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Abstract.

The mathematical model of a simplest quasi-one-dimensional quantum network constructed
of relatively narrow waveguides ( the width of the waveguide is less than the de Broghlie wave-
lengh of the electron in the material) is developed. This model allows to reduce the problem of
calculating the current through the quantum network to the construction of scattered waves for
some Schrödinger equation on the corresponding one-dimensional graph. We consider a graph
consisting of a compact part and few semiinfinite rays attached to it via some boundary condi-
tion depending on a parameter β (analog of the inverse exponential hight e−bH of a potential
barrier H separating the rays from the compact part). This parameter regulates the connection
between the rays and the compact part. Spectral properties of the Schrödinger operator on this
graph are described with a special emphasis on the resonance case when the Fermi level in the
rays coincides with one of eigenvalues of the nonperturbed Schrödinger operator on the ring.An
explicit expression is obtained for the scattering matrix in the resonance case for weakening
connection between the rays and the compact part.



     

1 Introduction.
The spectral properties of the Schrödinger equation on graphs,see [3] and the the most complete
bibliography there, posess new interesting properties, which never appear for onedimensional
Schrödinger Operator on the rel axis. For instance, the reflection coefficient on a homogeneous
ring (length 2π) with one semi-infinite ray attached to it by “zero-current condition” (see section
2) reveals a periodic behaviour in momentum at infinity:

S(k) =
i− tgkπ

i + tgkπ
.

In particular it does not approach 1 when k → ∞.
The most important of the characteristic features which sharply distinguish the Schrödinger

equation on graph from the Schrödinger equation on real axis is absence of a global solution of
Cauchy problem : the solution exists only on the edge containing the initial point, but generally
can’t be continued in a unique way across the neighbouring vertex with few edges adjacent to
it. In this respect the Schrödinger equation on a graph takes an intermediate position between
ordinary and partial Schrödinged equations on a corresponding domain , see also [4].

The modern interest to the investigation of spectral properties of the Schrödinger Operatprs
on graph see [1],[2],[3] is partially motivated by the fact that despite the absence of “global”
solutions of Cauchy problem we still may describe the whole set of solutions of the corresponding
differential equation on graph as a spline of solutions of Cauchy problem for ordinary differential
equations on edges with proper boundary conditions at the vertices.

On the other hand the onedimensional scalar Schrödinger equation on a graph is distin-
guished from a system of differential equations on a real axis because of locality of the corre-
sponding potential: even if we assume that the solutions on different edges are different compo-
nents of one vector function, we see, that the potential should be represented by some diagonal
matrix. In this representation all essential information which permitts continuation the solution
from one edge to ahother is encoded in the boundary conditions at the vertices, see[5]. Unfortu-
nately this approach looks still too general to reveal the characteristic properties of differential
equations on graphs approximating smooth manifolds.

In the present paper we consider the one-dimensional Schrödinger equation on a graph
constructed of a compact part Γ0 represented as a sum of oriented edges joined at the nodes with
some self-adjoint boundary conditions connecting the boundary values of the wave function at the
incident edges and with a finite number N of semi-infinite rays Γs : 0 < xs < ∞, s = 1, ....., N
attached to the compact subgraph at the vertices x = a1, ..., aN which are inner points of some
edges of the compact part Γ0

−u′′0 + q(x)u0 = λu0,

−u′′s = λus, s = 1, 2, ...N

with proper boundary conditions at the vertices. We assume that only one ray is attached
to each vertex. These boundary conditions correspond to selecting of Lagrangian planes of
some simplectic boundary form (see for instance [2], [6], [7]). We assume that the potential
q(x) is a real bounded measurable function on the compact part L0 and vanishes on the rays,
q(xs) = 0, s = 1, 2, ...N . We choose the boundary conditions such that the component u0 of
the total wave function on the compact part Γ0 is a continuous function and the boundary
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conditions connect the values of it and the jump of its derivative at the inner point – vertex –
as of the oriented edge (arc) in Γ0 to the boundary values u′s(0), us(0) of the component of the
wave function on the ray attached to as.

The object we get in this way

Γ0 +
N∑
s=1

Γs

is a special sort of graph where the inner nodes of it with general self-adjoint boundary conditions
and vertices as with special boundary conditions are in fact the elements of a similar nature.
Still we prefer to distinguish them as nodes and vertices, because of the special role of boundary
conditions assigned to vertices.

The simplest but still nontrivial graph which possesses the features mentioned above is just
a ring with few rays attached to it. Further we call our graph just “ring” but in fact the whole
analysis is valid for any compact graph with few semi-infinite rays attached to it as described
above.

We consider below a one-parameter family of special boundary conditions (see section 2)
which correspond to the weakening connection (β → 0) between the rays and the compact part
Γ0.One can show that these boundary conditions simulate the interaction between real quantum
wires when the rays are joined to the ring non directly but are connected to it via quantum
tunnelling through the potential barrier with the height proportional to ln 1

|β| . Our analysis
shows that the resonance properties of the corresponding scattering matrices are defined by the
properties of eigenfunctions of the Schrödinger operator on the compact part Γ0. In particular
for the resonance case when λ = k2 is a simple eigenvalue of the Schrödinger operator on the
compact part Γ0 the transmission coefficients Sst(k) for pairs of rays attached at the points as, at
are essentially defined by the products of values of the corresponding eigenfunction ϕλ(as)ϕλ(at)
at the vertices:

Sst(λ) = − 2∑
r |ϕλ(ar)|2

ϕλ(as)ϕλ(at) + O(|β|2).

Of course the limit value of the transmission coefficient for β → 0 is not a continuous function
of energy near the point λ, so , though the limit value of it for β = 0 is finite, practically the
average value of it over Fermi distribution tends to zero when β → 0 for any (small) value of
temperature.

The last formula shows that the quantum current from one ray to another in the resonance
situation when Fermi level in the rays is equal to some eigenvalue of the Schrödinger operator
of the compact part can be controlled by the classical electric field applied to the ring. The
physical meaning and technical implementation of this phenomenon will be discussed in following
publications.

2 Schrödinger operator on the graph.
In this section we collect several facts about graphs formulated in a convenient form. We use
this fact in following sections.

Consider the Schrödinger operator defined by the differential expression

l0u0 = −u′′0 − q(x)u0
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on the “ring” Γ0 with real bounded measurable potential q and some general self-adjoint bound-
ary conditions at the nodes of Γ0. We assume that few semi-infinite rays Γs, 0 ≤ xs < ∞, are
attached to the “ring” at the vertices a1, a2, ..., as, ..aN ⊂ Γ0, xs|as = 0, the vertices being the
inner points of some oriented edges (arcs) of Γ0 where the wave functions of the “nonperturbed”
Schrödinger operator L0 on the compact subgraph Γ0 is a smooth function :

u0(as − 0) = u0(as + 0) ≡ u0(as) , u′0(as − 0) = u′0(as + 0).

We relate the Schrödinger operator L0 with the Schrödinger operators Ls on the rays defined
by the differential expressions

lsus = −u′′s ,

restricting all of them onto the subspace of all smooth functions vanishing near the vertices
as, s = 1, ..., N and then extending them with the boundary conditions connecting the jump
of the derivative [u′0]|as of the continuous function u0 on the corresponding oriented edge of Γ0

with the boundary values us(0), u′s(0) of the component of the wave function us on the ray Γs

at the corresponding vertex:

u0(as − 0) = u0(as + 0) ≡ u0(as), (1)(
[u′0]|as
us(0)

)
= Bs

(
u0(as)
−u′s(0)

)
(2)

generally by some Hermitian matrix

Bs = B∗
s =

(
βs

00 βs
01

βs
10 βs

11

)
.

Further we assume that

Bs = B∗
s =

(
βs

00 βs
01

βs
10 βs

11

)
≡

(
0 β
β̄ 0

)
,

β is the same for all vertices as. We call these boundary conditions special boundary conditions.
Choosing β = 1 we receive “zero-current condition”, but choosing β → 0 we get the sequence of
scattering problems with weakening connection between the compact part Γ0 and the rays.

Theorem 1 The operator L defined in L2(Γ0) ⊕ ∑N
s=1 L2(Γs) by the differential expression

l0⊕
∑N

s=1 ls is essentially self-adjoint in the domain D0 consisting of all smooth functions defined
on the graph Γ which satisfy the boundary conditions (1, 2).

Proof One can easily check the symmetry of this operator just integrating by parts: for
u, v ∈ D0 due to the boundary conditions (1, 2) we have

< Lu, v > − < u,Lv >= 0.

On the other hand the adjoint operator L∗ is defined in L2(Γ0) ⊕
∑N

s=1 L2(Γs) by the same
differential expression l0 ⊕ ∑N

s=1 ls in the domain consisting of L2 – functions with square-
integrable first and second derivatives which satisfy the same boundary conditions at the vertex.
Really for u ∈ D0, v ∈ D∗

0 we have zero boundary form

< Lu, v > − < u,L∗v >= 0.
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Denoting by [f ]|a the jump f(a + 0) − f(a− 0) of the function f at the vertex a and by {f} |a
the mean value f(a−0)+f(a+0)

2 of it we can represent the boundary form as follows:

< Lu, v > − < u,L∗v >=
N∑
s=1

(
[u′0]|as{v0}|as − {u0} |as [v′0]|as

)
+

N∑
s=1

({
u′0

} |as [v0]|as − [u0]|as{v′0}|as
)

+

N∑
s=1

(
u′s(0)vs(s) − us(0)v′s(s)

)
.

Special choice of functions u0, u1, ...uN satisfying conditions u0(as) = u′0(as) = us(0) = u′s(0) = 0
for each vertex except at and u0(at) = [u′0]|at = us(0) = u′s(0) = 0, {u′0} |at = 1 permits to deduce
from the vanishing boundary form that v0 is to be continuous at the vertex [v0]|as = 0. Then
expressing [u′0]|at , ut(0) in terms of u0(at), u′t(0) by the boundary conditions we deduce from the
independence of the initial values u0(at), u′t(0) on the ray Γs that the boundary values of the
element v ∈ D∗

0 at the vertex as satisfy the same boundary condition as the boundary values of
u ∈ D0. Then using the smoothness of v, v ∈ W 2

2 (Γ) we deduce1 from integration by parts that
L∗ is symmetric and hence it coincides with the closure of L:

L∗ ⊆ (L∗)∗ = L = (L∗)∗ ⊆ L∗.

This implies the essential self-adjointness

L = L∗
.

End of the proof
The resolvent kernel (Green function) of the operator L can be obtained as a solution of the

corresponding inhomogeneous equation

Lg = λg + δ(x− ξ).

We shall represent it via the resolvent kernel (Green function) of the nonperturbed operator L0 ≡
L0

0⊕
∑N

s=1 L0
s which is defined by the same differential expression in L2(Γ0)⊕

∑
0<s≤N L2(Γs) with

the self-adjoint boundary conditions at the nodes of the ring Γ0 and separating homogeneous
boundary conditions at the vertices:

[u0]|as = 0, us(0) = 0, s = 1, 2, ...N.

This operator is a limit of operators corresponding to weakening family of boundary conditions
(1,2) when |β| −→ 0. We assume that the eigenvalues, eigenfunctions and the resolvent kernel
g0
0(x, ξ, λ) of the component L0

0 of the nonperturbed operator L0 on the ring Γ0

−d2g0
0(x, ξ, λ)
dx2

+ q(x)g0
0(x, ξ, λ) = λg0

0(x, ξ, λ) + δ(x− ξ)

are known.
1Sobolev class W 2

2 is embedded into the class C1 of all continuous and continuously differentiable
functions on each component Γas, s = 0, 1, ...N of the graph Γ hence the integration by parts with
elements v ∈ D∗

0 is possible.
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Theorem 2 The spectrum of the operator L0

0 is discrete and the resolvent kernel of it is repre-
sented as a sum of an absolutely and uniformly convergent series

g0
0(x, ξ, λ) =

∞∑
s=1

ϕs(x)ϕs(ξ)
λs − λ

,

where {ϕs} are the normalized eigenfunctions of L0

L0ϕs = λsϕs, |ϕs|L2(Γ0) = 1.

The system {ϕs} of all eigenfunctions is automatically orthogonal and complete if the specrtrum
of L0 is simple. In the case of multiple spectrum a normalized orthogonal system of eigenfunc-
tions may be chosen as well.

When constructing the Green function of the perturbed operator L we use the fact that the
Green function g0

0(x, ξλ) satisfies the homogeneous Schrödinger equation on Γ0

l0g
0
0(x, ξ, λ) = λg0

0(x, ξ, λ), x 
= ξ

and the boundary condition at the point ξ:

[g′0]|ξ = −1.

The esssential part of the proof of the Theorem 2 - the convergence of the spectral series for
thr green function g0

0 may be obtained from embedding theorems (see also [1]). It is worth
to note here that the regular asymptotics of eigenvalues at infinity is generally absent in this
case because of mixing terms corresponding to nonconmeasurable edges as the following simple
example shows.

Example. Consider an ring q = 0, 0 ≤ x, 2π with nodes at the points a1, a2, a1 − a2 = Δ,
and the boundary conditions [u′0]|as = βu0|as . The resolvent kernel g(x, ξ, λ) on the ring with
these boundary conditions is represented as a linear combination of the Green functions G(x, ξ, λ)
on the “empty ring” with no boundary conditions:

G(x, s, λ) = −cos(x− π − s)
√
λ

2
√
λsinπ

√
λ

in form g(x, ξ, λ) = G(x, ξ, λ) + u1G(x, a1, λ) + u2G(x, a2, λ) where us, s = 1, 2 may be found
from the linear system

−u1 = β[G(a1, ξ, λ) + u1G(a1, a1, λ) + u2G(a1, a2, λ)],

−u2 = β[G(a2, ξ, λ) + u1G(a2, a1, λ) + u2G(a2, a2, λ)],

with the determinant

detD0 = −
⎛⎝ cosπ

√
λ

2
√
λsinπ

√
λ
− β−1 cos(Δ−π)

√
λ

2
√
λsinπ

√
λ

cos(Δ−π)
√
λ

2
√
λsinπ

√
λ

cosπ
√
λ

2
√
λsinπ

√
λ
− β−1

⎞⎠
which vanishes if

cosπ
√
λ− 2

√
λβ−1sinπ

√
λ = ±cos(Δ − π)

√
λ.
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If Δ and π are not conmeasurable then the set of zeroes of the determinant is “disordered” as
a set of roots of a sum of two periodic functions with nonconmeasurable periods.

Further we use the fact that generally the component g0(x, ξ, λ) of the Green function of
the “perturbed operator” L on the compact subgraph Γ0 may be found as a linear combination
of Green functions of the nonperturbed operator L0

0 attached to the pole ξ and the nodes. One
can easily see that in the generic case when all eigenvalues of the operator L0

0 are simple we
must distinguish the two cases (situations):

1. For a given eigenvalue λ0 the corresponding eigenfunction ϕ0 of L0
0 vanishes at all vertices

as. In this case the function ϕ0 being continued as identical zero onto all rays satisfies the
boundary conditions 1, 2 hence the continued function is an eigenfunction of the perturbed
operator. It is obviously orthogonal to the subspace of absolutely continuous spectrum of the
perturbed operator in both cases when λ0 < 0 or λ0 > 0. In the second case λ0 proves to
be imbedded eigenvalue. The existence of imbedded eigenvalues (even for compactly-supported
potentials) is a characteristic feature of Schrödinger operators on graphs.

2. For a given eigenvalue λ0 of L0
0 there exists at least one vertex as such that the corre-

sponding eigenfunction ϕ0 does not vanish at as, ϕ0(as) 
= 0. In this case the spectral point λ0

will not be the eigenvalue of the perturbed operator at least for small values of β, i.e. in the
case of weakly connected inner and outer channels. We shall give the proof of this statement
in the next section as a corollary of more general statement on “compensation of singularities”.
We shall show also that for negative λ0 and weakly connected channels there exists a negative
eigenvalue of the perturbed operator close to it:

λβ = λ0 + O(|β|2),
and for positive λ0 there exists a resonance of the perturbed operator close to λ0.

We finish this section with a general statement concerning the representation of the resolvent
of the perturbed operator. We can assume now that neither of eigenfunctions of the nonperurbed
operator L0

0 vanishes at all vertices thus neither of eigenfunctions of L0
0 remains an eigenfunction

of the perturbed operator.

Theorem 3 The component g0 ≡ g0(x, ξ, λ), x, ξ ∈ Γ0 of the Green function of perturbed
operator L in Γ0 is represented in terms of the Green function g0

0 of the nonperturbed operator
the following way:

g0(x, ξ, λ) =
N∑
s=1

usg
0
0(x, as, λ) + g0

0(x, ξ, λ),

where {us = us(ξ, λ)}|Ns=1 are defined as solutions of the following linear algebraic system∑
r

[
g0
0(as, ar, λ) + δsr

(
−ik|β|2

)−1
]
ur + g0

0(as, ξ) = 0,

where λ = k2, �k > 0. The spectrum of the perturbed operator L consists of all singularities of
the Green function in the complex plane of the spectral parameter λ. In particular the absolutely
continuous spectrum of L fills the positive half-axis λ ≥ 0 with the constant multiplicity N . The
eigenvalues λr = k2

r , �kr > 0 and resonances λr = k2
r , �kr < 0 of the operator L are found

as roots of the following dispersion equation in upper �k > 0 and lower �k < 0 half-planes
respectively:

det
(
g0
0(as, ar, λ) + δsr

(
−ik|β|2

)−1
)

= 0. (3)
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Proof. Being solutions of the homogeneous equation Lg = λg the components of the complete
Green function g of the perturbed operator on the rays Γs coincide generally with exponentials:

gs(xs, ξ, λ) = bse
ikxs , xs > 0, k =

√
λ.

Then due to the boundary conditions at each vertex a = a1, a2, , , , aN we have

[g′0]|as = −ik|β|2g0(as) (4)

this implies the announced linear algebraic system for the coefficients us:

−us =

(
N∑
r=1

urg
0
0(as, ar) + g0

0(as, ξ)

) (
−ik|β|2

)
.

Thus we get for the vector �u = (u1, ...., uN ) the representation

�u = −{G + i
1

k|β|2 I}
−1 �g(ξ),

where G = {g0
0(as, ar)} is an operator in corresponding auxillary channel-space2 and

(g0
0(a1, ξ), g0

0(a2, ξ), ...., g0
0(aN , ξ)) = �g(ξ) ∈ E.

Hence we have the following expression for the component of the Green function of the perturbed
operator

g(x, ξ, λ) = − �g(x){G +
i

k|β|2 }
−1 �g(x) + g0

0(x, ξ, λ), (5)

where �g(x) = (g0
0(x, a1), .., g0

0(x, aN )) and �g(ξ) = (g0
0(a1, ξ), g0

0(a2, ξ), .., g0
0(aN , ξ)).

We postpone the proof of the statement about zeroes of the determinant of the matrix
G+ i

k|β|2 to the following section 3 where we prove that all singularities of the resolvent kernel of
the perturbed operator appear from these zeroes of the determinant, if neither of eigenfunctions
ϕl of L vanishes at all vertices,

∑N
s=1 |ϕl(as)|2 > 0. Modulo this important statement this is the

End of the proof.
In the following section we continue the discussion of the properties of the resolvent of the

perturbed operator beginning from the formula 5.
Note that all roots of the equation 3 in upper halfplane �k > 0 which corresponds to the

physical sheet of the spectral variable λ are situated on the imaginary axis k = iκ (0 < κ < ∞)
and correspond to the negative eigenvalues of L. The roots of the dispersion equation 3 in
the lower halfplane �ks < 0 which correspond to the nonphysical sheet are called resonances
because of the special role they play in the description of asymptotic properties of solutions of
the corresponding nonstationary equation see [9]

1
i

ψ

dt
= Lψ

ψ|t=0 = ψ0.

2The precise meaning of this space will be clarified later when we discuss scattering matrix

8



       
The solution of this equation may be represented by the Riesz integral of the resolvent Rλf(x) =∫
g(x, ξ, λ)f(ξ)dξ

eiLtψ0 = − 1
2πi

∫
ΓL

eiλtRλdλψ0

on some contour ΓL on the physical sheet of the spectral variable around the spectrum σ(L) of
L. The resonances become involved if we may deform this contour to the lower halfplane see
[9]. The spectral analysis of resonances is developed in [8] where the corresponding hyperbolic
equation:

utt + Lu = 0.

is considered. In our situation the similar analysis can be developed as well.
For an asymptotic analysis of the Riesz integrals when t → ∞ the description of the poles

of the resolvent – the roots of the dispersion equation (3) both in the upper and the lower
halfplane �k > 0, �k < 0 is required. We can perform the corresponding analysis for the family
(sequence) of perturbed operators Lβ which correspond to weakening connection between the
ring and the rays, β → 0. The limit operator coincides with the nonperturbed operator

L0 = L0
0 ⊕

N∑
s=1

L0
s.

One can prove (see Theorem 4 in the next section) that

Lβ −→ L0

in a sense of the uniform convergence of resolvents

(Lβ − λI)−1 −→ (L0 − λI)−1

on each compact of the complement of the spectrum σ(L0) of the limit operator L0 in the
complex plane.

3 Weakening connection limit in resonance case.
We assume now that the nonperturbed operator has a simple spectrum and neither of its eigen-
functions ϕl vanishes at all vertices,

∑N
s=1 |ϕl(as)||2 ≡ |ϕ|2β 
= 0. In this section we investigate

the asymptotic behaviour of the resolvent kernel gβ(x, ξ, λ) and the scattering matrix Sβ(λ) for
weakening connection β → 0 in both nonresonance and resonance case:

λ ∈ σ(L0
0), λ∈σ(L0

0)

i.e. when λ coincides with one of eigenvalues of L0
0 or not.

Theorem 4 Consider a sequence of operators Lβ which correspond to the vanishing connection
between the ring and the rays: β → 0, ε → 0. The resolvents of them

(Lβ − λI)−1

converge uniformly to the resolvent of the nonperturbed operator L0
0⊕

∑N
s=1 Ls on each compact

subset Ω of the complement of the spectrum of the nonperturbed operator. Besides, if λ0 is an
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eigenvalue of the nonperturbed operator L0, then for sufficiently small β itcan’t be an eigenvalue
of the perturbed operator Lβ but there exist an eigenvalue of the perturbed operator (for λ0 < 0)
or resonance (for λ0 > 0) in a |β|2- neighborhood of it.

Proof. Consider the case when x, ξ ∈ Γ0. We use the representation of the Green function
of the perturbed operator derived in Theorem 2:

g(x, ξ, λ) = − �g(x){G +
i

k|β|2 }
−1 �g(ξ) + g0

0(x, ξ, λ). (6)

The singularities of the resolvent of the nonperturbed operator L0
0 are present in both terms of

the expression for the perturbed resolvent kernel. In fact they compensate each other. Let us
consider the last representation for sufficiently values of β in a small neighborhood of the given
eigenvalue λ0 of the operator L0

0. At first sight leading terms of the operator

G(λ) + i
1

k|β|2
are

�ϕ0 �ϕ0

λ0 − λ
+ i

1
k|β|2 .

Here �ϕ0 �ϕ0 is a matrix combined of values of the eigenfunction ϕ0 at the points as, at. It is
proportional to the projection operator P0 in the N -dimensional auxillary channel-space E:

�ϕ0 �ϕ0 =
∑
s

|ϕ0(as)|2P0 = | �ϕ0|2P0.

In fact it is slightely more convenient to write down the leading terms as orthogonal decomposi-
tion in two orthogonal subspaces P0E + (I − PE)E ≡ P0E + P⊥

0 E. Separating from the matrix
Gst =

∑∞
l=0

ϕl(as)ϕl(at)
λl−λ the term singular at the point λ0

G =
| �ϕ0|2P0

λ0 − λ
+

∑
λl �=λ0

|�ϕl|2Pl

λl − λ
≡

| �ϕ0|2P0

λ0 − λ
+ K0,

and decomposing the expression in orthogonal sum we get the following formula for the denom-
inator:

G(λ) + i
1

k|β|2 =

P0

(
| �ϕ0|2
λ0 − λ

+ i
1

k|β|2

)
P0 + P0K0P0 + P0K0P

⊥
0 +

P⊥
0 K0P0 + P⊥

0 i
1

k|β|2P
⊥
0 + P⊥

0 K0P
⊥
0 . (7)

Note that the leading term of the last expression – the diagonal matrix⎛⎝ P0(
| �ϕ0|2
λ0−λ + i 1

k|β|2 )P0 0
0 P⊥

0 i 1
k|β|2P

⊥
0

⎞⎠ ≡ Δ
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is invertible

Δ−1 =

(
(λ0−λ)k|β|2

k|β|2| �ϕ0|2+i(λ0−λ)
P0 0

0 −ik|β|2P⊥
0

)
≡

(
Δ−1

PP 0
0 Δ−1

P⊥P⊥

)

and the inverse is holomorphic with respect to the variable k in a small neighborhood of λ0 = k2
0

for all sufficiently small β. Then the inverse of G + i
k|β|2 can be calculated as(

(λ0−λ)k|β|2
k|β|2| �ϕ0|2+i(λ0−λ)

P0 0
0 −ik|β|2P⊥

0

)
×

(
P0 + P0K0P0Δ−1

PP −P0K0P
⊥
0 k0|β|2

P⊥
0 K0P0Δ−1

pp P⊥
0 − ik|β|2P⊥

0 K0P
⊥
0

)−1

.

Consider the first term of the expression 6 for the Green function of the perturbed problem.
The left and right factors of it

�g(x) =
∑
l

ϕl(x)�ϕl

λl − λ
=

ϕ0(x) �ϕ0

λ0 − λ
+

∑
λl �=λ0

ϕl(x)�ϕl

λl − λ

�g(ξ) =
∑
l

ϕl(ξ)�ϕl

λl − λ
=

ϕ0(ξ) �ϕ0

λ0 − λ
+

∑
λl �=λ0

ϕl(ξ)�ϕl

λl − λ

obviously have singularities at the einegvalue λ0 with the factors �ϕ0 in front of them. Then
a direct calculation of singularities of the whole expression shows that only first order term
remains, since P⊥

0 �ϕ0 = 0 and the coefficient in front of it is −ϕ0(x)ϕ0(ξ). Combining this
singularity −ϕ0(x)ϕ0(ξ)

λ0−λ with the corresponding term in g0
0(x, ξ, λ) we see that both singular

terms compensate each other. Thus we see that in the case when �ϕ0 
= 0 the inner component
of the Green function of the perturbed operator is a holomorphic function at the eigenvalue
λ0 for sufficiently weak connection between the ring and the rays. On the other hand a new
singularity from the denominator G + i 1

k|β|2 can appear. If k2
0 = λ0 < 0 then for small β the

denominator has zero eigenvalue for some pure imaginary value of k close to k0. This follows
from the orthogonal decomposition (7)

[G(λ) + i
1

k|β|2 ]�u =

P0

(
| �ϕ0|2
λ0 − λ

�u + i
1

k|β|2

)
P0�u + P0K0P0�u + P0K0P

⊥
0 �u+

P⊥
0 K0P0�u + P⊥

0 i
1

k|β|2P
⊥
0 �u + P⊥

0 K0P
⊥
0 �u = 0. (8)

It follows from the operator version of Rouchet theorem [10] that the solution of the last equation
(8) is close to the solution of the equation combined of leading terms and for small β

λβ ≡ k2
β ≈ λ0 − i

√
λ0| �ϕ0|2|β|2,

�uβ ≈ �ϕ0.
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Then the corresponding solutions of the Schrödinger equation are restored as

u(x) =< �g(x), �uβ > .

If λ0 < 0, then λβ ≡ k2
β < 0, kβ = iκ, κ > 0 hence the exponentials continuing the solution u

from Γ0 onto rays Γs are square integrable and the total solution of the Schrödinger equation
Lu = λu on the whole graph is a square-integrable function, i.e. is an eigenfunction of the
operator L. The finitness of the total number of negative eigenvalues follows directly from the
analyticity of the matrix G + i 1

k|β|2 .
Vice versa if λ0 > 0 then �kβ < 0 hence the corresponding solution uβ of the Schrödinger

equation is exponentially growing at least on some rays. So it is not an eigenfunction but a
resonance solution – “a resonance state”. The total number of resonances is infinite which can
be derived from the asymptotic behaviour of the matrix G+i 1

k|β|2 at infinity. The corresponding
analysis will be done elsewhere.

End of the proof
If we take into account that k =

√
λ we see that zero is a branching point of the operator

- function [G(λ) + i 1
k|β|2 ]−1 and the positive axis is a cut with different values of the resolvent

kernel on different shores of it.
To accomplish the study of the non-resonance case we can now formulate the following

statement concerning general spectral properties of the operator L.

Theorem 5 The spectrum of the operator L consists of an absolutely continuous branch (0,∞)
multiplicity N and a finite number of negative eigenvalues. The eigenfunctions of an absolutely
continuous spectrum are given by N families of scattered waves which serve as solutions of the
homogeneous equation Lψ = λψ. For the components on the rays we have

ψs =

{
Sste

−ikxs , s 
= t
eikxt + Stte

−ikxt , s = t,

and for the components on the ring we have

L0ψ0 = k2ψ0

with the boundary conditions

[ψ′
0]|as = −βψ′

s|0
ψs(0) = β̄ψ0(as),

ψ0 =
N∑
s=1

usg
0
0(x, as) =< �g(x), �u >

These eigenfunctions are orthogonal and normalized in L2(Γ). The scattering matrix Sst in
the ansatz above as well as the components of the scattered waves on Γ0 are defined from the
boundary conditions as:

S =
G− i

k|β|2

G + i
k|β|2

�u =
β

G + i
k|β|2

�νt,

where �νt = {δst}.
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Proof of this statement can be obtained with use of the standard Riesz techniques of contour
integration of the resolvent basing on the asymptotic formulae for solutions of the homogeneous
equation see also [6]. Though it is not entirely equivalent to the techniques for one-dimensional
Schrödinger operator we omit the essential part of the proof here and calculate only the expres-
sions for transmission and reflection coefficients and the component of the scattered wave on the
compact subgraph. Other properties of scattered waves and scattering matrix will be discussed
elsewhere.

For the scattered wave initiated from the ray Γt we have the following anzatz for the com-
ponent on the ring Γ0

ψ0 =
N∑
r=1

urg(x, ar),

and the linear algebraic system for the coefficients ur:{
−us = −βψ′

s(0),
ψs(0) = β̄

∑N
r=1 g(as, ar)ur, s = 1, 2, ..N,

where {
ψt = eikxt + Stte

−ikxt

ψs = Sste
−ikxs , s 
= t.

Eliminating the variables of exteriors channels we get{
−us = ikβ(−δst + Sst)
δst + Sst = β̄

∑N
r=1 g(as, ar)ur

or {
�u = iβk(I − S)�νt
β̄G�u = (I + S)�νt.

(9)

It gives immediately (
ik|β|2G− I

)
�u = 2ikβ�νt.

Then from the system (9) we get the expression for the scattering matrix.
End of the proof
In the remaining part of our paper we analyze a special but practically important situation

when the energy λ of the scattered wave coincides with some eigenvalue λ0 of the nonperturbed
operator L0. Following [3] we call this situation a resonance case. In this case we use the
block-representation of the operator G− i

k|β|2 with respect to the orthogonal decomposition of
the auxilllary channel-space E used in the proof of the theorem 4

G(λ) − i
1

k|β|2 =

P0

(
| �ϕ0|2
λ0 − λ

− i
1

k|β|2

)
P0 + P0K0P0 + P0K0P

⊥
0 +

P⊥
0 K0P0 − P⊥

0 i
1

k|β|2P
⊥
0 + P⊥

0 K0P
⊥
0 . (10)
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Further we use the notations

P0K0P0 ≡ K00; P0K0P
⊥ ≡ K0⊥; P⊥

0 K0P0 ≡ K⊥0

P⊥
0 K0P

⊥
0 ≡ K⊥⊥;

(
| �ϕ0|2
λ0 − λ

± i
1

k|β|2

)
≡ (±).

It is obvious that (±) ≈ β−2, β → 0.

Theorem 6 The scattering matrix of the ring with few rays attached to it via the weakening
boundary condition β → 0 has the asymptotics for simple resonance eigenvalue 3:

I − 2i(λ0 − λ)
k|β|2|ϕ|2 + i(λ0 − λ)

P0 + O(β2).

Proof The leading terms of the denominator in the expression for the scattering matrix derived
in the last theorem are represented near the resonance eigenvalue by the diagonal matrix in the
orthogonal decomposition of the auxillary space E = P0E + P⊥

0 E.⎛⎝ ( | �ϕ0|2
λ0−λ + i 1

k|β|2 )P0 0
0 i 1

k|β|2P
⊥
0

⎞⎠ =

(
(+)P0 0

0 i 1
k|β|2P

⊥
0

)
≡ Δ

Δ−1 =

(
1

(+)P0 0
0 −ik|β|2P⊥

0

)
.

Hence we can write the expression for the scattering matrix as(
(−)P0 + K00 K0⊥

K⊥0 −i 1
k|β|2P

⊥
0 + K⊥⊥

)
×

(
1

(+)P0 0
0 −ik|β|2P⊥

0

)
×

(
P0 + K00

1
(+) −ik|β|2K0⊥

K⊥0
1

(+) P⊥
0 − ik|β|2K⊥⊥

)−1

.

The product of the first and the second factors gives(
(−)
(+)P0 + 1

(+)K00 ik|β|2K0⊥
ik|β|2K⊥0 P⊥

0 + ik|β|2K⊥⊥

)
.

Then the expression for the scattering matrix can be transformed to

S = I +

(
(−)
(+)P0 − P0 0

0 −2P perp
0

)
×

(
P0 + K00(+)−1 ik|β|2K0⊥

K⊥0(+)−1 P⊥
0 − ik|β|2K⊥⊥

)−1

.

3Mr. M. Harmer noticed, that this statement remains true for multiple eigenvalues as well
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The last factor is represented in form of convergent series for small values of β, λ0 − λ:

I −
(

K00 K0⊥
K⊥0 K⊥⊥

)
×

(
1

(+)P0 0
0 −ik|β|2P⊥

0

)
+ ....,

which gives for the scattering matrix the approximate expression

S(k) = I − 2i(λ0 − λ)
k|β|2|ϕ|2 + i(λ0 − λ)

P0+(
2i(λ0−λ)

k|β|2|ϕ|2+i(λ0−λ)
0

0 0

)
×

(
K00 K0⊥
K⊥0 K⊥⊥

)
×

(
1

(+)P0 0
0 −ik|β|2P⊥

0

)
+ ... =

I − 2i(λ0 − λ)
k|β|2|ϕ|2 + i(λ0 − λ)

P0 + O(β2).

End of the proof
In particular for λ close to λ0 and β → 0 we have the following approximate expression for

the transmission coefficient for weakly connected rays:

Ss,t(λ0) = − 2k|β|2
k|β|2|ϕ|2 + i(λ0 − λ)

ϕ(as)ϕ(at) + O(β2), s 
= t.

End of the proof
Remark. The last formula being applied formally to the case λ = λ0 shows, that the

transmission coefficient is approximately equal to

Ss,t(λ0) = − 2
|�ϕ|2ϕ(as)ϕ(at) + O(β2).

This looks surprizing for β = 0 since it gives a nonzero transmission coefficient for zero con-
nection.Actually it means that the transmission coefficients are not continuous with respect to
energy λ uniformly in β. The physically significant values of the transmission coefficient may
be obtained via averaging with respect to Fermi distribution

ρ(λ, T ) =
1

e
λ−λf
κT

:

|Sij(T )|2 =
∫

|Sij(
√
λ)|2

∣∣∣∣dρ(λ, T )
dλ

∣∣∣∣ dλ
Here λf is the Fermi-level in the material used to produce the wires.

One may consider two different cases: κT
β2 << 1 and κT

β2 >> 1. In the first case

|Sij(T )|2 ≈ 2
|ϕ(as)ϕ(at)|2

|�ϕ|4 + 2
|ϕ(as)ϕ(at)|

|�ϕ|2 O(β2) + O(β4).

but in the second case, when β is small comparing with κT we have:

|Sij(T )|2 ≈ 2
|ϕ(as)ϕ(at)|2

|�ϕ|4 2π
β2

κT
+

2
|ϕ(as)ϕ(at)|

|�ϕ|

√
λ0β

2

κT
ln

κT

|�ϕ|
√
λ0β2

O(β2) + O(β4).

Hence for small β the averaged transmission coefficient is small, according to our physical ex-
pectations.
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