular).

Choose z,,,, € {z,} NG, (because z is a cluster point of (x,) and G,, is a
neighborhood of z), where we may assume n; < ny < ..., then z is a unique
cluster point of (z,,, ), (if z # x, then there is a G,,, such that z ¢ G,,,, hence
2z is not cluster point of (z,, )). But (x,, ) has a cluster point, therefore, y is
a unique cluster point of (x, ). Since every subsequence of (x,, ) has cluster
point, we have that the sequence (x,, ) converges to x for every m € N.

Now, we have z,,, € ¢(nm,Yn,.) C 9(n, Y, ) and (z,,) converges to .
Since X is a strongly—quasi—N—space, (y,, ) converges to z. Since f is closed,
(Yn,,'y converges to =’ and hence 2’ is a cluster point of (y,,"). This completes
the proof that Y is a strongly—quasi—N-space. [

Theorem 3.4 FEvery strongly—quasi—N—-space is o—space.

Proof. Let g be a COC-map on X satisfying the condition for a strongly—
quasi-N-space. Let = € g(n,y,) and y, € g(n,z,), for each n € N. Then
(yn) converges to z and since g is strongly—quasi-N—map, z is a cluster point
of the sequence (z,,). |

Example 3.5 The converse of Theorem 3.4 is not true. There is a o—space
(and so semi-stratifiable) which is not a strongly—quasi-N-space.

Proof. Let X (Heath space [16]) be the upper half plane including the
real axis R. Let each point of X — R be open and take as a neighborhood
basis of points * € R a V—vertex at x, sides of slopes = 1 and height 1/n,
which a V-vertex at z is the set W = {(&,n) :n=|{ — 2| and n < L}.

We define a COC-map by:

h(n,z) = {z} ifre X -R
77| the V-vertex at x of height 1/n  ifx € R.

Clearly h is a COC—map and satisfies the condition for a c—space. Thus
X is a o-space. It is known that X is a Moore space [16], and hence first
countable. If X is a strongly—quasi-N-space, it would be stratifiable by 4.1
and hence it would be paracompact. However X is not even normal: consider
the two closed sets consisting of the rationals and irrationals in R respectively.
[ |

In [12], Z. Gao proved the following result:



Theorem 3.6 FEvery reqular k—semi—stratifiable space is a strongly—quasi—
N—space.

Example 3.7 There is a strongly—quasi—N-space which is not an N-space
(it is not even stratifiable).

Proof. In [38], O’'Meara constructs an example of a non-normal (and hence
not stratifiable) R—space which is completely regular, and by Lemma 2.4 [29],
any N-space is k—semi—stratifiable and hence a strongly—quasi-N—space. W

4 Metrizability Results

Theorem 4.1 A space X is N if and only if it is a first countable strongly—
quasi—N—space.

Proof. It is well-known that every Nagata—space is a paracompact first
countable space. Now, let f and g be, respectively, a first countable—map
and a strongly—quasi-N-map on X. Let h(n,x) = f(n,z)Ng(n,x). It is easy
to see that h is a first countable and strongly—quasi—-N-map. To prove h is a
Nagata-map, suppose that h(n,z,) N h(n,z) # (. Then there is a sequence
(yn) such that y,, € h(n,x,) N h(n,x). Since h is a first countable-map, (y,)
converges to x and h is strongly—quasi-N-map, (x,) converges to x. Hence
X is a Nagata space. n

Corollary 4.2 A space X is N (and stratifiable) if and only if it is a q
strongly—quasi—-N-space with quasi-G§—diagonal.

Proof. The ‘if’ part is obvious. The ‘only if’ follows from Theorem 4.1 and
Lemma 2.7 . [

From Theorem 2.8, Theorem 3.6 and Theorem 4.1 we get the following
result:

Corollary 4.3 A space X is N (and stratifiable) if and only if it is a reqular
q k—semi—stratifiable space.

Theorem 4.4 A space X is metrizable if and only if X is a strongly—quasi—
N-space, quasi—y—space.

Proof. We shall show that the space X is developable. This will complete
the proof since developable spaces are first countable and first countable
strongly—quasi—Nagata spaces are Nagata, hence paracompact, and para-
compact developable spaces are metrizable [3]. Let f : N x X — 7 and ¢ :
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N x X — 7 be, respectively, quasi—y and strongly—quasi—N maps for X. Let
h(n,z) = f(n,z)Ng(n,z) for each (n,r) € NxX. Then h : NxX — 7is both
a quasi—y and a strongly—quasi-N map for X. Suppose {p,z,} € h(n,y,)
for each n € N. Since h is a semistratifiable map, y,, converges to p. Also z,
converges to ¢ (because h is quasi—y) and since h is a strongly—quasi-N map
Yn converges to ¢, so p = q. Hence x,, converges to p. |

From [17, Corollary 4.6 (a space X is a Moore space if and only if it
is a regular semi-stratifiable wf-space)], Corollary 4.3 and Nagata’s famous
double sequence theorem (every Nagata developable space is metrizable), we
have the following:

Corollary 4.5 A space is metrizable if and only if it is a reqular k—semi—
stratifiable wl-space.

Martin proved the following result:
Theorem 4.6 [31] Every v quasi—Nagata—space is metrizable.

He asked in [32, Question 1]: Is every quasi-NN, quasi—y space with a
G'5-diagonal metrizable?

Noting that, every space with a G5—diagonal has a quasi-Sy—diagonal, we
answer this question in the affirmative by the following:

Theorem 4.7 A quasi—y space is metrizable if and only if it is a pseudo
wN-space or quasi—Nagata—space with quasi—Ss—diagonal.

Proof. Let X be a quasi-vy, pseudo w/N-space or quasi-Nagata—space with
quasi—Ss. Since every quasi-y space is a g-space [22] then by lemma 2.7, X is
first countable. From Theorem 2.6 and [17, Proposition 3.2], X is countably
paracompact, so by [2], X is regular. Since every wN-space is  and every [
space with quasi-S;—diagonal is a semistratifiable space [36], X is a Nagata-
space which is therefore a strongly—quasi-Nagata space. Applying Theorem
4.4 completes the proof. [ |

The following is a well-known characterization of y—spaces:

Proposition 4.8 A space X is v if and only if X has a COC-map g such
that if (z,) and (y,) are sequences in X such that x, € g(n,y,) for each
n € N and (y,) converges to x in X, then x is a cluster point of the sequence



Definition 4.9 A space X has a quasi—G3(2)—diagonal if there exists a
sequence (Gn : n € N) of open families of X such that for distinct points x,y
there exists some G, such that y & st*(x,Gn)(y & st*(x,Gn)).

Theorem 4.10 A space X with a quasi-G3(2)-diagonal is Nagata if and
only if it is a q, quasi—-N—space.

Proof. Suppose that X is a ¢ quasi-N-space with a quasi-G}(2) sequence
{Gn}nen. Since the space X is a ¢ and has a quasi-G—diagonal, by Lemma
2.7, X is a first countable space. From Theorem 4.1, we need only to prove
that X is a strongly—quasi-N space. Let f be a quasi-N-map. Define g :
N x X — 7 as follows:

| st(x,G,) ifzeg.
gn. )=\ x ifz ¢ g .

Let h(n,z) = (i, 9(i,x). Set k(n,z) = f(n,z)Nh(n,z). We show that k is a
strongly—quasi—-N-map for X. Let y, € k(n,x,) and suppose (y,) converges
to p. Since f is a quasi-N-map, (z,) has a cluster point, say ¢. The proof
ends if p = ¢. Suppose p # q. Fix n € c¢g(x). Then there are infinitely
many integers m > n such that x,, € k(n,q). Let m > n with z,,, € k(n, q).
Then z,, € g(n,q) = st(¢q,G,). Thus {y, : m > n} C st*(q,G,) for all
n € cg(x). So, p € {Ym:m >n} C st*(q,G,) for all n € cg(x). It follows
that p € N st?(q, Gn) = {q}. Thus p = ¢, as required. [ |

nécg(x)

From Theorem 4.2 and Theorem 4.10 we get the following result:

Corollary 4.11 Let X be a q-space with quasi-G—diagonal, then the fol-
lowing are equivalent:

1. X is a quasi—N space.

2. X s a strongly—quasi-N.
3. X is a wN space.

4. X is a N space.

Theorem 4.12 A space X with a quasi-G5—diagonal is y if and only if it is
a quasi—y—space.

Proof. Suppose that X is a quasi—y—space with a quasi-Gj—diagonal. From
Lemma 2.7, X is a first countable space and by Theorem 2.6 [36], X is ¢
semistratifiable space. Applying Proposition 4.8, we need only to prove that
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X has a COC-map g such that if (z,) and (y,) are sequences in X such
that =, € g(n,y,) for each n € N and (y,) converges to = in X, then z
is a cluster point of the sequence (x,). Let g be a c-semistratifiable-map
that satisfies the condition of quasi—y-space. Suppose that for each n € N,
z, € g(n,y,) and ¢ is a cluster point of the sequence (y,). Since X is first
countable, there is a convergent subsequence (y;, ) of (y,) such that for each
n € Ny, € g(n,q). Then z;, € g(jn,y;,) C g(n,y;,). Since g is a quasi—
y-map, the sequence (x,) has a cluster point, say p. If p = ¢, then the
proof is completed. Suppose that p # ¢q. Then there is a £ € N such that if
n > k then y;, # p. Let K = qU {y;, }n>k- Then p € (2 ,9(n, K) = K, a
contradiction. |

The relationships between the classes of spaces considered in this section
can be summarized in the following diagram:

11



s—q—N wN
g+ a-G5(2)

metrizable +  q-Gj

-G
wy

Figure 2: Relationships between generalizations of N and v spaces.

5 Difference Between Metrizability and Strongly—
quasi—N and v Spaces

In this section we discuss and answer the question: What is the difference (in
terms of g-maps) between metrizable spaces and various generalized metric
spaces, like strongly—quasi—N and ~ spaces. First we start with the following
result which gives the difference between Lasnev (= the closed continuous
image of a metric space) and strongly—quasi-N-spaces.

The proofs of the following theorems can be found in [12] and [37].
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Theorem 5.1 A space X is Lasnev (metrizable) if and only if X is Frechet
(strongly Frechet), strongly—quasi—N and there is a COC-map g : Nx X — 7
such that if the sequences (x,) and (y,) satisfy either:

1. z; € g(n,y;) for alli €N, and x; € X — g(n,y;) for all j > i or
2. € X —g(n,y;) for alli € N, and x; € g(n,y;) for all j > 1,
then {x; : i € N} is discrete in X.

Theorem 5.2 A space X is metrizable if and only if X is strongly—quasi-N
and there is a COC-map g : N x X — 7 such that for any A C X, A C

U{g(n,z) :x € A}.

Theorem 5.3 (Nagata) A space X is metrizable if and only if X is strongly—
quasi—N and there is a COC-map g : N x X — 7 such that for any A C

X, ACU{¢*(n,x) : x € A}, where g*(n,z) = J{g(n,y) : y € g(n,z)}.

Theorem 5.4 A space X is an N—space if and only if it is strongly—quasi—
N and there is a COC-map g : N x X — 7 such that if y € g(n,z), then
g(n,y) C g(n,x) and for each x € X,n € N [{g(n,y) : y € g(n,x),z ¢
g(n, y)} < No.

The following theorem is due (independently) to Hung [20] and Hodel
[19].

Theorem 5.5 A space X is metrizable if and only if X has a COC-map g
satisfying the following conditions:

1. g is a y—map;
2. for any A C X, A C J{g(n,z) : 2z € A}.

The proof of our next results relies on a metrisation theorem of H. Martin
(33].

Theorem 5.6 (Martin) A necessary and sufficient condition that a topolog-
ical space X be metrizable is that X has a weak development {G,}nen such
that {st*(z,G,) :n € Nz € X} is a weak base of X.

Definition 5.7 A space X is called a pseudo—strongly—quasi—IN—space
if there is a CW BC—map g : Nx X — P(X) such that if for eachn € N, y, €
g(n,z,) and the sequence (y,) converges to p in X, then p is a cluster point
of the sequence (x,). The CW BC'-map g is called a pseudo—strongly—quasi—
map.
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Theorem 5.8 A space X is metrizable if and only if X has a CW BC'—map
g satisfying the following conditions:

1. g is a pseudo—strongly—quasi—N-map;

2. for any A C X, A C J{g(n,z) : x € A}.

Proof. The only if part is obvious. We now prove the if part. Assume
that X has a a CWBC-map g satisfying the conditions (1) and (2). Let
hin,z) = {y € X : = € g(n,y)} and k(n,z) = g(n,x) N h(n,x) for each
(n,z) € Nx X. Let G, = {k(n,z) : (n,z) € Nx X}. Then st(z,G,) =
U{k(n,y) : = € k(n,x)} and st*(z,G,) = U{k(n,y) : k(n,y) N st(z,G,) #
0, (n,z) € Nx X}.

By condition (2), h(n,z) is a neighborhood (not necessarily open) of x
and so is k(n,x). Therefore, in virtue of the Martin metrization theorem
5.6, we only need prove that {st*(z,G,) : n € N,z € X} is a weak base of
X. If {st*(z,G,) : n € N} is not a local weak base for some z € X, then
there exists an open neighbourhood U of x such that st?(x,G,) — U # 0
for each n € N. Take y,, € st’(z,G,) — U,n € N. That means we can find
Zn, W, € X such that y, € k(n,z,),k(n,z,) Nk(n,w,) # 0,2 € k(n,w,).
Take v, € k(n, z,) Nk(n,w,). By z € k(n,w,) C g(n,w,) and condition (1),
we conclude that (w,,) converges to x, and by v, € k(n,w,) C h(n,w,) and
the definition of h, we get w,, € g(n,v,). Using condition (1) again, we have
that (v,) converges to x. Similarly, from v, € k(n,z,) C g(n, z,), we have
that (z,) converges to x, and by y, € k(n, z,) C h(n, z,), we get that (y,)
converges to z. But y, ¢ U for each n € N, which is a contradiction. |
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