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ABSTRACT

Scattering problem for Neumann Laplacean with a continuous potential on a domain
with a smooth boundary and few semiin�nite wires attached to it is studied� In resonance
case when the Fermi level in the wires coincides with some resonance energy level in
the domain the approximate formula for the transmission coe�cient from one wire to
another is derived � in the case of weak interaction between the domain and the wires
the transmission coe�cient is proportional to the product of values of the corresponding
resonance eigenfunction of inner problem at the points of contact�

� Introduction�

In our previous papers ���	�
� we discussed the scattering problem motivated by attempt of
designing quantum electronic devices for triadic logic� Both devices are based on speci�c
properties of scattering for a second order di�erential operator on a compact graph or
domain with several semi�in�nte quasi�onedimensional wires attached to it� The corre�
sponding multy�channel scattering matrix may be represented in explicite form via Greens
functions of the di�erential operator on the compact� In our paper ��� we investigated the
resonance case when the Fermi level of electrons in the wires is equal to some resonance
eigenvalue �multiplicity one� of the Schr�odinger operator on the ring� We found that in
the case of the weak connection between the wires and the ring the transmission coe��
cient from one wire to another is approximately proportional to the product of values of
the corresponding resonance eigenfunction at the contact points�

The similar problem of resonance scattering may be investigated in a domain with
few semiin�nite onedimensional waveguides �wires� attached at the points a�� a���� The
techniques developed in ��� for onedimensional case cant be directly transfered to this
case since the Greens function on the domain is discontinuous and its spectral series
is divergent� Using the iterated Hilbert identity we regularize the values of the Greens
function at the poles and extend the analysis of the onedimensional resonance situation
developed in ��� to the case of a domain� In particular we show in the case of the weak
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connection between the domain and the wires the transmission coe�cient Sij from one
wire to another is approximately proportional to the product of values of the resonance
eigenfunction at the contact points� One may show that this statement remains true also

in the case of the third boundary condition on the boundary �� � �u
�n
��u

����
��

� � or even

for Schr�odinger operators with some singular potentials �see an example below in the last
section� provided the resonance eigenvalue is simple�

We consider here the case of the three�dimensional domain� The analysis of the corre�
sponding two�dimensional problem oriented to the technological applications of the e�ect
discussed will be done in the following publication�

Here is a plan of our paper� in the second section we describe the symplectic extension
procedure used for attaching the wires� in the third and fourth sections we calculate the
scattering matrix and the resolvent and investigate the resonance behaviour of them at
the resonance eigenvalue�

� Extension procedure�

We consider the spectral problem for Schr�odinger operator A with an uniformly � contin�
uous real potential q�x� on a bounded domain � in R� with smooth boundary ���

�� u� qu � �u�

�u

�n

����
��

� ��

The operator extension scheme we use to attach the semiin�nite wires at contact points
a�� a�� ���aN � �� or perturb the operator at inner points aN��� aN��� ���aN�M is the
following

�� We restrict the operator A� � �� � �q� to the operator A� de�ned by the same
di�erential expression on the class of all smooth functions vanishing near the points
a�� a�� ���aN and�or aN��� aN��� � � an�M � Then the de�ciency elements of A for complex
values of the spectral parameter � coincide with Greens functions G��x� as� of which are
square�integrable but have non�square�integrable gradients�

G��x� y� �
ei
p
�jx�yj

��jx� yj � g�x� y� ��� x� y � �� ���

Here the non�singular term g�x� y� �� is constructed via the solution of the corresponding
Lippmann�Schwinger equation	 see the remark below	 section �� For Neumann Laplacean
�q�x� � �� the potential�theory approach combined with the re�ection principle gives the
asymptotics of the Greens function near the boundary point as in form

limx�asG��x� as� �
As


�jx� asj �Bs � o��� � AsL �
�






where by L some logarithmic term is denoted	 see ���� Similar asymptotics with the same
leading singular term remains true also for Schr�odinger operator with continuous potential�
Planning to use the symplectic KLASSICHESKIJ O KOTOROM DIFFERENCIALNYH
OPERATOROV SHCREDINGERA MY IMEEM VESCH NAZYVAETSA SVJAZAT
u� u� na kotoroj formami� granicnymi uslovijami zadajut ermitovy geometricheskaja Ja
dumaju	 tebe ee vkljuchit version of the operator extension procedure	 see ��� we introduce
the asymptotis boundary values�singular amplitudes As�u� and the regularized values of
u Bs�u� for elements u of the domain of the adjoint operator A at the points as� We may
assume that the nonperturbed operator A satis�es the condition A � I � �� Then its
resolvent �A� �I��� is a bounded integral operator with the kernel G���x� y� which may
be used as an etalon of the growing rate of elements of the domain of adjoint operator at
the poles�

u�x� � AsG���x� as� �Bs � o���� x� as� ���

The next statement shows that both As� Bs exist for de�ciency elements G��x� as��

Lemma � For any regular point �����A� of the operator A and any a � fasgN�M
s�� the

following representation is true	

G��x� a� � G���x� a� � ��� ��G�� �G��x� a��

where the second addend �� � ��G�� � G��x� a� � g��x� a� is a continuous function of x
and the spectral series of it on eigenfunctions 	l of the nonperturbed operator A

A	l � �l	l

is absolutely and uniformly convergent in �� The separation of the singularity at each
eigenvalue �� is possible	

g��x� a� � ��� ��
X
l

	l�x�	l�a�

��l � ����l � ��
�

��� ��	��x�	��a�

��� � ����� � ��
�
X
l ���

	l�x�	l�a�

��l � ����l � ��
�

	��x�	��a�

�� � �
� g���x� a� ���

with uniformly and absolutely convergent series for g���x� a� in a neighbourhood of ���

Proof of this statement is based on the classical Mercer theorem� The analysis of
the Lippmann�Schwinger equation ��� shows that the Greens�function G��x� y� of the
operator A admitts a representation in form ��� which implies that the positive integral
operator G�� �G�� �the convolution of resolvents at the spectral points � � �� � has a
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continuous kernel on the closed domain � � �� Then using Mercer theorem we EST �
may check the uniform convergence in � of the spectral series for its kernel

��� ��G�� �G���x� y� � ��� ��
X
l

	l�x�	l�y�

��l � ���
�

The last statement implies the absolute and uniform convergence of the spectral series
for the kernel on the diagonal x � y� The uniformly convergence of the spectral series for
the kernel

G�� �G��x� y� �
X
l

	l�x�	l�y�

��l � ����l � ��

on the domain � and each compact subset of the complement of the spectrum ��A� may
be derived using Cauchy inequality for the remainder of the spectral series� Together
with the obvious fact of continuity of eigenfunctions of the operator A this implies the
continuity of G�� �G��x� y� on the complement of the spectrum and the continuity of the
di�erence

g���x� y� � ��� ��G�� �G��x� y�� 	��x�	��y�

�� � �
�

X
l ���

��� ��	l�x�	l�y�

��l � ����l � ��
� 	��x�	��y�

�� � �

in some neighbourhood of the eigenvalue ���
�

Corollary For any element u of the domain of the adjoint operator A��
� the asymp


totic boundary values As�u�� Bs�u� are de�ned at each point as � � as coe�cients of the
asymptotics of it at the point as�

u�x� � As�u�G���x� as� �Bs � o���� x� as�

The existence of these asymptotic boundary values will be proved below� The commonly
used asymptotic boundary values A�s�u�� B

�
s�u� 	 see ���� which are de�ned by the asymp�

totics

u�x� �
A�s�u�

��jx� aj �B�
s � o���� x� as

for inner points as are connected with As�u�� Bs�u� by real linear transformation	 but still
cant be de�ned at the boundary contact points according to the result ��� quoted above�

Note that the iterated Hilbert Identity was used in a similar way in ���for separation
the spectral and spacial singularities of Greens functions�


�� Integrating by parts we get the following expression for the boundary form of A�
�


 �A��
�u� v � � 
 u� �A��

�v ��
X
s

Bs�u� �As�v�� As�u� �Bs�v� � J �u� v� ���

This complex symplectic form is an analog of Wronskian for partial di�erential equations	
see ���	 ���	� �	�!�� In particular this form calculated for two solutions of the homoge�
neous adjoint equations with the spectral parameters �� �� vanish	 which is an analog of
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the independence of the Wronskian W �x� on x for corresponding ordinary di�erential
equations�

Any Lagrangian plane L of this form de�nes a selgadjoint extension of the operator
A�� For instance the corresponding Schr�odinger operators with zero�range potentials at
the points as� s � N � �� N � 
� ���N � M may be de�ned by generalized boundary
conditions

Bs � �sAs� �s � ��s� s � N � �� N � 
� ���N �M� ���

As � �� s � �� 
� ���N�

The corresponding selfadjoint operator A��� in L���� has purely discrete spectrum�We
consider the common extension of the operator A� and Schr�odinger operators in l��"s�

de�ned by the di�erential expressions ls � � d�

dx�
� qs�x� with real rapidly decreas�

ing potentials on the wires	 "s� s � �� 
� ���N � The boundary form of each of them is

Js�us� vs� � �u�s�vs � us�v
�
s�
����
x��

� The total boundary form

J �u� v� �
NX
s��

Js�us� vs� � �

vanishes on the Lagrangian plane de�ned by the corresponding boundary condition	 for
instance by the combination of the boundary condition ��� at the inner points as� s �
N � �� ���N �M and the boundary conditions�

As

us���

�
�

�
� �
� �

��
�Bs

�u�s���
�
� � � �� s � �� 
� ��N� �!�

at the contact points as� s � �� 
� ���N � The corresponding selfadjoint operator will be
denoted by A����

We consider below also the families of operators in L�����P
s L��"s�

A���� A���� � � �

which correspond to the weakening connection �� � �� between the wires and the domain
�� One can show that these boundary conditions simulate the interaction when the wires
are joined to the domain non directly but are connected to it via quantum tunnelling
through the potential barrier with the height proportional to ln �

�
�

��� For components of eigenfunctions of these extensions we have the adjoint homo�
geneous equations�

�A�� � � inside the domain ��

�u��s � �us on the wires�

with the selfadjoint boundary conditions �!� �or ��� or both of them � which annihilate the
total boundary from � �� The formal proof of the selfadjointness of corresponding opera�
tots A���� A���� A��� may be reduced to the proof of the symmetricity of the corresponding
adjoint operators similarly to the corresponding fact in ����
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The components of eigenfunctions of the operators A��� inside the domain may be
represented by Ansatz

u �
X
s

�AsG��x� as�� ���

predydyshih formulah� We use further the notations fA�� A�� ���g � �A � fG��x� a��� G��x� a��� ���g �
�G��x�	 which permitt to represent the above Ansatz ��� as 
 �A� �G��x� � One can see
from the Lemma � that the singular amplitudes A�� A�� AN�M just coincide with the
coe�cients of the Ansatz and the regularized boundary values fB�� B�� ���BNg � �B of u
are de�ned as

�B � Q �A�

where

Q��� �

�
BBBBBB�

g��a�� a�� G��a�� a�� �� ��� G��a�� aN�M�
G��a�� a��� g��a�� a�� �� ��� G��a�� aN�M�
�� �� g��a�� a�� ��� ��
�� �� �� ��� ��
G��aN�M � a��� �� �� ��� g��aN�M � aN�M�

�
CCCCCCA
� ����

and g��y� y� � the regularized value of the Greens function G��x� y� at the pole y � is
de�ned in Lemma �� The matrix Q de�ned by ���� is actually the Kreins Q�matrix	 see
���� which accumulates the spectral information on some selected �underlying� selfadjoint
extension of the considered Hermitian operator A�� In our case this selected extension is
just the nonperturbed Schr�odinger operator A on the domain� #From the symmetry of
the Greens functions of the Schr�odinger operators with real continuous potential follows
that the Q�matrix is symmetric and has the positive imaginary part in upper halfplane

�
Q�Q�


i

�
	� 
 ��

The expression ���� for Q�matrix is just a version of the general formula connecting the
boundary values of abstract Hermitian operators	 see for instance ���	 ��� in general case
the Q � matrix has the form

PNi

� � �A
A� �I

����
Ni

�

� The Resolvent and the Scattering Matrix�

In this section we assume that the potentials qs� s � �� 
� ���N on the wires "s are trivial
qs�x� � � and �s � �� s � N � �� N � 
� ���N �M 	 hence the zero�range potentials at
the iner points as� s � N � �� N � 
� ���N �M are eliminated�

The next statement gives the explicite formulae and description of properties of the
component of the resolvent kernels �Greens functions� G���

� �x� y� of operators A��� on the
domain � and the scattered waves of the operator A����
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We denote the Greens function of the nonperturbed operator A by G�x� y� �� and
consider the generic case when neither of eigenfunctions of the nonperturbed operator
vanishes at all contact points as� s � �� 
� ���N simultaneously� Note that the eigenfunc�
tions of the perturbed operator vanishing at all contact points automatically satisfy the
boundary conditions �!� if continued by the identical zero on the wires�In generic case
this situation is eliminated� In particular we do not have embedded eigenvalues in generic
case	 since all nonzero solutions eikxs of the adjoint homogeneous equation of the wires
for positive � � k� are non square integrable�

In what follows we call the auxilliary �nitedimensional Hilbert space E	 dimE � N 	
thechannelspace	 having in mind the role of this space in scattering problem� The
elements �A of E are complex vectors fA�� A�� ���ANg� In particular we use vectors
combined of the values of the nonperturbed Greens functions attached to the points
fasg � fG��x� as�g � �G��x�� We assume that the metric form of E is trivial	 for instance
the dot product of two vectors above is given by the formula�


 �A� �G���
� �x� ��

X
s

�AsG
����x� as� ��

Theorem � The component of the the resolvent kernel of the operator A��� on the domain
� is represented in terms of Green�s functions of the nonperturbed operatorA the following
way	


 �G��y��

�
�

ik��
�Q

���
�G��x� �� k

� � �� 	k 
 �� ����

The spectrum ��A���� of the perturbed operator A��� consists of all singularities of the
matrix �

�

ik��
�Q

���

in the complex plane of the spectral parameter �� In particular the absolutely continuous
spectrum of A��� �lls the positive half
axis � 
 � with the constant multiplicity N � The
eigenvalues �r � k�r � 	kr � � and resonances �r � k�r � 	kr 
 � of the operator A��� are

de�ned� counting multiplicity� respectively	 by the poles of the matrix
h

�
ik��

�Q
i��

on the

positive imaginary half
axis for eigenvalues � � k� 
 �� or in lower half
plane 	k 
 �
for resonances�� They may be found as roots of the corresponding dispersion equation in
upper 	k � � and lower 	k 
 � half
planes respectively	

det

�
�

ik��
�Q

�
� �� ��
�

The eigenfunctions of the absolutely
 continuous spectrum of the operator A��� are pre

sented by the scattered waves which form complete orthogonal system of eigenfunctions in
the absolutely
continuous subspace� In particular the scattered wave iniciated by the plane
wave in the �rst channel on the wire attached to a�� has the form	

�
s�xs� � ���se

�ikxs � Ss��e
ikxs� xs � "s�

 



$��x� � � 

��G��x��

�
�

ik��
�Q

���
���� x � ��

Proof� Being solutions of the homogeneous equation A�
� U � �U the components of

the resolvent kernel of the perturbed operator on the wires coincide with exponentials
use

ikxs and the component of the resolvent kernel inside the domain is represented by the
linear combination of Greens functions on the nonperturbed operator�

G���
� �x� y� � G��x� y� �

X
s

�AsG��x� as��

Then due to the boundary conditions �!� at the points a�� a�� ���� aN we have

�
�As

us

�
�

�
� �
� �

�� � �Asg��as��P
t��s �AtG�as� at� ��

�ikus

�
� s � �� 
� �� ���N� ����

Due to the formula ���� for Q�matrix we see that �Asg��as� as� �
P

t��s �AtG�as� at� �� �	
Q��A



s

the solution ��A of the last system is represented as

��A �

�
�

ik��
�Q

���
�G��y��

provided the matrix

�
�

ik��
�Q

�
is invertible� This gives the announced representation

���� for the component of the resolvent kernel of the perturbed operator inside the domain

G���
� �x� y� � G��x� y� �

X
s

G��x� as�

�
�

ik��
�Q

���
s�r

G��y� ar�� k
� � �� 	k 
 ��

To prove the second statement of the theorem notice �rst that regular points � � k� of

the matrix

�
�

ik��
�Q

�

det

�
�

ik��
�Q

�
�� ��

cant be eigenvalues of the perturbed operator since the homogeneous equation with the
boundary condition �!� is reduced to the homogeneous equation for �A

�
�

ik��
�Q

�
��A � �� ����

which may have in this case trivial solutions only� Then the corresponding solution
of the adjoint homogeneous equation is a smooth function on the domain and may be
the eigenfunction of the perturbed operator only if it vanishes at the contact points
which is prohibited in generic case� On the other hand each nontrivial solution �A of

!



the equation ���� with the symmertic matrix

�
�

ik��
�Q

�
at the negative spectral point

� � k� de�nes the corresponding square�integrable solution of the adjoint homogeneous
equation satisfying the boundary conditions at the contact points	 which is obviously an
eigenfunction of A���� One may check	 using the symmerty and the special form of the
matrix	 that the dimension of the nul�space of it coincides with the dimension of the
corresponding eigenspace of the perturbed operator� Similar reasoning may be used to
acomplish the proof of the statement about resonances if the resonances are de�nad just
as the poles of an analytical continuation of the resolvent kernel across the interval �����
�lled with absolutely continuous spectrum�

We derive now the expression for the scattering matrix Sil� i� l � �� 
� ����N construct�
ing the scattered waves � the solution of the spectral problem for the extension A��� which
ful�lls the boundary conditions �!� and the asymptotic condition at in�nity� Thus for the
scattered wave generated by the incoming wave from the wire attached to the point a�
we have for x ���

us�xs� � �s�e
�ikxs � Ss�e

ikxs�

Inserting this Ansatz into �!� we obtain the linear system�

�
Bs � �ik���s� � S��

��s� � S�� � As�

Then using the connection ���� between �A� �B via Q� matrix	 and the notations

�S� � �S��� S��� ���SN��� ��� � ��� �� �����

we get the equations for �S�� �A in vector form�

�A� � ik����� � �S��� ��� � �S� � ��Q���� ����

#From the last equation one may �nd the �rst row �S� of the scattering matrix� In a
similar way we may derive the explicit expression for the whole of scattering matrix �

S � S������ �
Q � I

ik��

Q� I
ik��

����

One can easily see that the poles of the scattering matrix in the upper halfplane 	k � �
coincide with eigenvalues of the operator A���� POLOVINOK# The expression ���� is
similar to the expression for the scattering matrix in ���� We shall use this expression to
investigate the resonanse transmission�

If we take into account that k �
p
� we see that zero is a branching point of the

operator � function �Q��� �
�

ik��
��� and the positive axis is a cut with di�erent values

of the resolvent kernel on di�erent shores of it� This cut is actually the only branch of

�



the absolutely � continuous spectrum multiplisity N of the operator A����The eigenfunc�
tions of the absolutely�continuous spectrum may be constructed as linear combination of
exoonentials on the wires	 for instance

�
s �

�
t � e�ikxt � Stte

ikxt

s � Sste
ikxs� s �� ��

for scattered wave iniciated by plane wave on the �rst wire attached to a� and linear
combinations of greens functions inside the domain ��

$� �
 �A� �G��x� ��

where
��A �

�

Q� I
ik��

���� The constructed system of eigenfunctions of discrete and absolutely�

continuous spectrum is complete and orthogonal in the total Hilbert space L���� �P
s L��"s�� �
We did not discuss here neither completeness of the resonance states nor other special

properties of resonances� The delicate analysis of resonances in terms of Lax�Phillips
approach ��� requires considering the wave equations in the domain and on the wires� It
will be done in the following publication�

� Weakening connection limit in resonance case�

We assume now that the nonperturbed operator has a simple spectrum and neither of its
eigenfunctions 	l vanishes at all contact points� In terms of the channel space E it means
that

PN
s�� j	l�as�j� � j�	lj� � �� In this section we investigate the asymptotic behaviour

of the component of the resolvent kernel of the perturbed operator G����x� y� �� and the
scattering matrix S������ for weakening connection � � � in both nonresonance and
resonance case The next statemant similar to the paralel statement proven in ��� has a
general meaning and is valid for any resolvent�like matrices� It is based on an observation
concerning the inverse matrix near the pole� Other important facts concerning Operator
Matrices of this type see for instance in ����

Theorem � Consider a sequence of operators A��� which corresponds to the vanishing
connection between the domain and the wires	 � � �� The components of resolvent�s of
them on the domain �

PL���	 �A��� � �I���
����
L���	

converges uniformly to the resolvent of the nonperturbed operator A on each compact
subset of the complement of the spectrum ��A� of the nonperturbed operator� Besides� if
�� is an eigenvalue of the nonperturbed operator A�then for su�ciently small � it can�t be
an eigenvalue of the perturbed operator A� but there exist an eigenvalue of the perturbed
operator for �� 
 �� or resonance for �� � �� in a ��
 neighborhood of it�

��



Proof is based on the formula ���� derived in the previous section� Note that the
singularities of the resolvent of the nonperturbed operator A are present in both terms
of the expression for the perturbed resolvent kernel� We shall prove that in generic case
for su�ciently small values of � in a small neighborhood of given eigenvalue �� of the
nonperturbed operator they compensate each other and the only singularity of the Grees
function of the perturbed operator appeares from the denominator of the second term

Q���� �

ik��
�

According to the Theorem � the leading term of the denominator near the eigenvalue ��
for small � is equal to

�	��	�

�� � �
� �

ik��
�

Here �	� �	� is an onedimensional operator in the auxilliary space E� Generally the matrix
�	l �	l is proportional to the projection operator Pl in the E onto the Spanf�	lg

�	l�	l �
X
s

j	l�as�j�Pl � j�	lj�Pl�

To construct the inverse
h
Q���� �

ik��

i��
for small � in a small neignbourhood of �� we

use the orthogonal decomposition of E into two orthogonal subspaces P�E��I�P��E �
P�E � P�

� E� Using ���� we may separate from the denominator Q � �
ik��

the singular
term at the point ��

Q� �

ik��
�
j�	�j�P�
�� � �

� �

ik��
� g�� � �Q� diagg�� �

j�	�j�P�
�� � �

� �

ik��
�K����

where g���� � diagfg�g is an analytic near the spectral point �� diagonal matrix�function
de�ned in the previous section	 see Lemma �	 and K� � g���� � �Q� diagfg�g� is an
analytic function near ��� Decomposing the leading terms of the last expression into
orthogonal sum we get the following formula for the denominator�

Q���� �

ik��
�

� j�	j��
�� � �

� �

ik��

�
P� � �

ik��
P�
� �K����� �� �

Note that the leading term of the last expression � the diagonal matrix

�
� � j���j

�

���� � �
ik��

�P� �

� �
ik��

P�
�

�
A �� �

��



is invertible

��� � ik��
�

����
ik��j���j�������	P� �

� P�
�

�

and the inverse of it is holomorphic with respect to the variable k �
p
� in a small

neighborhood of k�	 �� � k�� for all positive �� Then the inverse of Q� �

ik��
can be

calculated as

ik��
�

�� � �

ik��j�	�j� � ��� � ��
P� � P�

�

�
 �I �K��

�����

for positive �� Consider the second term of the expression ���� for the Greens function
of the perturbed problem� The left and right factors of it have the form

�G��y� � �G���y� �
	��y��	�

�� � �
� �g���y�

�G��x� � �G���x� �
	��x��	�

�� � �
� �g���x�

where �g���x� � fg���x� a��� g���x� a��� ���g���x� aN �g� These expressions obviously have sin�
gularities at the einegvalue �� containing the factors �	�� Then the direct calculation of
singularities of the second term shows that only �rst order term in ������ remains	 since
P�
� �	� � � and the coe�cient in front of it is �	��x�	��y�� Combining this singularity

����x	���y	
���� with the corresponding term in G��x� y� we see that both singular terms at ��

compensate each other� Thus we see that in the case when �	� �� � the inner component of
the Green function of the perturbed operator is a holomorphic function at the eigenvalue
�� for su�ciently weak connection between the ring and the wires�

On the other hand a new singularity caused by the denominator Q� �
ik��

appeares� If

k�� � �� 
 � then for small � the denominator has zero eigenvalue for some pure imaginary
value of k close to k�� This follows from the orthogonal decomposition ����

�Q���� �

ik��
��u �

P�

� j�	�j�
�� � �

� �

ik��

�
P��u� P�K�P��u� P�K�P

�
� �u�

P�
� K�P��u� P�

�

�

ik��
P�
� �u� P�

� K�P
�
� �u � �� ��!�

Now the operator version of Rouchet theorem ��
� may be used to conclude that the
solution of the last equation ���� is close to the solution of the equation combined of
leading terms and for small �

�� � k�� � �� � i
q
��j�	�j����

�




�u� � �	��

The corresponding solutions of the Schr�odinger equation on the domain are restored from
�u� as

u�x� �
 ��u�� �G��x� � �

If �� 
 �	 then �� � k�� 
 �� k� � i�� � � � hence the exponentials continuing the
solution u from � onto wires are square integrable and the total solution of the Schr�odinger
equation is a square�integrable function	 i�e� is an eigenfunction of the operator A���� The
�nitness of the total number of negative eigenvalues follows directly from the analyticity

of the matrix Q� �

ik��
�

Vice versa if �� � � then 	k� 
 � hence the corresponding solution u� of the
Schr�odinger equation is exponentially growing at least on some wires� So it is not an
eigenfunction but a resonance solution � %a resonance state&� The total number of res�
onances is in�nite which can be derived from the asymptotic behaviour of the matrix
Q� �

ik��
at in�nity� The corresponding analysis will be done elsewhere�

�

Now following ����� we analyse the situation when the energy � of the scattered wave
coincides with some eigenvalue �� of the nonperturbed operator A� Following �!� we call
this situation a resonance case� In this case we use the block�representation of the operator

Q� �

ik��
with respect to the orthogonal decomposition of the auxilllary channel�space E

used in the proof of the previous theorem�

Q���� �

ik��
�

� j�	�j�
�� � �

� �

ik��

�
P� � �

ik��
P�
� �K� � ��K�� ����

Further we use also the notations� j�	�j�
�� � �

� �

ik��

�
� ����

It is obvious that ��� � ���� � � � provided � �� ���

Theorem � The scattering matrix S��� of the operator A��� for the weakening boundary
condition � � � has in generic case the following asymptotics at the simple resonance
eigenvalue	 �	

�I � 
ik��K� � �I � ik��K��

k��j�	�j�

k��j�	�j� � i��� � ��
P� �O�j�j
��

�Mr M�Harmer found recently a similar statement for multiple eigenvalues�

��



Proof� The leading terms of the denominator in the expression for the scattering matrix
derived in the last theorem are represented near the resonance eigenvalue by the diagonal
matrix in the orthogonal decomposition of the auxillary space E � P�E � P�

� E�

�
� � j���j

�

���� � �
ik��

�P� �

� � �
ik��

P�
�

�
A �

�
���P� �

� � �
ik��

P�
�

�
� ���

���
� �

�
�
��	P� �

� �ik��P�
�

�
�

Hence we can write the expression for the scattering matrix as

��� �K���
��
� �I �K��

��
� ����

The product of the �rst and the second factors gives

���
�� �K��

��
� � �I � 
k��j�	�j�

k��j�	�j� � i��� � ��
P� �K��

��
� �

The last factor is represented in form of convergent series for small values of �� �� � ��

I �K��
�� �O��
��

which gives for the scattering matrix the approximate expression

S�k� � �I � 
k��j�	�j�
k��j�	�j� � i��� � ��

P��


k��K�

�
�� � �

k��j�	�j� � i��� � ��
P� � iP�

�

�
�O��
� �

I � 
ik��K� � �I � ik��K��

k��j�	�j�

k��j�	�j� � i��� � ��
P� �O�j�j
��

�

In particular for � close to �� and � � � we have the following approximate expression
for the transmission coe�cient for weakly connected wires�

Ss�t���� �

k��

k��j�	j� � i��� � ��
	�as�	�at� �O����� s �� t�

where the second term is uniformly small when � � �	 but the �rst one exhibits a
nonuniform behaviour in dependence on ratio ��� � �����	 see below�

Remark� The last formula being applied formally to the case � � �� shows	 that the
transmission coe�cient is approximately equal to

Ss�t���� �



j�	j�	�as�	�at� �O�����

��



This looks surprising for � � � since it gives a nonzero transmission coe�cient for zero
connection�Actually it means that the transmission coe�cients are not continuous with re�
spect to the energy � uniformly in �� The physically signi�cant values of the transmission
coe�cient may be obtained via averaging with respect to Fermi distribution

���� T � �
�

� � e
���f
�T

�

Here �f is the Fermi�level in the wires�
One may consider two di�erent cases� �T 

 ��j�	j��� and �T �� ��j�	j��� which

correspond to averaging on intervals j� � ��j 
 �T for �T 

 ��j�	j��� and �T ��
��j�	j���� In the �rst case we still have�

jSij�T �j� � 
j	�as�	�at�j�
j�	j


but in the second case	 when ��j�	j��� is small comparing with �T �

jSij�T �j� � �
j	�as�	�at�j�

j�	j

�

� � 	�T �

����j��j�
�

Hence for small � and non�zero temperatures the averaged transmission coe�cient is
small	 according to natural physical expectations�

Example� Consider the case when the nonperturbed operator is just a Neumann
Laplacean A with a zero�range potentials de�ned by the boundary conditions ���� Then
the spectrum ��A� of it is discrete and the eigenfunctions 	 may be found in form de�ned
by the Ansatz

	�x� �
N�MX
s�N��

AsG��x� as�

with coe�cients As satisfying the equations�

Asg��as� as� �
X
t��s

G��as� at�At � �sAs� s � N � �� N � 
� ���N �M� �
��

under the conditions det�Q���� diag�g��as� as�� �s�� � �� s � N � �� N � 
� ���N �M�
In particular consider a single zero�range potential at the point a � � with the intensity
�� Then the role of the equation 
� is played now by the equation

g��a� a� � �� �
��

and the eigenfunctions are just G��x� a� for � satisfying �
��� If few wires are weakly at�
tached to the domain � now	 � 
 � 

 � then the corresponding transmision coe�cients
Sj� k of the operator A��� are approximately equal for resonance energy � to

Sj�l � �
G��a� a��G��a� aj�P
j jG��a� aj�j� �O�����

��



Hence
Sj��
Ss��

� G��a� aj�

G��a� as�
�

If the total number of contact points is greater then � in three � dimensional domain	 then
the position of the point a may be found from scattering data Sj�l on the intersection of
the level surfaces of ratios of Greens functions� It two�dimensional domain to localise the
zero�range potential by scattering data one need only four contact points�
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