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1 Introduction

We consider the following objects: S is a closed subspace of a Hilbert Space
H, P is the projection operator for S, and U(t) is a strongly continuous group
of unitary operators on H with infinitesimal generator A. We let U = U(T ),
where T > 0 is fixed. The questions that we ask are

• Under what conditions is PUP a contraction?

• Under what conditions can we steer g ∈ S to h ∈ S in the sense that we
can find f ∈ H such that Pf = g and PUf = h?

These considerations grew out of an attempt to obtain boundary controllability
results for PDEs from certain smoothing estimates of the PDEs ([5, 6, 9, 8, 7,
10, 1]. The authors soon found that the analysis that they used could be put
comfortably in a completely abstract setting in which the results will hopefully
be of interest in their own right, even outside the area of control theory. The
purpose of this paper is to present the theory in the more abstract setting and
extend it.

2 The Main Results.

Lemma 1 Suppose that S is a closed subspace of a Hilbert Space H, P is the
projection operator for S, and W is a unitary operator on H such that PWP
is compact and ||(PWP)n|| = 1 for some positive integer n. Then the set

V = {z ∈ S : Wz ∈ S, W 2z ∈ S, . . . , Wnz ∈ S}

is a non-trivial finite dimensional subspace of S.
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Proof. The kernel K of I − PW−1PWP is finite dimensional because PWP
is compact. Thus, V is a finite dimensional subspace because it is contained in
K.

Next, we show that V is non-trivial. We can find a sequence {zm} contained
in S such that ||zm|| ≤ 1 and ||(PWP)nzm|| → 1 as m → ∞. Since PWP is
compact, we can even arrange to have the sequence {PWPzm} convergent. Let
r be the limit of this convergent sequence and set z = W−1r. It is clear that r is
contained in S. We must have ||(PWP)jzm|| → 1 as m → ∞ for all 1 ≤ j ≤ n
because ||(PWP)jzm|| ≥ ||(PWP)nzm||. Further, we have

||z − zm||2 = ||W−1r − zm||2

= ||r − Wzm||2

= ||r − WPzm||2

= ||Pr − PWPzm||2 + ||(I − P)r − (I − P)WPzm||2

= ||r − PWPzm||2 + ||(I − P)WPzm||2

= ||r − PWPzm||2 + ||WPzm||2 − ||PWPzm||2

≤ ||r − PWPzm||2 + 1 − ||PWPzm||2.

But since ||r|| = 1 and PWPzm → r as m → ∞, we see that zm → z as m → ∞.
Hence z ∈ S. Thus, the subspace {z ∈ S : Wz ∈ S} is non-trivial. Finally,

||(PWP)jz|| = lim
m→∞

||(PWP)jzm|| = 1

for 1 ≤ j ≤ n. Hence z ∈ V .

Theorem 1 Suppose that S is a closed subspace of a Hilbert Space H, P is the
projection operator for S, and U(t) is a strongly continuous group of unitary
operators on H with infinitesimal generator A. We let U = U(T ), where T > 0
is fixed. Suppose that the following conditions hold:

1. U has the smoothing property. i.e. if f ∈ S and Uf ∈ S then Uf ∈ D(A).

2. PUP is a compact mapping.

3. S is compatible with A in the sense that if f ∈ S ∩ D(A) then Af ∈ S.

Then PUP is a contraction if and only if S contains no eigenvectors of A.

Proof. It is clear that ||PUP|| ≤ 1. Suppose that ||PUP|| = 1. Then by
Lemma 1 the subspace

V = {z ∈ S : Uz ∈ S}
is non-trivial and finite dimensional. Further, by the smoothing property and
because both U and U−1 preserve D(A), it follows that V is contained in D(A).
Thus, A is a bounded operator on the finite dimensional space V and must
possess at least one eigenvector belonging to V .

Conversely, one easily sees that if A has an eigenvector in S then ||PUP|| =
1. This completes the proof.
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Theorem 2 Let W be a unitary operator and suppose that PWP is a contrac-
tion. Then the bounded linear operators

Q = (W−1P − PW−1P)(I − PWPW−1P)−1

R = (P − W−1PWP)(I − PW−1PWP)−1

are such that if g ∈ S and h ∈ S then f = Rg + Qh satisfies Pf = g and
PWf = h. Moreover, R and Q are optimal in the sense that if f̃ also satisfies
P f̃ = g and PWf̃ = h then ||f̃ || ≥ f , with equality holding if and only if f̃ = f .

Proof. By expanding (I − PWPW−1P)−1 and (I − PW−1PWP)−1 as geo-
metric series, it is easy to verify the identities

PRP = P, PWRP = 0,

PQP = 0, PWQP = P.

This proves the stated algebraic properties of R and Q.
Suppose now that f̃ has the properties stated. Then

(f, f̃ − f) = (Rg + Qh, f̃ − f)
= ((P − W−1PWP)(I − PW−1PWP)−1g, f̃ − f)
+ ((W−1P − PW−1P)(I − PWPW−1P)−1h, f̃ − f)
= (−W−1PWP(I − PW−1PWP)−1g, f̃ − f)
+ (W−1P(I − PWPW−1P)−1h, f̃ − f)
= (−WP(I − PW−1PWP)−1g,PW (f̃ − f))
+ (W−1P(I − PWPW−1P)−1h,PW (f̃ − f))
= 0.

Thus

||f̃ ||2 = ||f̃ − f ||2 + ||f ||2 + 2Re(f, f̃ − f) = ||f̃ − f ||2 + ||f ||2,

which completes the proof.

Remark. One might think that the assumptions of Theorem 2 could be weak-
ened by replacing the requirement that PWP is a contraction with the require-
ment that PW−1PWP is a contraction. However, nothing is gained by this
because (PW−1P)∗ = PWP and thus

||PW−1P||2 = ||PWP||2 = ||PW−1PWP||

Example. This simple example illustrates the notation and theory considered
so far. We consider the Cauchy Problem for the Schrödinger Equation:{

∂u
∂t = iΔxu, x ∈ Rn, t > 0,
u(x, 0) = φ(x), x ∈ Rn.

(1)
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If φ is nice enough, the solution of this is

u(x, t) = (4πit)−n/2

∫
Rn

e
(x−y)2

4it φ(y) dy. (2)

We define H = L2(Rn) with the usual inner product ( , ) given by

(f, g) =
∫
Rn

f̄(x)g(x) dx.

The solution operator φ → u(·, t) preserves the L2 norm, as can be seen by
formally differentiating ||u(·, t)||2 with respect to t. In fact, solutions of System
(1) are given by a strongly continuous unitary group of operators U(t) on H.
The infinitesimal generator A of this unitary group has domain the Sobolev
Space H2(Rn) and is given by Au = iΔu.

Suppose that Ω is a closed bounded subset of Rn and consider the closed
subspace S of H consisting of those f ∈ H such that the support of f is contained
in Ω. In this setting, the projection operator P is simply the operation of
multiplication by χΩ, the characteristic function of Ω. It is clear that if the initial
data are in S then the solution of the PDE is infinitely differentiable and that
the conditions of Theorem 1 are satisfied. Note that if A had an eigenfunction
in S, then the eigenfunction would be infinitely differentiable and identically
zero outside Ω. By Holmgren’s uniqueness theorem, no such eigenfunction can
exist. Hence PUP must be a contraction. Overdetermined eigenvalue problems
like this are typical of this method when applied to PDEs.

We note the quantum mechanical interpretation of this is that if a particle
is in Ω with probably 1 at some time, then it is impossible for it to be in Ω with
probably 1 at some later time.

Note also that more general Schrödinger equations may be treated (see [1]).

Theorem 3 Suppose that S is a closed subspace of a Hilbert Space H, P is the
projection operator for S, and W is a unitary operator on H such that PWP is
a compact. Then there is a positive integer n such that (PWP )n is a contraction
if and only if W has no eigenvectors belonging to S.

Proof. Suppose that W has no eigenvectors in S and that ||(PWP )n|| = 1 for
all positive integers n. By Lemma 1, for each n we can find zn ∈ S such that
||zn|| = 1 and W jzn ∈ S for 1 ≤ j ≤ n. Because of the compactness, we can
extract a convergent subsquence with limit z such that W jz ∈ S for 1 ≤ j < ∞.
Thus the set

V∞ = {z ∈ S : W jz ∈ S for all j}
is a non-trivial subspace of S and W is a bounded operator on the finite dimen-
sional space V∞. This contradicts the fact that W has no eigenvectors in S.
Hence ||(PWP )n|| < 1 for some n.

Conversely, it is clear that if W has an eigenvector in S then ||(PWP)n|| = 1
for all n.
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Corollary 1 Suppose that S is a closed subspace of a Hilbert Space H, P is the
projection operator for S, and U(t) is a strongly continuous group of unitary
operators on H with infinitesimal generator A. We let U = U(T ), where T > 0
is fixed. Suppose also that PUP is a compact and that A has no eigenvalues.
Then there is a positive integer n such that (PUP )n is a contraction.

Proof. By Theorem 3, it is sufficient to prove that U has no eigenvalues.
Suppose that U has an eigenvalue λ. Then |λ| = 1 because U is unitary. But,
by a well-known theorem in semi-group theory, there is an eigenvalue μ of A
such that λ = eTμ, which is impossible.

Theorem 4 Suppose that W is unitary and (PWP)n is a contraction for some
positive integer n. Then for each k = 1, 2, . . . , n, the bounded linear operators

Qk = (W−1(PW−1P)n−k − (PWP)k−1(PW−1P)n)(I − (PWP)n(PW−1P)n)−1,

Rk = ((PWP)k−1 − W−1(PWP)n−k(PWP)n)(I − (PW−1P)n(PWP)n)−1,

are such that if g ∈ S and h ∈ S then

fk = Rkg + Qkh, k = 1, 2, . . . , n

satisfy ⎧⎨⎩ Pf1 = g,
PWfk = Pfk+1, k = 1, 2, . . . , n − 1,
PWfn = h.

(3)

Moreover, the operators Rk and Qk are optimal in the sense that if f̃1, f̃2, . . . , f̃n

also satisfy (3) then

n∑
k=1

||(I − P)fk||2 ≤
n∑

k=1

||(I − P)f̃k||2

with equality holding if and only if f̃k = fk, k = 1, 2, . . . , n.

Proof. The proof is similar to the proof of Theorem 2, so we omit it.
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