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Abstract.

The spectrum of the perturbed shift operator T : f(n) — af(n+1)+a(n)f(n) in (*(Z)
is considered for periodic a(n) and fixed constant o > 0. It is proven that the spectrum
is continuous and fills a lemniscate. Some isospectral deformations of the sequence a(n)
are described. Similar facts for the perturbed shift in the spaces of sequences of some
hypercomplex numbers is derived.



1 Introduction

1.1 Lemniscate

Following [8], by a lemniscate we mean the locus of a point z € C for which the product
of distances to a finite number of fixed points {21, 2y, ..., 2x} € CV is equal to the fixed
positive constant V. The condition may be written in the form

(2 — 21)(2 — 22)..(z — 2n)| = 7V > 0. (1)

The lemniscate with equation |22 — 1| = r? is called the Cassini oval, or, in the case r = 1,
the Bernoulli lemniscate ( which looks like the “infinity”-sign co).

Some properties of the lemniscate (1) can be deduced from the maximum modulus
principle for an analytic function:
1) the lemniscate (1) separetes each point z from infinity;
2) no point of the lemniscate (1) can lie interior to Jordan curve consisting wholly of the
points of (1) ;
3) each such Jordan curve must contain inside at least one point z;
4) therefore the lemniscate (1) consists of a finite number of bounded Jordan curves.
For other basic properties of lemniscates the reader is referred to [5], [8], [9].

1.2 Hilbert theorem on lemniscate

For the larger number N, we may obtain lemniscates (1) of most varied appearance. In
fact one can approximate the boundary of any bounded simply connected domain by a
lemniscate (see [3], [5] p. 379).

Theorem (D. Hilbert, 1897) For any bounded simply connected domain D and for
any € > 0 there exists a lemniscate | C D which consists of the single continuum' such
that the boundary 0D of the domain D lies in the e-neighborhood of | and the lemniscate
[ lies in the e-neighborhood of the boundary 0D, i.e.

0D C {z € C:dist (z,1) < e},

| C{ze€C:dist(z,0D) < e}.

One can find in [8], [9]. the extention of Hilbert’s theorem to the general case of an
unbounded multiply-connected domains with a compact complement.

1.3 Shift operator

We denote by S the shift operator on the doubly infinite sequences of the complex num-
bers, i.e.

(Sf)(n) =f(n+1), neZ.

!This important condition is omitted by the author of the book [5].



The operator S is a unitary operator on /(Z) and the unit circle is its continuous spectrum.
We consider the scaled operator a.S with a positive number «, and perturbed by adding
a multiplication operator by some function a : Z — C. So, we consider the operator
T = aS + a. One can see that the description of the spectrum o(7T) of T in [*(Z) may be
reduced to finding all complex numbers z such that the homogeneous difference equation

af(n+1)+a(n)f(n)=z2f(n), ne€L,

has a nontrivial solution? and each solution is bounded. We denote the set of all such

numbers z by s(T), o(T) = s(T) .

Our nearest aim is to show that for every o > 0 and for every periodic function a
the set s(7') is a lemniscate and each lemniscate (1) coincides with the set s(T") for some
periodic function a with a period Ny < N. On the other hand, due to Hilbert’s theorem,
for every set I' which is the boundary of a simply connected domain D (i.e. I' = 0D)
there exist a periodic function @ and a positive number « such that the analytic curve
s(T) approximates I'. In fact using the extention of Hilbert’s theorem to the case of
unbounded multiply connected domains with a bounded complement (see [6], [7], [8], [9])
we can approximate the boundary of every closed bounded set with connected complement
by a lemnicsate and therefore by the set s(7") for some periodical function a.

The main theorem is formulated at the end of section 2 and it is proved in the section
3. In the section 4 we consider the perturbed shift on sequences of quaternions and Cayley
numbers.

2 Main Theorem

Let f be a two-sided sequence of the complex numbers, i.e. f :Z — C. Put |f] :=
sup,, |f(n)|. By S we denote the shift operator

(Sfn)=f(n+1), neZ.

The shift S is a unitary operator on

P(@Z) = 1{f: ) 1f(n)]* < oo}.

neZ

It means that [|Sf/;2(z) = || flli2z) for each f € I*(Z).
For a given sequence a : Z — C and a positive number o > 0 we consider the perturbed
shift
Too:=aS +a.

Note that the operator T, , is bounded on [*(Z) if and only if the function a(n) is bounded,
ie. |a| < oo.

It means that inf{n : a(n) = 2z} > —cc.



We say that a complex number z belongs to the spectrum s(T,,) of the operator T, ,
if and only if the following difference equation

aSf+af =z2f,

af(n+1)+a(n)f(n)=z2f(n), ne€L, (2)

has a nontrivial solution and every solution f is bounded, i.e. |f| < oo.
If we put f(0) =1 then for every z ¢ {a(n) : n < 0} the corresponding solution of the
equation (2) has the following explicit form

a " Hz;é(z —a(k)), n>1,
f(n) = 1, n =0, (3)
o [T, (2 — a(=k)™", n < —1.

On the other hand, if 2 = a(ng) then for every solution f of the equation (2) we get
f(n) =0, n> no.

Remarks. 1. For every a > 0 the set s(T4,,) is a translation-invariant one, that is
for every m € Z we have s(Tp,) = $(Tpw) with a'(n) = a(n +m), n € Z. Really, if
Toof = 2f then T, o f" = zf" with f'(n) = f(n 4+ m). Therefore we can suppose that
a(n) ¢ s(T,..) for n < 0 (see the footnote?).

2. The spectrum s(7,,) coincides with the set of the stability of the equation (2) (see [1],
theorem 5.4.1).

3. Let a(n) be a stationary sequence, ag := a(0) = a(n), n € Z, then the set s(T,,) is a
circle of radius « centered at the point ag. Indeed, let f be a solution of the equation (2)
then by (3) f(n) = f(0)(z —ap)™/a", n € Z, is a geometric progression and the solution
f is bounded if and only if |z — ay|/a = 1. In particular s(S) = {z € C, |z| = 1} is the
unit circle.

For a fixed positive integer N let us consider a finite ordered set of complex numbers
a={ay,ay,...,an} € CN and a sequence 7 of permutations m, of the set N = {1,2,..., N},
T € S(N), n€Z,ie. m:7% — S(N) (see [4], p.77). For given @ and 7 we construct
a function a, s : Z — C such that for every n = kN + m with k£ € Z and m in the set
{0,1,..,N — 1}

art(1) = (BN + ) = Ggyniy (4)

Note that for a stationary sequece m = {my} : m, = my, n € Z, we get the periodic
function a(n) = arz(n) with the period Ny < N, i.e. a(n + Ny) = a(n), n € Z. For
instance, if all numbers of the set @ are different from each other then Ny = N for every
7o € S(N). Denoting by e the unit element of the permutation group S(N) and choosing
m={e}: m =e, n € Z,we have got the following periodic sequence az := a(} g, that
is

ag(n+kN —1)=a,, neN, ke

For given a > 0 and a set a let us consider the polynomial
Pi(2) := (2 —a1)(z — ag)...(z — an).
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The locus of a point for which the product of distances from points @ is the positive
constant o is a lemniscate la,g. Thus, the lemniscate [, g is defined by the equation

|Pa(2)| = o

We now proceed to formulate our main
Theorem. For each fized positive number a,each set @ of complex numbers, and every
sequence ™ = {m, }nez of permutations m, of the set N = {1,2,..., N} we have

S(Ta,a) = S(Ta,a') = la,d‘;

where a = ay g and a' = ag.

3 Proof of the Main Theorem

Proof. Fix a permutation my € S(N) and put
Gy 1= {@ro(1), ro(2)s -+ Aro(N) -
Then from the equation
P (2) = Pi(2) = (z — a1)(z — a2)...(z — ay) (5)

we see that the lemniscates generated by @ and dj coincide for every o > 0, i.e.

The set [,z is bounded and no point of the set @ can lie on the lemniscate [, g.
Therefore there are two positive constants d = d(@, a) and D = D(d, ) such that

d<|z—a,| <D (6)

for every z € [, g and n € N.
Fix o, @, m and z. Let f be a solution of the equation (2) with @ = a,z. Then from
the last equation, the definition (4) of the function a, and the property (5) we get

FN) = ~ (2 = ara(N = D)F(N = 1) = (2~ ary) SN — 1) =
3 )z — v ) (N = 2) = . = Pa(2)(0). 7

We let p(z) := a N P;(z), and for every positive integer k using the equation (7) we
obtain f(kN) = p(2)*f(0). Hence the condition z € s(T, z) implies sup,., |f(kN)| < oo,
or [p(z)] < 1. On the other hand by the equation (2) we have (z ¢ @)

« «

f(0) = —————(0),

- z —a(-1) Z = Gr_\(N)



and finally
£(0)
f-Ny =12
(=) p(2)
Therefore for each positive integer k we obtain
£(0)
f(=kN) = . 8
(kM) = 250 )
So, z € s(T,,) implies z ¢ @ and |p(z)| > 1. At last we have
p(2)] = 1. (9)

It means that
$(Taa) Claag={z€C:|p(z)] = 1}.

To complete the proof of the theorem note that for each z € I,z and n = kN +m
with m in {1,..., N — 1}, k € Z, using (6), (9) we have the following estimates

[f(n)] < (D/a)™f(0)] < (D)™ Hf(0)] if k>0

and
1f(n)] < (a/d)™|f(0)] < (¢/d)N|f(0)] if k<O

with ¢ := max{a, 1/a}. So, the condition z € l, z implies z € s(T, ), and
S(Ta,a) = laﬁ = S(Ta,a/).

End of the proof.

Remarks. 1. Every lemniscate (1) is the spectrum of some operator 7,,. For
example, we can choose a = agy,z with @ = {z1,2,...,25}. Then a(n) is a periodic
function. Therefore
2. every lemniscate (1) is the spectrum of some operator 7, with a periodic function
a(n).

3. For every lemniscate (1) such that z; # 2, and for every positive integer k there exists
a periodical function a(n) with the period kN such that the spectrum s(7}.,) coincides
with the lemniscate (1). For example, we can construct the desired function as a = aye}q
with the ordered set @ = {ay, as, ..., apn} which consists of the (k — 1) identical blocks:
[21, 22, ..., zx], but the last one is [z, 21, ..., 2n]-

4. Let a = a, 5 then for every finite function b: Z — C , i.e. b(n) = 0for n: n(n—Ny) >
0, we have

$(Tt,a) = 5(Ta,atb)

and no point of the complex plain C is an eigenvalue of the operator T, .45 on the space
I>(Z). The latter statement means that the corresponding solution f of the equation

(aS+a+0b)f==zf
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belongs to [*(Z) if and only if f = 0.
Really, the embedding s(7} 415) C la,q is obviuos. The polynomial

(z = a(0) = b(0))(z — a(1) = b(1))...(z — a(No) — b(NNo))

is bounded on the lemniscate I, 4, hence z € [, , implies z € (T} 445). On the other hand
any [?(Z)-solution f is bounded, |f| < co. Therefore by (8), (9) we get | f(—kN)| = |f(0)]
for every positive integer k. So, f(0) =0 = f(n), n € Z.

5. Let a = arg then by the same way as above we can prove that for every function
b:{0,1,2,..., Ny} — C we have

$(Taa) = $(Taar)

with
a(n) if n <0,
d'(n) = b(n) if 0<n < Ny,
aln—Ny—1) if n> N,.

No point of the complex plain C is an eigenvalue of the operator T, o on the space [*(Z).
Example. Let my, m; be nonnegative integer, my + m; = N > 1. We consider a
lemniscate generated by the following polynomial

P(Z) = P(mo,ml)(z) = 2" (Z - 1)m1,

namely

I = limo,my) = {7z € C: |P(2)] = 1}.

Due t0 l(gmg,km1) = l(mo,my) We can suppose that the numbers mg, m, are mutually prime.
Note that for V = 1 the lemniscates [(1 ), [(0,1) are the unit circle centered at the point
0 or 1 correspondently. If N > 2 then at the unique critical point zy, zg # 0,1, of the
polymomial P(z), i.e. P'(2) = 0 and P(zy) # 0, we have |P(zy)| < 1. Therefore the
lemniscate [ consists of the single continuum (see [8]).

Let a = a(mg, my) be a set of all functions a : Z — {0,1}, such that s(7},) = [. With
each a € a we can associate the following real number from the inteval [0, 1]:

Qo = Z 2757—2

n=0

=)

We denote by Qng,m,) the union of all g, when a is scanning over the whole set a. If

N > 1 then the set of all sequences 7, = {7, }n>0 of permutations of {m,} C S(N) is
uncountable hence the set () is uncountable if m; # 0, j = 0,1. Consider any
rational number r € (0,1) with a finite number of units in its binary reprezentation, i.e.

No
_ "'n =1
r = 2n—|—1’ TNO = 1.
n=0




Then choosing b(n) = r, —a(n), 0 < n < Ny we derive from the remark 4 that the number

belongs to Q(mg,m,) if @ = ag € a(mg, my). This means that the set Qq,m,) is everywhere
dence in [0, 1] for each (mg, m1). On the other hand

Q(mo,ml) ﬂ Q(m{),m’l) =

if and only if (mg, m1) # (mg, m}) since lmgm,) 7 Lmym!)-

Here are few questions which are connected with the problem of description of spectra
of the perturbed shifts

a) Description of properties of the set Q(mg m,). In particular is it measurable, or just
zero-measure ?

b) Are Q(1,0) and Q1) countable ?

c) What is the complement of the union of all sets Q,,,m,) on the interval [0,1] 7.

4 Shift on Sequences of Quaternions and
Cayley Numbers

The proof of our main theorem depends crucially on the product rule for moduli : |zw| =
|z||w| which holds for all z,w € C. One can expect that once this condition is fulfilled,
we may consider the shift on generalized complex numbers: the quaternions H and the
Carley numbers K (see [2], [10]). Note that for these numbers the commutative law
for multiplication does no hold and for the Cayley numbers even the associative law for
multiplication is lost. But still each non-zero element of H or K has an inverse.

We denote by A one of the algebras R, C, H, K. These four algebras are the only non-
isomorphic algebras over the real field of finite dimension with a unit and the product
rule for moduli, i.e.

lab| = |a||b| for all a,b € A.

Here | | stays for the Euclidean length in R™, m =1, 2, 4, 8.

Let f be a two sided sequence of elements of the algebra A, f : Z — A. Consider the
shift operator S and define the perturbed shift (as above) for a positive number « and
given function a : Z — A

The = aS +a.

We say that an element ¢ of the algebra A belongs to the A-spectrum s4(Th,q) of the
operator T, , with a € A if and only if the following difference equation

af(n+1)+a(n)f(n) =(f(n), neZ, (10)



has a nontrivial solution and every solution f € A is bounded, i.e. |f| := sup,, |f(n)| < co.
Remarks. 1. We put ( € A in the equation (10) instead of z € C as in the

equation (2) because every finite dimensional complex division algebra with unit element

is isomorphic to C.

2. s¢(Twa) = $(Taa)-

3. Let us consider the quaternions H as a four-dimensional real vector subspase of the

matrix space Mat(2, C) with the matrix multiplication (see [2]), i.e.

me{(5 )t

Then sg(Ta,,) coincides with the set of the stability of the difference system (10) (see[1])

with ; £ c c
_ 1 —J2 _ [ &1 —a2 _ [ &1 —%2
f_<f2 fi )’ a_<6_l2 C_l1>’ C_<Cz Cl)’
fj7 as, Cje(ca ]:172
In this case

|12 = det f =[]+ |fof* = sup (A )P +1f2(n)).

4. Let a(n) = a(0) be a stationary sequence. Then the set s4(Th,) is a (m — 1)-
dimensional sphere in R™, m = dim.A with the radius « centered at the point a(0) =
(1, T2y .oy &) € R™. In particular s4(S) = {a € A, |a|] =1} - the unit sphere.

For given @ = {ai, ay, ...,an} € AY and a sequence 7 of permutations of the set N we
define a function a,; : Z — A and a function az by the same way as in the case A = C.

The locus of a point for which the product of distances from points of the set @ € AV
is the constant o™ is a A-lemniscate lo 5. Thus, the A-lemniscate I,z is defined by the
equation

loa={C€A: [C—a||¢ —ayl|..|¢ —an] =},

Therefore dim [, ; = dim A — 1.

The next statement may be proved word for word as the Main Theorem above (the
case A = C).

Theorem. For any positive number o,any set @ € AN, and any sequence m = {7, bnez
of permutations T, of the set N = {1,2,..., N} we have

SA(Ta,a) - SA(Ta,a’) - la,[ia

where a = ar g and a' = ag.

Note that all remarks 1 - 5 of the section 3 can be easily formulated in terms of the
algebra A. Any multi-dimensional version of Hilbert Theorem would help description
spectra of general perturbed shift operator.



5 Conclusion

The problem of description of spectra of periodic and quasiperiodic differential operators
belongs to the most challenging problems of the spectral analysis. Our results show that
beyond the frames of selfadjoint and weakly perturbed selfadjoint operators some new
patterns of spectra appear, in particular the spectrum of periodically perturbed shift
operator may fill the boundary of almost any open domain with a compact complement.
On the other hand the problem of description of isospectral deformations of the coefficients
admits very natural sollution. The main facts remain true for shifts in all spaces of
sequences of hypercomplex numbers for which the norm of product is equal to the product
of norms (real, complex, Cayley numbers and quaternions).
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