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Abstract

The Resource Description Framework (RDF) is a general framework for the standardised

interchange of information over the semantic web by way of RDF triples. Specifying

temporal information which describes when individual triples hold using standard RDF

is convoluted, and temporal query evaluation is inefficient. While there has been work

on developing temporal triple stores that address these issues, there is generally a large

cost associated with migrating to a new triplestore, especially if that triplestore is not

being actively maintained. In this PhD we propose a query language named LSPARQL

and a query evaluation engine that partially sidesteps this issue by executing queries

over a standard transaction log which are commonly supported by most triplestores.

We provide a formal definition of the semantics of a log-based data model and of our

query language. We describe a proof-of-concept implementation that demonstrates that

the average triplestore could support transaction time temporal queries relatively easily

without having to redesign their data model.

i



ii



Acknowledgements

I would like to acknowledge and thank: Firstly my family and partner Shelly for sup-

porting me through all the years working on this PhD. Secondly my supervisors Gerald

and Christof who have always been supportive and gone out of their way in their roles as

supervisors.

iii



iv



Contents

1 Introduction 1

1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11

2.1 The Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Temporal Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Allen’s Interval Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Related Work 21

3.1 Temporal Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Temporal RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 RDF Archiving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Modeling Approach 33

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 RDF Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 RDF Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Log SPARQL 43

5.1 LSPARQL Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 LSPARQL Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Example LSPARQL Queries . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Query Evaluation 49

6.1 SPARQL Query Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Temporal Query Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3 Allen Filter Optimisations . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

v



vi Contents

7 Implementation Framework 65

7.1 PDStore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 PDStore Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.3 PDStore Query Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8 Experimental Evaluation 73

8.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9 Applying LSPARQL to Source Code Analysis 79

9.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.2 Motivating Examples for Temporal Source Code Queries . . . . . . . . . . 80

9.3 Abstract Semantic Graph Representation . . . . . . . . . . . . . . . . . . . 82

9.4 Tracking Artefact Identity Across Versions . . . . . . . . . . . . . . . . . . 84

9.5 Proof of Concept Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10 Conclusion and Future Work 91

A Appendix A 93

A.1 Source Code Pattern Queries . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 Program Slice Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B Appendix B 103

B.1 Single Change Pattern Queries . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.2 Single Temporal Join Queries . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.3 Temporal Join Queries With n Joins . . . . . . . . . . . . . . . . . . . . . 111



1
Introduction

1.1 Problem

With the ever-increasing popularity and reliance on digital technology, the sheer amount

of information being stored and exchanged nowadays on the web has reached enormous

levels. Analytic applications that aim to exploit the complex relationships buried within

this big data are necessarily require to be presented in a standardised machine readable

form. The Resource Description Framework (RDF) [72] has been championed and widely

adopted as the representation of choice for describing the complex relationships between

named entities. When RDF information is freely shared from numerous sources which

refer to the same entities it can reveal more complex and subtle relationships that exist.

This vision, along with the technologies which allow for this kind of information to be

shared, is known as the semantic web.

The RDF representation is fairly intuitive and almost simplistic. RDF is comprised of

(subject, predicate, object) triples. They can be visualised together as a labelled graph,

where nodes are used to represent entities and values, and edges represent relationships.

Despite this simplicity, in practice there are significant challenges involved in represent-

ing all kinds of semantic information through RDF in a generalisable way that forms a

coherent semantic web.

One of the key difficulties is that information changes over time. What is true a year

ago may no longer be true. Thus it is natural that we want to qualify facts in RDF by
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2 Introduction

saying that particular triples hold for specific intervals of time. There are several ways in

which one might go about supporting the temporal qualification of stored triples.

1. Model the qualification in standard RDF with a standard triplestore.

2. Migrate to one of the experimental temporal triplestores that have been proposed.

3. Migrate to a mature database that offers temporal query support, but is not a

triplestore.

Each of these comes with a substantial cost of adoption. If one wishes to use a standard

triplestore then the most straightforward way would be to reify every triple and then

attach a temporal label onto the reification, as seen in figure 3.1. Other approaches,

such as those shown in figures 3.2, 3.3, and 3.4 requires one to modify their data model.

Regardless of the way it is done, adding several triples for every stored triple by definition

multiplies the number of stored triples, hence queries become more cumbersome to write

when having to account for these additional temporal triples. In the appendix one can

see this in the standard RDF queries used for comparing against our own queries as part

of the evaluation.

If one instead decides to migrate to an experimental temporal triplestore, such as Bad-

wolf [82] or Strabon [14], then one must be prepared to accept their relative immaturity.

In general, swapping one triplestore for another is often undesirable simply because if

the existing solution works well for the target domain, then there is a risk that the new

triplestore does not provide the same support for semantic web tools or performs worse in

some regards. This is especially the case with an experimental solution as they are typ-

ically under less active development and maintenance and any bug or security flaw may

take much longer to be addressed compared to a heavily used standard triplestore. There

might be less documentation or support available, and there might be a significant lack

of support for other semantic web tools such as reasoners. As their focus is on temporal

queries, it is also plausible that they lack some of the optimisations used by standard

triplestores for efficiently evaluating non-temporal queries.

Finally, if one migrated to a well established non-RDF temporal database, such as

Microsoft SQL Server 2016 [126], then while one can likely be assured that the database

is well-maintained and well-optimised, there are issues that stem from it not being an

RDF triplestore. For instance, if it were a relational database, then to continue supporting

SPARQL queries one would need to write a parser that translates SPARQL into a language

like SQL. Secondly, for efficient queries, one would likely have to create a database schema

for the domain. Otherwise if one used a giant table for all triples then one would need

to perform a self join for every triple pattern in the SPARQL query which is usually

expensive in relational databases.
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This thesis explores another approach. What we propose is a system one uses in

tandem with their existing triplestore to give temporal query functionality without mod-

ifying the underlying data model and without needing to migrate to a new system. This

is achieved by taking advantage of the fact that most triplestores support loggers such

as log4j which can be used to record the time at which each individual triple is added,

changed, or removed. From these logs we construct an in-memory index structure which

describes each event as either an addition of a triple, or the removal of one. We have cre-

ated a temporal query language extension of SPARQL called LogSPARQL (LSPARQL)

and a LSPARQL query evaluation engine that uses the index to answer temporal queries.

Using our system, one can support historic transaction time queries on their triple-

store with very little effort. They can continue using their old triplestore as before and

do not have to change their data model, also any supporting tools or applications do not

need to update their logic to account for any temporal qualification. Historic informa-

tion is simply stored in a separate index and is available to be queried from a separate

LSPARQL endpoint. The main cost of adoption is having to maintain an additional index

for temporal queries.

1.2 Illustrative Examples

Consider the New Zealand Medicines and Medical Devices Safety Authority (Medsafe).

One of their roles is to provide information to consumers and health care professionals

about the selection and safe use of medicine. For each medication available they release a

PDF detailing information about that medication. The documents include information on

the therapeutic indications for which the drug is prescribed, the contraindications such as

other medications that should not be taken concurrently, and lists of potential side effects.

These documents could be semantified, that means turned into an RDF representation,

possibly according to a medical ontology. Doing so would allow these documents to be

easily semantically searched and queried without having to manually inspect them. So,

for instance, given a list of their patients and medications they could search for all patients

who have been prescribed two medications which contraindicate one another.

While it is the case that when one is dealing with such a domain one would be primarily

interested in queries on the current state, there are situations in which historic queries

would also be useful. Going back to the previous example imagine that it is discovered

that a patient has been prescribed two medications which contraindicate and there has

been an allegation of negligent malpractice it would be important to know whether the

contraindication was known and listed in the medsafe documents at the point in time

that the medication was prescribed. Other potential use cases could include ascertaining

the time taken to update medsafe documents after new potential side effects had been
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identified from empirical tests, discovering all facts that historically were removed from a

document not currently present to identify any that could have been erroneously removed,

or identifying all changes that occurred concurrently with a known erroneous change.

Let us consider a different domain that is more inherently temporal, that of the his-

tory of international relations between nations. Each nation has at any point in time

a diplomatic stance towards every other nation on earth. They also have bilateral and

multilateral agreements with other nations, may have membership to organisations such

as the United Nations or European Union, or they might place restrictions on other na-

tions such as trade embargoes or travel and immigration restrictions. Each nation has

its own set of properties, such as the form of government, the head of state, the ruling

party, and the state of their economy, all of which can change over time. An important

difference between this kind of domain and the one in the previous example is that the

temporal modelling in this instance is on valid time rather than transaction time. Es-

sentially, with transaction time timestamps on an ontology are metalogical and describe

when changes are made to the ontology. With valid time the timestamps instead form

part of the ontology and form part of the domain.

Our LSPARQL approach can be applied in this situation as well, but with some

caveats. The dataset would need to be parsed and read into a log form which describes

the dataset as individual triples being added or deleted at specific time instants. When

timestamps are omitted in the dataset, or when some timestamps are of a coarser gran-

ularity than others, one needs to interpret it such that every triple is timestamped in a

consistent way. For example, non-timestamped triples that are meant to hold regardless

of the point in time could be added at the earliest point in time and are never removed.

When one triple is labelled with a timestamp that just states the years in which it held,

whereas another states the time it held down to the second, one can treat the timestamp

specifying just a year as if it specified the very first second of that year.

Consider the following situation. On the 28th of September 1950 Indonesia joined

the United Nations. On January 7th 1965 the Indonesian president Sukarno announced

the withdrawal of Indonesia from the United Nations. On September 29 1966 Indonesia

rejoined the United Nations following a military coup. What approaches can be taken to

model the changing membership of Indonesia in the United Nations?

The first approach we consider, as shown in figure 1.1, is where one models the changes

in state as sets of events that occur. Each event describes what occurred at a specific

point in time, such as Indonesia joining or leaving the United Nations. When one wishes

to identify whether a nation belongs to the united nations at a particular point in time

they must identify an event that occurred prior to or at the desired point in time in which

the nation joined the United Nations, and any event where that nation left the United

nations must either be prior to the point of their joining, or after the specified point in
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Figure 1.1: An example of the temporal modelling of events

time.

The second strategy, shown in figure 1.2 is to create an abstract entity to represent

an instance of the relationship between two entities, and to assign a valid interval for

this abstract entity. So, for example, Indonesia has two separate membership instances

where the membership is with the United Nations, and each membership instance holds

for a particular interval. So then when one wishes to know whether a nation belongs to

the United Nations at a particular point in time, one identifies for that nation all of its

membership instances with the United Nations and checks to see whether the specified

point in time lies within any of their valid intervals.

One thing we can observe from these two approaches to temporal modelling is that

the relationship “Indonesia is a member of the United Nations” is not directly modelled.

Naturally, in such a domain the truth of such a statement will depend on the time in

which it is asked, as seen in figure 1.3. As discussed, it is possible to infer that this

relationship holds with respect to a given point in time using these data models. For

queries where the temporal qualification is not specified a natural approach is to adopt a

current semantics approach [66] in which it is assumed such questions are asking whether

the statement holds for the current point in time.

A third approach is to use direct relationships such as “Indonesia is a member of the

United Nations” but to explicitly contextualise them to state when they hold. There are

two main ways to achieve this. The first is the snapshot-based model, where one constructs

different graphs representing different states. Then, a statement such as “Indonesia is a
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Figure 1.2: An example of a materialised relationship

Figure 1.3: An example of temporal qualification

member of the United States” is contextualised based on which snapshot graph it has

been assigned to. The naive way to implement a snapshot-based approach would be to

construct a new graph containing every single triple that holds at that point in time.

The approach taken in [123] was to construct graphs representing whole intervals, and for

point-based queries to be run against all graphs with intervals that contain that point.

The other approach is to adorn a temporal label stating the intervals or points in time at

which a fact holds directly on the fact [52]. The advantage of using temporal labels over

building more complex indirect relationships like those seen in figures 1.1 and 1.2 is that

it is conceptually simpler. One builds a model with temporal qualification the same way

in which one would build a model for an individual snapshot.

Creating such temporal labels in standard RDF however is not so straightforward as

predicates are strictly binary. Reification, which we speak of more extensively in the

related work chapter and which can be seen in figure 3.1, has been suggested as an

approach to temporally label triples in standard RDF [51]. With reification one creates a

blank node entity and three triples that relate the blank node to the subject, predicate,
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Figure 1.4: An example of modeling with change objects

and object of the triple being described. Then one adds additional triples with this blank

node entity as the subject to describe additional properties of the triple such as stating

a valid interval for which it holds. We argue however that this approach is more like

the one seen in figure 1.2 as it involves introducing a new abstract entity representing

the relationship between two entities. It differs in that the direct relationship between

the subject and object exists in a model with reification, but this direct relationship is

in fact redundant as the subject, predicate, and object for the relationship are already

explicitly grouped together as part of the reification. Including the direct relationships

when using qualification by way of reification leads to some problematic semantics. A

natural treatment of these unqualified triples would be to treat them as holding at all

points in time, or possibly as holding at the current point in time. In RDF, graphs entail

all of their subgraphs so any temporally qualified triple entails its unqualified triple. Thus,

such a treatment of unqualified triples is no longer viable. What’s more, the graph will

contain the union of all of its temporal snapshots, and so entities may have an inconsistent

state that violates their OWL type constraints.

Our LSPARQL approach can be seen as a combination of temporal labelling seen in

figure 1.3 and event driven modelling seen in 1.1. Instead of using regular triples, we

use quintuples representing a change object. A change object consists of a timestamp, a

change type (which is either an add, or a remove) and the usual subject,predicate,object

triple. A temporal model based on change objects can be seen in figure 1.4. In such a

model there do not exist additional facts that state the valid interval of a fact, but rather

every fact is temporally contextualised and describes when the underlying fact was added

or removed. For example, instead of stating “The statement ‘Indonesia is a member of

the United Nations’ is true from the interval of the 28th of September 1950 to the 7th of

January 1965 ” we state “Indonesia is a member of the United Nations as of the 28th of

September 1950” and “Indonesia is no longer a member of the United Nations as of the

7th of January 1965”.

While this model is not strictly RDF as we have extended the triple patterns to

quintuple change object patterns, a regular RDF graph can be generated or queried by

providing that contextualisation. To find whether a triple holds at time t, one searches
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for any change that adds the triple some time prior to or at t which is not subsequently

removed at or before t. The sharing of information across the semantic web is typically

done via two mechanisms. The first is by querying RDF triplestores by way of a SPARQL

endpoint, and the second is by exporting RDF triples. There are a few different ap-

proaches that one can take when doing this in regards to our change-based objects. The

primary use case that we designed LSPARQL for is transaction time queries for existing

triplestores. For this use case we envision an LSPARQL endpoint for temporal queries,

which is executed using our LSPARQL query evaluation engine, and a SPARQL endpoint

which is used by the evaluation engine of the partnered triplestore. Regular SPARQL

queries then are simply evaluated on the most current state of the triplestore. The most

simple way for exporting RDF triples would be to do so on a snapshot basis. This could

either be done by providing a separate file for each individual snapshot using a standard

representation such as ntriples that records each triple that holds at that snapshot, or by

providing two pairs of files for each snapshot describing all the triples that were added or

deleted for that snapshot.

An alternative approach, that would potentially be more appropriate if one wished to

represent a valid time domain would be to adopt a distinct external temporal represen-

tation using standard RDF that can be derived from our change objects. For example,

if one wished to export the change objects in temporal RDF with reification one would

iterate through the list of changes, adding each new RDF triple in turn using each add

and remove change to define the intervals for each reification. For queries one could

create a SPARQL endpoint which translates queries involving temporal reification into

LSPARQL queries with change patterns. One could potentially specify query translation

and exporting schemes for multiple standard RDF representations while using just the

change-based internal representation.

1.3 Contributions

The contributions of this PhD are as follows.

• We introduce a novel change-based model for temporal RDF based on transaction

logs

• We formally introduce the syntax and semantics for a novel temporal extension to

the SPARQL query language named LSPARQL

• We propose an in-memory-based indexing scheme that facilitates efficient queries

on our change-based model
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• We introduce novel query optimisations for Allen Relation queries with our change-

based model and index

• We provide a prototype system that has implemented our temporal extension and

indexing scheme

• We provide an empirical evaluation of the query performance of our system and

compare them with other temporal query implementations

• We provide a proof of concept implementation of applying our model for temporal

source code analysis

1.4 Outline

The remainder of the thesis is organised as follows. Chapter 2 presents background on

the semantic web and temporal domains. Chapter 3 focuses on related work in the

area of temporal databases, temporal RDF, and RDF archiving. Chapter 4 describes

the semantics of our change-based model. Chapter 5 describes the formal syntax and

semantics of our LSPARQL query language, as well as a set of example queries. Chapter 6

outlines how queries are evaluated, and introduces some temporal optimisations for Allen

relation queries. Chapter 7 describes some of the concrete details of our implementation,

including how our indexes are organised. Chapter 8 describes our empirical evaluation of

our queries. Chapter 9 describes our work on applying our change-based model to static

source code analysis. Lastly, chapter 10 concludes the thesis and suggests some directions

for future work.
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2
Background

This chapter gives an overview of some background concepts surrounding the semantic

web and temporal domains.

2.1 The Semantic Web

The world wide web is a gargantuan source of information that has been ever growing since

its inception. When attempting to answer a question, it can be difficult to quickly find

accurate, reliable, and useful information. Part of this problem stems from information

on the web largely being purely textual. While textual information is human readable,

it is significantly less machine readable. As such, it is much more difficult for automated

systems to perform tasks such as retrieving information that is only directly relevant to

a users query. The core idea behind the semantic web is to model the meaning of text in

a standardised machine readable way and for that semantified information to form part

of a public global semantic network [15].

Nearly two decades since the idea of the semantic web was proposed in [15] it has

yet to fully become a reality. As discussed in [28] there are some significant barriers in

regards to semantifying the entire world wide web. First and foremost, someone needs to

have a strong enough motivation to perform this semantification and to maintain their

semantic model. Websites are often funded by showing advertisements to users. There

is no clear incentive for commercial websites to provide semantic meta data, and in fact

11



12 Background

doing so simply makes it easier for third parties to integrate that same information in

their sites and tools. As such, the semantic web has instead developed to focus primarily

on specifically public domains such as geography, geology, astronomy, agriculture, health

care, and university research for which there is a strong motivation to collaborate and

share information [17, 61].

Let us consider the medical domain. Entities such as the World Health Organisation

and the United States Food and Drug Administration publish numerous documents about

how different medical conditions describing their symptoms, how they can be diagnosed,

any related or similar disorders, and the recommended treatment options for patients.

Medications will also have individual documents describing their mechanism of action,

potential side effects, and any contraindications or drug interactions. Related to these

documents are studies and experiments that attempt to establish the efficacy of different

treatment options. It is difficult for medical practitioners to accurately remember the

content for all of these documents, and time consuming for them to be consulted for

every patient. An ideal automated system could take a list of symptoms presented by a

patient and based on that patient’s medical history provide a list of possible causes for

those symptoms and any recommended diagnostic tests or treatment plans to begin. Such

an automated system could be facilitated by extracting the information from the relevant

published documents and semantically modelling them. It is common for these documents

to be structured in a common and systematic way which greatly aids in automating the

process of extracting information from these documents and modelling them, and there

is significant potential benefit to public health organisations from doing so if it results in

faster and more accurate diagnosis of patients. There is motivation for this semantification

to be done by public healthcare organisations looking to improve patient outcomes, as

well as software development companies looking to develop healthcare software. In this

vein, a number of semantified data sets have been developed. For example, DBPedia

[11] and YAGO [121] are semantifications of Wikipedia and were important datasets for

IBM’s Watson question answering AI that went on to win Jeopoardy [37]. The Cityscape

[25] and Synthia [108] datasets provides fine grained semantic annotations for images of

urban scenes. Semantic geography datasets include GeoWordNet [45], LinkedGeoData

[118], TELEIOS [73], and GeoKNOW [9]. In the medical domain there is Bioportal [110],

DisGeNET [106], and [57].

2.1.1 Ontologies

The realisation of the semantic web has primarily come in the shape of ontologies. An

ontology is an explicit formal specification of different terms, concepts, and entities, their

properties, and the relationships between them. We usually conceive of ontologies in

two parts- a schema, which models a domain by defining class and relationship types,
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and instance data which specify specific entities that conform to the schema. The W3C

has defined several standard models and languages for representing ontologies as part

of the semantic web. In particular the two languages which have risen to prominence

are the Resource Description Framework (RDF) [72] and the Web Ontology Language

(OWL) [88].

Numerous ontologies specified by these languages are now available on the web. These

include The Open Biomedical Ontologies (OBO) Foundry, which is a collaborative col-

lection of science based ontologies [114], CiTO an ontology for describing the nature of

reference citations in scientific articles [113], MOWL an ontology for web-based multi-

media applications [86], and DOLCE a descriptive ontology for linguistic and cognitive

engineering [42].

2.1.2 RDF

RDF has been adopted by the W3C as the foundation for representing semantic meta

data on the web. The RDF model is used to describe resources in terms of their rela-

tionships with other resources, and by their properties. Typically, a resource is described

using a Uniform Resource Identifier (URI) that is meant to provide a globally-unique and

resolvable identifier for entities that are part of the semantic web.

Facts and statements are represented in RDF in terms of RDF triples. An RDF

triple contains three pieces of information- a subject, a predicate, and an object. The

subject specifies the entity that the fact is about, the predicate specifies a kind of binary

relationship held by the subject, and the object specifies the value or entity to which

the subject has that relationship. For instance, with a fact such as ‘Kristen knows Dax’,

Kristen would be the subject, ‘knows’ the predicate, and Dax the object specified by the

triple. Kristen, Dax, and the predicate ‘knows’ would each be assigned a URI so that

any individual referencing these entities in a separate ontology can do so if desired, and

can also use distinct URIs to refer to other individuals with the names Kristen and Dax.

In addition to URIs used to identify entities and predicates, RDF also supports the use

of literal values and blank nodes. Literal values can be used, for instance, if one wanted

to state that an entity referred to by a URI has a particular age (denoted by an integer

literal) or a particular first name (denoted by a string literal). Blank nodes are resources

that use an anonymous identifier which can be used to refer to an entity that does not

have an identifying URI but which has certain properties. Blank nodes are often used

when representing abstract entities for which no URI exists. Conceptually they can be

considered like existentially quantified variables in first order logic, and simply state the

existence of ‘something’. The binary relationships described in RDF are from resources

to resources, or from resources to literal values.

A collection of RDF triples can be conceptualised as a directed multigraph with typed
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Figure 2.1: An example RDF graph

Table 2.1: RDFS classes
RDFS Class Description Subclass Of
rdfs:Resource The class of All things described by RDF rdfs:Resource
rdfs:Class The class of resources that are RDF classes rdfs:Resource
rdfs:Literal The class of literal values, e.g. strings and integers rdfs:Resource
rdfs:Datatype The class of all datatypes rdfs:Literal

Table 2.2: RDFS Properties
RDFS Property Description
rdfs:range the values of a property are instances of one or more classes
rdfs:domain any resources that has a given property is an instance of a

particular class
rdfs:subClassOf all instances of one class are instances of another
rdfs:subPropertyOf all resources related by one property are also related by another
rdfs:label describes a human-readable version of a resource’s name
rdfs:comment describes a human-readable description of a resource

edges and nodes. Naturally, the nodes represent subjects and objects, and the edges

represent predicates. An example of an RDF graph is shown in figure 2.1.

RDF Schema (RDFS) is a standard vocabulary for describing the classes and relation-

ships of entities contained within an RDF graph. RDFS combined with RDF provides

the capability to specify ontologies. The notion of a class forms an abstraction that en-

capsulates logically similar groups of resources, so that statements made about the class

applies to all instances which are a member of that class. Most commonly, RDFS is used

for specifying type hierarchies of classes and relationships. The RDF vocabulary [18] is

comprised of a set of classes, the core of which is seen in table 2.1 and properties, the core

of which is seen in table 2.2.

RDFS also includes a set of entailment rules. Essentially, when triples that meet cer-
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Table 2.3: RDFS Entailment Rules
If S contains then s RDFS entails
any IRI aaa in D aaa rdf:type rdfs:Datatype.
aaa rdfs:domain xxx. yyy rdf:type xxx.
yyy aaa zzz.
aaa rdfs:range xxx. zzz rdf:type xxx.
yyy aaa zzz.
xxx aaa yyy. xxx rdf:type rdfs:Resource .

yyy rdf:type rdfs:Resource.
xxx rdfs:subPropertyOf yyy. xxx rdfs:subPropertyOf zzz.
yyy rdfs:subPropertyOf zzz.
xxx rdf:type rdf:Property. xxx rdfs:subPropertyOf xxx.
xxx rdfs:subClassOf yyy. zzz rdf:type yyy.
zzz rdf:type xxx
xxx rdf:type rdfsClass. xxx rdfs:subClassOf xxx.
xxx rdfs:subclassOf yyy. xxx rdfs:subClassOf zzz.
yyy rdfs:subClassOf zzz.
xxx rdf:type
rdfs:ContainerMembershipProperty. xxx rdfs:subPropertyOf rdfs:member.
xxx rdf:type rdfs:Datatype. xxx rdfs:subClassOf rdfs:Literal.

tain specified patterns exist in an RDF model, some additional triples can be implied to

hold. These additional triples might be materialised in an RDF triplestore containing

the model, or they might be inferred at query time by replacing any pattern involving

an inferred triple with the concrete patterns required to satisfy the rule. Table 2.3 de-

scribes the set of RDFS entailment rules as specified in [58]. The RDFS rules are listed

using patterns using three-character variables such as aaa, xxx, sss to indicate arbitrary

resources such as IRIs or literals, and D the set of IRIs identifying datatypes.

2.1.3 OWL

OWL, similar to RDFS, is used for specifying the schema of an ontology. While RDFS

offers taxonomic and object relations as well as datatype properties, OWL is based heavily

on Description Logics and has a richer and more expressive vocabulary when describing

classes and properties. OWL can be understood as the means by which semantics is

added to the schema. For example, in OWL it is possible to state that a particular

property is transitive. A reasoner that understands OWL could then infer those transitive

relationships in response to a query so one does not need to materialise the entire transitive

closure of the relation. OWL can also be used to restrict the properties of an instance of

a class. For example, one could require that any instance of the Committee class must

have at least one Committee member. In this thesis we do not explore applying OWL to
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historic snapshots available under LSPARQL queries. It is however, an important area of

future work which should be considered.

2.1.4 SPARQL

SPARQL is the RDF query language recommended by the W3C as the query language

of choice for querying RDF triples [54]. SPARQL queries are often conceptualised as a

pattern matching paradigm where the result is a subgraph of the original graph. These

subgraph patterns are specified as a set of triple patterns, which together are referred to

as a graph pattern. A triple pattern is a triple where the subject, predicate, and/or object

have been replaced by a variable, where a variable is denoted by an identifier prefixed

with a question mark. The graph pattern formed by the query matches a subgraph of the

queried RDF graph when one can generate that subgraph by uniformly substituting all

variables in the graph patterns with values from the actual graph.

An example SPARQL basic graph pattern query would be:

PREFIX f o a f : <http :// xmlns . com/ f o a f /o.1/>

SELECT ?name WHERE {
? person f o a f : name ?name .

? person f o a f : knows ? f r i e n d .

}

This query, executed against the default graph of a specified RDF model, finds all

those the names of all people who know someone.

One can also perform filter queries where the variable assignments must fulfil some

particular condition to form part of the result. An example filter query is as follows:

PREFIX f o a f : <http :// xmlns . com/ f o a f /o.1/>

SELECT ?name WHERE {
? person f o a f : name ?name .

? person f o a f : knows ? f r i e n d .

? person f o a f : age ? age .

? f r i e n d f o a f : age ? f r i endAge .

FILTER(? age < ? f r i endAge )

}

This query will find the names of all people who know someone that is older than

them.

Usually all the triples in the WHERE clause of a SPARQL query are conjunctive, in

that there must be a variable assignment that satisfies every triple pattern in the query.
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Sometimes one may wish to know some additional facts about an entity, but they do not

require those facts to necessarily be present as part of the query result. In which case one

can denote a triple pattern as being optional, as in the following query:

PREFIX f o a f : <http :// xmlns . com/ f o a f /o.1/>

SELECT ?name ? f r i e n d ?homepage WHERE {
? person f o a f : name ?name .

? person f o a f : knows ? f r i e n d .

OPTIONAL {? f r i e n d f o a f : homepage ?homepage}
}

This query find for each person, the names of all the people they know, and their

homepage if it exists.

Alternatively, one may form a query where one may satisfy one of several different triple

patterns. In this case one may separate the triple patterns with the UNION operator, as

in the following query:

PREFIX f o a f : <http :// xmlns . com/ f o a f /o.1/>

SELECT ?name WHERE {
{? person f o a f : name ?name .

? person f o a f : knows ? f r i e n d .}
UNION

{? person f o a f : name ?name .

? person f o a f : based near ? f r i e n d .}
}

This query finds the names who either know someone, or who are based near someone.

2.2 Temporal Domains

One of the challenges in developing generalised temporal databases is that there is no single

“correct” way to model time, as the choice often depends on what is most appropriate for

the particular domain, in this section we describe how different temporal domains may

vary.

Time is a fundamental dimension of all real-world phenomena. Events occur in relation

to points in times, objects exist for periods of time during which their properties and

relationships to other objects may also change over time. The ability to model this

temporal dimension of the real world in applications and databases is essential in many

areas such as banking, economics, biomedical sciences, and data analysis. Conventionally
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databases represent the state of a model at a single point in time. As changes occur in

the real world, the state of the database is updated to reflect them. As a consequence,

old out of date information is deleted from the database. The state of the database at

any point in time can be seen as a snapshot frozen in time.

Early work in temporal logic centred around two structural models of time- linear and

branching [107]. In the linear model, time advances through a totally ordered set of time

points. In the branching model time is linear from the past until the current point in

time, at which point it divides into several time lines each representing a potential future

state. A general model of time in temporal logic is thus a partially ordered set. One might

apply additional axioms, such as enforcing linearity by introducing an axiom imposing a

total order on this set. Domains which operate in a cyclical nature might opt to instead

adopt a cyclic model of time.

Further axioms can be added to characterise the density of time. Discrete models of

time allows one to refer to the “next” or “previous” as opposed to a dense or continuous

model where between any two points in time there are an infinite number of additional

time points. Thus, in a discrete model of time, one can have a nondecomposable unit of

time, the duration of which depends on the model. This nondecomposable unit of time

might be referred to as an “instant”, a “time point” or a “chronon”[22]. While people

generally perceive time to be continuous, in practice temporal modelling in areas such as

temporal databases usually opt for a discrete time model. In part this is because it is

generally not possible to record the time at which an event occurred to infinite precision.

In practice time records are often also temporally indeterminate- as in one does not know

exactly when an event took place.

Time can also be seen as being multidimensional. A distinction commonly made

with temporal databases is between transaction time and valid time. Valid time refers

to when facts are held (or events occur) in some reality being modelled by the system,

whereas transaction time refers to when those facts are added or removed from the system.

Consider a spatio-temporal database which tracks the spread of different disease outbreaks

within Europe. The time at which an outbreak occurs would be a valid time value, whereas

the timestamp of when that outbreak was recorded in the database would be transaction

time. A data model which supports both transaction time and valid time is often referred

to as being bitemporal.

Valid time may be unbounded, as a valid time may refer to a point in time arbitrary

far in the past or in the future. Meanwhile transaction time is bound strictly to concrete

updates in the system, so will not be referring to points in time which have not happened

yet or which occurred before the first update. Unlike valid time, transaction time typi-

cally cannot be modified and a datamodel based around transaction time may act as a

transactional record. As valid time and transaction time have differing semantics, they
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are not homogeneous to one another. They are often considered orthogonal to one an-

other, but there may be some application dependence between the two. Returning to our

example of a database which tracks disease outbreaks, if a record is always entered within

twenty four hours of an actual outbreak then the transaction time of the record is bound

by being within twenty four hours of the valid time of the outbreak. There may also be

multiple transaction times for a single relation. This can occur in a distributed database

setting where a shard may perform an update and then notify other shards about the

update. Those other shards may record not just the time at which the record was added

locally, but the time at which it was recorded in the notifying shard. Time may also be

indeterminate in that one may not know specifically all the details of when events happen

or when facts hold. It could be that we only know when something occurred in relation

to other events, or we may only know an approximate period when something happened.

We may say that an associate was in a traffic accident “last week” or that a package will

be delivered at some point in the next couple of days.

Generally speaking, there are at least three possible sources of temporal indeterminacy.

The first is a discrepancy between the granularity of how some temporal qualification and

when it occurs. For example, one has a temporal model where each second is modelled

as a distinct moment in time, but one only knows the day on which a fact occurred.

Second is where time at which something occurred has been under specified, such as only

stating the start of an interval but not its end. Thirdly is when events are only specified

in relation to one another such as “Jack joined the team after Bob”. When dealing with

temporal indeterminacy, one must decide whether they wish to restrict query results to

facts which they know definitely do hold, or whether to include facts which may possibly

hold at a given point in time.

One could also use a fuzzy model such as in [27], where facts are assigned a value

for certainty like 0.5 to denote that a fact is equally likely or not. This then raises the

question as to how one might go about determining such a value, as often one would have

to use a heuristic which arbitrarily weigh different kinds of facts. In some domains such

a weighting could be well-realised, for example the fact that a particular road is “icy” is

a gradual process rather than an instantaneous one, so one could determine the weight

based on the time elapsed since the local temperature dropped.

2.3 Allen’s Interval Algebra

In [6] Allen introduced a calculus for temporal reasoning that defines all possible relations

between time intervals. The thirteen base set of relations can be seen in table 2.4. In ad-

dition to these base relations, there are also the generalised relations which are essentially

a disjunction between a combination of base relations. For instance, if one knew that the
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Table 2.4: Allen’s Interval Relations
Filter Converse Definition
A precedes B B precededBy A A ends before B begins
A p B B pi A A− < B+

A meets B B metBy A A ends when B begins
A m B B mi A A− = B+

A overlaps B B overlappedBy A A begins before B, and ends during B
A o B B oi A A+ < B+ & A− < B− & A− > B+

A starts B B startedBy A A and B start at the same time but A ends first
A s B B si A A+ = B+ & A− < B−

A during B B contains A A starts after B, and A ends before B ends
A d B B di A B+ < A+ & A− < B−

A finishes B B finishedBy A A starts after B, and finishes when B finishes
A f B B fi A B+ < A+ & A− = B−

A equals B B equals A A starts when B starts and A ends when B ends
A e B B e A A+ = B+ & A− = B−

intervals A and B started at the same time, but did not know when they ended, then this

could mean that either A starts B, A startedBy B, or A equals B. So one could state

that they have the generalised Allen relation A ssie B. As there are 13 base relations

there are 213 (8192) general relations.

Interval algebra can be applied to a variety of problem domains including planning

[7, 40], scheduling [91, 38] DNA sequence analysis [46], numerical analysis [122], and ray

tracing [31, 129]. The role of Allen interval relations is to firstly permit the expression of

relations between intervals which are relative or imprecise, and secondly as the basis for

temporal reasoning that can work with variable scales of time. As certain relationships

between intervals become known, additional relations between intervals can be inferred.

As a very simple example, if we have the intervals A, B, and C, and we knew A precedes

B, and B precedes C, then naturally we know that A precedes C. Similarly, we could

infer that A precedes C if B contains C, B overlaps C, B meets C, B starts C, B started

by C, B finished by C or B equals C. In table 6.10 one can see the full set of relations

that can be inferred by the composition of other intermediary relations for each of the

base Allen interval relations.

One problem with networks of Allen relation intervals is detecting inconsistency. Con-

tinuing our example, if it was asserted that A precedes B, and B precedes C, which

would imply A precedes C, but it was also asserted that C precedes A then this would be

inconsistent. In [127] it was demonstrated that the satisfiability or consistency of a set of

assertions in Allen’s interval algebra is NP-Complete. It was later demonstrated that from

Allen’s interval algebra there are eighteen maximal subalgebra for whom satisfiability is

tractable [76].
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This chapter describes related work in relation to the thesis topic. The main areas are

(non-RDF) temporal databases, temporal RDF, and RDF archiving.

3.1 Temporal Databases

Important early work that led to the development of temporal databases was in temporal

logic. Tense logic [105, 104] introduced logic system with four modal temporal logic

operators. These allowed one to state “at some point in the future x holds”, “at all points

in the future x holds”, “at some point in the past x holds” and “at all points in the future

x holds”. This would later lead to the development of Linear Temporal Logic [102], which

was a similarly linear Temporal modal logic, and Computation Tree Logic [21] which was

a branching time logic.

Early research into temporal databases focused on the relational model. The work of

Clifford and Warren [24] introduced a simple temporal relational model where the current

state and all historic states of a relation would all be represented in a single large relation.

Tuples in the relation are interpreted to represent different entities at different points in

time. In addition to the standard attributes that exist for any given relation, there is also

a “State” attribute and an “Exists” attribute. “State” gives a version or timestamp value,

and the “Exists” is a true or false value stating whether the entity represented by this

tuple exists for a given state. The work of Lum and Dadam [84] describes a more practical

21
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implementation of a temporal database in the relational model that timestamps each row

in a table. Conceptually they present a view of the table as a three dimensional cube where

the depth of the cube represents the time dimension. They suggested each tuple forming

part of a linked list, where traversing that linked list would give each historic version for

that tuple. They proposed using a regular B+ Tree index for the current version, and

then a second history tree of all tuples that had been deleted. They suggested to support

modelling points in time in the future, a second chained linked list could be constructed

that goes forwards, and a third tree containing future tuples to be added. This was one

of the first prototype temporal databases, and the first to support temporal indexing.

Around this time numerous papers emerged on important topics related to temporal

database models. As discussed in the previous chapter, Allen introduced a calculus for

temporal reasoning that defined the relationships between intervals [6]. In [116] Snod-

grass and Ahn showed that transaction time and valid time are orthogonal concepts that

can be pursued independently. Katz, Chang, and Bhateja [68] investigated how to model

version histories for databases that evolve over time. Similarly, Ginsburg and Tanaka

investigated how to model object histories [44]. Lee, Coelho, and Cotta [78] investigated

temporal inferencing, and Abiteboul considered the enforcement of integrity constraints

across updates [3]. The work of Clifford and Croker [23] introduced an extension of re-

lational algebra that allowed attributes to have an individual life span over an interval.

As attributes are timestamped this meant that this was a non-first normal form exten-

sion. In this work they give temporal definitions for union, intersection, set difference,

cartesian product, selection, projection, theta join, equijoin, and natural join. Numerous

papers were also introduced around the implementations and physical design of temporal

databases. Ways to organise temporal data on disk for efficient scans were discussed in

[109]. In [124] Tsotras and Kangelaris proposed an on disk index for snapshot queries that

is guaranteed to be I/O optimal. In [119] Stonebreaker designed a complete implemen-

tation proposal of PostgreSQL for rollback relations which he refers to as ‘time travel’.

Extensions to existing query languages and database management systems were described

in [111, 65, 92] for SQL, [115, 120] for Quel, and [98] for Datalog. Work has also been done

in the area of benchmarking temporal database queries including [67, 64] which propose

a standard set of benchmark queries for temporal database implementations.

Temporal databases is still a very active area of research. The work of Krause et

al. [75] provides a novel visualisation of temporal queries and their results. The Timely

Yago project [130] focuses on the extraction of temporal facts from the history of edits

to Wikipedia and makes those facts available by way of temporal queries. Other con-

temporary works regarding temporal datamining include [47, 41, 33]. Further work on

efficient big data temporal queries has been researched in [70, 4, 69]. Spatio-temporal

databases, which qualifies statements by both space and time, has been a particularly
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Figure 3.1: Temporal reification for a (s,p,o) triple

popular research topic in recent years. Research in this area includes spatio-temporal

indexes [39, 80], data compression [77, 90], query evaluation [5, 29], visualisation [59], and

data mining [112, 134].

3.2 Temporal RDF

The initial work of Guiterrez et al. [52] to represent time in the semantics of RDF has

been the foundation of much of the research into temporal qualification in RDF. They

presented a temporal framework for RDF based on the concepts of temporal triples and

temporal graphs. A temporal triple is an RDF triple that has some temporal label which

denotes when that triple holds, which they represent as (s, p, o) : [t], and a temporal graph

G is simply a set of temporal triples. The notation (s, p, o) : [t1, t2] is used to represent

(s, p, o) : [t] | t1 < t < t2, and so describes an interval for which (s, p, o) holds at every

point within that interval. A snapshot G(t) of G is an RDF graph containing all the

underlying RDF triples in G which has a timestamp of t.

3.2.1 Standard RDF models

The initial work of Guiterrez et al. described how such temporal triples could be rep-

resented in standard RDF by adding the temporal label by way of reification as shown

in figure 3.1. Reification is a well known approach to make statements about statements

and is used for recording meta data [87]. Reifying a temporal label involves inserting a

blank node with triples pointing to the subject, predicate, and object and to any interval

which that triple is valid for.

It might be tempting to think then that if such temporal labels can be represented

in standard RDF, then no temporal extension is required for representing the temporal

qualification of triples. Practically though there is usually some significant overhead that

occurs from representing temporal labels with reification. Providing a reification for every

triple immediately requires a three time increase in the number of stored triples. A further
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triple is required to state that the statement referred to by reification holds for a particular

interval. If the interval is new, then two more triples will be required to state when the

interval begins and ends. This results in six additional triples being required for each

triple being temporally qualified, as seen in fig 3.1. If one also includes type information

for the reification, the interval, and the endpoints this becomes a ten times increase.

Aside from the increased amount of storage required, there are also some problems

that arise from query execution. Firstly, they quickly become extremely cumbersome to

write. If one had a query with three triple patterns but only wanted those triples that

held at a particular point in time, the query would require 21 triple patterns and six

filter expressions. Secondly, queries with reification patterns can result in suboptimal

evaluation. Consider a query such as the following:

s e l e c t ?x where {
?x : s u p e r v i s e s ?y .

: a rd f : s ub j e c t ?x .

: a rd f : p r e d i c a t e : s u p e r v i s e s .

: a rd f : ob j e c t ?y .

: a : h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 : s t a r t s ? t s t a r t 1 .

? i n t e r v a l 1 : ends ? tend1 .

?y : s u p e r v i s e s ? z .

: b rd f : s ub j e c t ?y .

: b rd f : p r e d i c a t e : s u p e r v i s e s .

: b rd f : ob j e c t ? z .

: b : h a s I n t e r v a l ? i n t e r v a l 2 .

? i n t e r v a l 2 : s t a r t s ? t s t a r t 2 .

? i n t e r v a l 2 : ends ? tend2 .

f i l t e r (? t s t a r t 1 < ? tend2 && ? t s t a r t 2 < ? tend1 ) }

This query intends to find all who supervised someone who was also supervising some-

one. In executing this query a query optimiser decides on the order in which to evaluate

each triple pattern. The basis for the query plan is cost estimates for each triple pattern

which are either derived from some stored statistics or in the absence of statistics from

simply counting the number of variables or blank nodes in the pattern. The problem

with reification in particular is that the part of the query relating to one reification is

split into three triple patterns which each need to be evaluated in some order, but each

of which is significantly less selective than the reification itself. For instance, if the query

was executed in the order it was written, the query would first find all triples with the

:supervises predicate, and then secondly join this result on all reifications which use the

same subject. If the subject is used in a lot of other relations the intermediate result at
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Figure 3.3: Perdurantist representation for a (s,p,o) triple

this point might be much larger than the set of reifications with a :supervises predicate.

One alternative to reification is to use singleton properties as described in [95]. With

this approach one uses a separate identifier for each occurrence of a predicate that appears

in a distinct context. In the temporal case then one would give a new identifier for a

predicate for each interval, as shown in figure 3.2. When compared to reification one

advantage of singleton properties is that a new triple can be temporally labelled with four

additional triples- one to describe an interval, two to describe the start and end of the

interval, and one to describe the generic predicate to which the predicate of the triple

is an instance of. The strategy for evaluating queries will be to either evaluate using

a variable predicate, and then filter those results which were assigned a variable to the

predicate that is not an instance of the desired predicate, or to find all predicates which

are an instance of the desired predicate, and then query the triple pattern using each of

them.

A potentially significant disadvantage is that the singleton properties approach can

significantly increase the number of distinct predicates being stored. Some triplestores

rely on a vertical partitioning scheme, such as in [2], where efficient query evaluation

relies on the number of distinct predicates to be relatively low. In [60] this increase in

the number of distinct predicates resulted in severe increases to the size of stored indexes

in two of the five tested triplestores, and severe degradation of query execution time in

three of the five.
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Figure 3.4: n-ary relation representation for a (s,p,o) triple

A similar approach to singleton properties but instead applied to subjects and objects

was described in [133]. This approach takes a perdurantist view of time in which all entities

consist of temporal parts and that properties that change over time are not properties

of the entity as a whole, but of its temporal parts. One way of temporally qualifying

using the perdurantist view can be seen in figure 3.3. Naturally as it requires temporally

instantiating both the subject and object this approach requires a similar number of

additional triples as reification. When distinct intervals are given to the subject and

object it does give a mechanism for modelling relationships between entities across time.

The n-ary relations approach discussed in [32] and [60] is to include an intermediary

node between any subject and object that holds a relationship, and any meta data such

as temporal qualification can be attached to the intermediary node. For a fresh triple

this requires seven additional triples as seen in figure 3.4, but the original triple could be

removed and inferred from some entailment regime. Additionally, the two triples stating

the relationship between the two split predicates and their original is only needs to be

added for the first triple being temporally qualified that uses that predicate. So in a

dataset with few distinct predicates with triples that hold for a single interval, one would

expect this approach to have a four times increase to the number of stored triples instead

of seven.

Another alternative is to store historic data using named graphs. One simple approach

is to store each historic snapshot in an isolated named graph though this has scalability

problems as triples which belong to multiple graphs are duplicated [71]. In [123] it was

suggested that each named graph be associated with a specific interval, and all stored

triples to belong to that interval. This approach relies on the number of distinct intervals

held by a graph’s triples to be relatively small compared to the number of stored triples.

In the worst case, where each triple has its own interval, a named graph is assigned to

each triple.
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3.2.2 Temporal RDF extensions

Numerous extensions to RDF and SPARQL exist that allows for efficient storage and query

execution of temporal facts [100, 74, 8, 48, 135] which we will now briefly examine in turn.

Typically each adopt an internal representation more amenable to temporal queries but

will use a standard RDF representation (e.g. standard reification) when exporting triples

or when being queried under a regular SPARQL endpoint.

Sparql-ST

SPARQL-ST [100, 101] is an extension to SPARQL that allows for spatio-temporal queries.

In SPARQL-st, in addition to normal SPARQL variables denoted by a ? prefix, there are

also temporal variables denoted by a # prefix, and spatial variables denoted with a %

prefix. Triple patterns are extended into quadruple patterns allowing triples to be qualified

by intervals. SPARQL-ST also incorporates some new temporal and spatial filters, and

also introduces some functions for deriving intervals and spatial regions based on values

assigned to variables as part of a query. An example temporal SPARQL-ST query is as

follows:

SELECT ?p , i n t e r s e c t (#t1 , #t2 , #t3 , #t4 )

WHERE {
?p usgov : hasRole ? r #t1 .

? r usgov : f o r O f f i c e ?o #t2 .

?o usgov : i sPartOf usgov : congre s s / house #t3 .

?p usgov : sponsor ?b #t4 .

TEMPORAL FILTER

(

a f t e r ( i n t e r s e c t (#t1 , #t2 , #t3 , #t4 ) ,

i n t e r v a l ( 0 4 : 0 2 : 2 0 0 8 , 04 : 02 : 2008 ,

MM:DD:YYYY)) )}}

This query finds all politicians who are members of the US house of congress who

sponsored a bill after April 2nd 2008. The intersect function returns the maximal interval

which is equal to or contained by each of #t1, #t2, #t3, and #t4. The “after”’ temporal

filter, written as a function, determines that the derived intersecting interval occurs after

the specified interval. Note that the start and end time of the specified interval is the

same, as SPARQL-ST only supports qualifications by intervals and not by points in time.

The proof of concept system that implements SPARQL-ST uses a relational database

consisting of four tables, and all SPARQL-ST queries are translated into SQL. First, a

URI-ID table is used for mapping full URIs to numeric IDs. Secondly, a Triples table is
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used to store all regular RDF triples, and consists of a triple ID, a subject ID, a predicate

ID, and an object ID. Thirdly, a temporal triples table that in addition to the fields of

the Triples table also includes a start date and and end date. Finally, a spatial data table

that stores a URI-ID, a shape, and an rdf-serialization.

stRDF and stSPARQL

Similarly, the implementation of stRDF [14] also used a relational database as a backend.

Their approach differs from [100] in that instead of using reification as the modeling

approach in standard RDF, they use a named graphs approach such as described in

[123]. Temporal triples are read into stRDF using the N-quads format [26]. An example

temporal triple that could be added might be:

c o r i n e : Area 4 c o r i n e : hasLandCover c o r i n e : natura lGrass land

‘ ‘[2000−01−01T00:00 ,2006−01−01T00 : 0 0 ) ’ ’ ˆ ˆ s t r d f : pe r iod

From this two triples are created.

c o r i n e :2000−01−01T00 :00 2006−01−01T00 :00 s t r d f : hasValidTime

‘ ‘[2000−01−01T00:00 ,2006−01−01T00 : 0 0 ) ’ ’ ˆ ˆ s t r d f

c o r i n e : Area 4 c o r i n e : hasLandCover c o r i n e : natura lGrass land

A new named graph is created using the specified interval as part of its name, and the

first triple is added to the default graph describing its valid interval. The second triple

(the one being temporally qualified) is then added to the newly created named graph for

its interval. Temporal queries, written in their stSPARQL query language, are parsed

to first identify any temporal constraints which can be used to identify any potentially

relevant named graphs, and are then translated into SPARQL queries to be executed

against them.

τ-SPARQL

EP-SPARQL

EP-SPARQL [8] is an temporal SPARQL extension focused on event processing and

stream reasoning. EP-SPARQL is based on event-driven backward chaining rules for

event-driven inferencing and is implemented using Prolog. Part of the motivation for

developing EP-SPARQL is to detect when situations of interest have occurred as soon as

they happen in real-time streaming data, so these rule based queries need to be executed

continuously. P-SPARQL extends SPARQL by firstly including the binary operators

SEQ, EQUALS, OPTIONALSEQ, and EQUALSOPTIONAL which are used for combin-

ing graph pattern queries similar to UNION and OPTIONAL in regular SPARQL. If P1
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and P2 are Graph Patterns, then P1 SEQ P2 will only join if P1 and P2 are matched in

sequential points in time, whereas P1 EQUALS P2 is only matched if P1 and P2 occur in

the same moment in time. The OPTIONALSEQ and EQUALSOPTIONAL operators are

optional variants where P1 and P2 are only joined if there are matching bindings for the

variables in both P1 and P2. Additionally, the getDURATION() function can be used

inside filter expressions to get a literal stating the length of the time interval associated

with the graph pattern associated with the filter expression. Similarly, getSTARTTIME()

and getENDTIME() are used to retrieve date times corresponding to the start and end

of the interval.

The following EP-SPARQL query can be used to find for a company whose stock price

decreased by over 30%, and then subsequently rose by 5% within thirty days.

SELECT ?company WHERE

{ ?company hasStockPr ice ? p r i c e 1 }
SEQ { ?company hasStockPr ice ? p r i c e 2 }
SEQ { ?company hasStockPr ice ? p r i c e 3 }
FILTER (? p r i c e 2 < p r i c e 1 ∗ 0 .7 && ? p r i c e 3 > p r i c e 1 ∗ 1 .05

&& getDURATION( ) < ‘ ‘P30D”ˆˆ xsd : durat ion )

T-SPARQL

The T-SPARQL query language [48] is based on the TSQL2 temporal query language

for relational databases [117]. In the T-SPARQL temporal database model, each (s, p, o)

triple is qualified by its temporal pertinence T where T is the set of all maximal temporal

intervals in which (s, p, o) holds. So, for example, if the (s, p, o) triple was added at

t1, removed at t2, added at t3, then removed at t4, the triple would be represented

as (s, p, o|[t1, t2] ∪ [t3, t4]). What’s more, temporal intervals in T-SPARQL are multi

dimensional in that they can be specified to be for transaction time or valid time.

T-SPARQL also contains the comparison operators PRECEDES, EQUALS, OVER-

LAPS, MEETS, and CONTAINS. While these operators seem to be a subset of the Allen

interval relations we have described in table 2.4, there are some differences based on the

fact that a temporal pertinence T may contain multiple intervals. T1 PRECEDES T2 is

satisfied if the highest ending timestamp in T1 is less than the lowest starting timestamp

in T2, and T1 MEETS T2 if the highest ending timestamp in T1 is equal to the lowest

starting timestamp in T2.T1 EQUALS T2 is T1 and T2 contain all the same intervals.

T1 CONTAINS T2 if all the timestamps defined by the intervals in T2 are a subset of

all the timestamps defined by the intervals of T1. Finally, the most notably different

comparison operator is OVERLAPS, as T1 OVERLAPS T2 means that the intersection
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of the set of all timestamps defined by the intervals of T1 with all those defined by the

intervals of T2 is not empty.

T-SPARQL also contains the notion of temporal projection, where one can specify

the value of the timestamps assigned to data retrieved as part of a select statement in

T-SPARQL. The following query tries to find the history of an employee named Tom’s

salary from 2007 to 2009. This query uses both temporal selection and projection:

SELECT ? s a l a r y INTERSECT (? t2 , ‘ ‘[2007−01−01 , 2009−12−31]”)

WHERE{
?emp ex :Name ‘ ‘Tom’ ’ .

?emp ex : Sa lary ? s a l a r y | ? t .

FILTER (VALID(? t ) OVERLAPS

‘ ‘[2007−01−01 , 2009−12−31]”ˆˆ xs : per iod ) .

}

RDF-TX

The RDF-TX system [135] allows temporal queries by parsing stored triples to identify

valid timestamps which are then used in the creation of a multiversioned b-tree [13]. Much

like regular b-trees, nodes in a multiversioned b-tree are responsible for values that fall

within a particular range. In a multiversioned b-tree however, they are only responsible for

those values that fall within a particular range that also fall within a particular timestamp

range. Those that fall outside the timestamp range exist in a parallel node that operates

on the same range of values, but a distinct timestamp range. RDF-TX uses a query

language called SPARQLT which uses a fairly simple (s, p, o, t) query pattern. When

parsing a SPARQLT query a timestamp range is generated from any literal timestamp

values in the query, as well as any relevant filter expressions. The multiversioned b-tree

is then searched to find any triples that fall in the value range of the query as well as the

derived timestamp range.

The proof of concept RDF-TX system described in [135] is limited to literal dates,

with ‘day’ being the finest unit of granularity. Given a query such as:

s e l e c t ? t

WHERE {C a l i f o r n i a governor ‘ ‘ Gray Davis ’ ’ ? t}

The query returns the literal “[01/04/1999 ... 11/16/2003].” to represent the date range

for which Gray Davis was Governor of California. Temporal constraints can be used in

filter expressions to limit the results of a temporal query to a particular period of time.

An example of such a query is:
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SELECT ?pop

WHERE {C a l i f o r n i a TotalPopulat ion ?pop ? t .

FILTER (? t = 2014−08−?)}

In this case here, the literal 2014-08-? refers to the entire month of August 2014, and will

match any distinct bindings for population valid in that month.

3.3 RDF Archiving

A closely related area of work is RDF archiving. An RDF archive is used for tracking the

changes which are made to an RDF dataset over time. Most commonly RDF archives

are used to support version materialization, where the dataset can be reverted to a past

historic state. There are several approaches to RDF archiving. The simplest one is the

independent copies approach where entire historic data sets are stored directly [71, 96].

While this clearly trivialises version materialisation as it is simply a matter of retrieving

the relevant copy, it is not so efficient when scaling to larger datasets that frequently

undergo change as any unchanged data will be duplicated across each version. Change-

based approaches instead store the changes between versions such as in [128, 136, 63]. In

this sense, an RDF log which records each addition or removal of a stored triple could be

considered as a basic form of change-based RDF archiving. Version materialisation is then

achieved by applying these changes in order to get the desired version. Some approaches,

such as [63, 89] store some intermediate versions so that potentially fewer changes need to

be applied to achieve version materialisation. The third approach, utilized by v-RDFCSA

[19], which is to timestamp individual triples like in temporal RDF [51, 137]. Version

materialisation then involves identifying all relevant triples based on their stored times-

tamps. There also exists some hybrid approaches such as x-rdf3-x [94], R43ples [50], and

R&W base [125], which use hybrid timestamp and change based policies, and TailR [89]

which can be seen as using a hybrid independent copies and change based approach.

Fernandez et al. [35, 36] created a benchmarking suite for RDF archives called BEAR

which in addition to materialisation also evaluates four classes of queries that can poten-

tially be executed on these RDF archives. The first, version queries, are ones which ask

which versions contain a result for a regular SPARQL query. Cross-version structured

queries, which are a typically a focus for temporal databases, query across multiple ver-

sions. Single-delta structured queries are queries on the difference between two versions.

Cross-delta structured queries across several sets of differences between multiple pairs of

versions. While this full query functionality is not common in RDF archives, they can

still potentially be used programmatically to answer these kinds of queries. The kind of

archiving policy can, unsurprisingly, have a significant impact on the efficiency of these

different kinds of queries. Generally speaking, a system that uses independent copies
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ought to perform best when performing version materialisation at a cost of storage space.

One would likewise find that change-based policies tended to perform better at delta and

change materialisation queries, and timestamp-based policies perform better when doing

cross version joins.

However, on individual data sets this may not always be the case. Fernandez et

al. [35] found that a pure timestamp-based policy with regular RDF indexes tended to

perform poorly on large datasets. If one wanted to perform a version query with a pure

RDF timestamp-based policy then this entails querying the union of all snapshots and

then pruning the results based on their recorded timestamps. Change-based policies may

actually perform poorly on delta materialisation queries if they attempt to compute the

delta by processing all intermediate changes as there can potentially be a large number of

changes which do not appear in either version being compared. Independent copy policies

can perform poorly on version queries if one has to query a large number of versions to

identify the ones with the correct result.



4
Modeling Approach

This chapter provides some formalism for our modelling approach. Prior to discussing the

semantics of our approach we provide some important preliminaries about the semantics

of RDF.

4.1 Preliminaries

4.1.1 Notation and Terminologies

Triple is a tuple consisting of a subject, predicate, and object

Change is a quintuple consisting of a timestamp, a change type, a subject, a predicate,

and an object

IRI internationalised resource identifier, main format for identifying resources in RDF

Blank Node an anonymised resource. May be given a local identifier, but such identifiers

are not persistent or portable

Subject the first component of a triple, can be an IRI or a blank node

Predicate second component of a triple, represented by an IRI. Typically interpreted as

a kind of relationship. Might be referred to as an edge in the context of a graph

33



34 Modeling Approach

Object third component of a triple, can be an IRI, a literal value, or a blank node

Timestamp a literal value, such as an integer, a string, or datetime, on which there is a

total ordering

Interval a pair (t1,t2) of timestamps where t1 < t2

Change type either a + denoting an add change type, or a - denoting a remove change

type

Name refers to identifiers such as IRIs or literals

RDF Graph is a set of triples, might be simply referred to as a graph

Empty Graph is an empty set of triples

Subgraph the subgraph of an RDF graph is a subset of the triples in the graph, a proper

subgraph is a proper subset of triples in the graph

RDF Log a set of changes. May also be referred to as a log, or history

Snapshot a snapshot of a log at time t is the underlying RDF graph that can be derived

by applying all changes in the log whose timestamps are less than or equal to t.

Node may refer to either a subject or object in an RDF graph

Ground an RDF graph, RDF triple, and RDF Log are said to be ground if they contain

no blank nodes

Instance in the context of RDF resources, if there is a triple stating that the resource

is of a particular type, then the resource is an instance of that type. In the context

of graphs, any graph obtained from replacing blank nodes with named resources is

an instance of the graph with the blank nodes. A proper instance is one where at

least one blank node has been replaced

Isomorphic two RDF graphs are said to be isomorphic if they have an identical form.

Two graphs are said to have identical form if there is a bijective mapping that when

applied to all nodes in one graph, it yields a graph identical to the other

Lean an RDF graph is lean if it has no instance which is a proper subset of itself

RDF Dataset is a collection of RDF graphs, comprising of one default graph, and zero

or more named graphs
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RDF source a source or container from which an RDF graph is stored or derived.

Changes in the source can yield new RDF graphs. Sources can be named with

IRIs and be described by RDF graphs

Interpretation an assignment of meaning to the symbols in a formal language such as

RDF. Provides a means of determining the truth values of sentences in the language

Satisfies An interpretation satisfies a statement when it evaluates the statement as true.

A statement is satisfiable if such an interpretation exists

Entailment an RDF graph G entails a graph E if every interpretation that satisfies G

also satisfies E. Likewise an RDF Log H entails a RDF Log E is every interpretation

that satisfies H also satisfies E

Equivalence two RDF graphs are said to be equivalent if they entail each other

4.2 RDF Semantics

The RDF model is based around linking identifiers with binary relationships to create

RDF graphs. Assume U is an infinite set of unique identifiers, B is an infinite set of blank

graph nodes, and L is a set of RDF literals. A subject-predicate-object triple then is of

the form (s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L). The universe of an RDF graph G we

denote by universe(G), and represents the set of all elements that appear in the triples

of G.

Simple RDF entailment is described in terms of an interpretation. We will now discuss

the simple interpretation described by the RDF semantics documentation [58] that we will

call I. A simple interpretation consists of the following:

1. A non empty set IR of resources

2. A set IP of properties

3. A mapping IEXT from IP into the power set of IR

4. A mapping IS from IR into IR ∪ IP

5. A partial mapping IL from literals into IR

Given a property, the mapping IEXT returns all pairs of resources such that they are

related to each other by the specified property. Likewise, the mapping IS takes a resource

and returns all resources it is related to as well as the property denoting that relation.

From this, we gain some semantic conditions for ground graphs.
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• If E is a literal then I(E) = IL(E)

• If E is an identifier then I(E) = IS(E)

• If E is a ground (s, p, o) triple then I(E) = true if and only if I(p) ∈ IP and

(I(s), I(O)) ∈ IEXT (I(P ))

• If E is a ground RDF graph then I(E) = false if and only if I(E ′) = false for

some triple E ′ in E

To extend the semantic conditions to RDF graphs including blank nodes some extra

treatment is required. Remember that blank nodes are treated as anonymous identifiers,

and can match any resource in the interpretation. So, let us assume we have a mapping

A from a set of blank nodes to the domain IR in the simple interpretation I. We then

define the mapping [I + A] to be I(E) when E is a name, and I(A(E)) when E is a

blank node, and then extend this mapping to triples and RDF graphs using the rules

above for ground graphs. Then we can add the following additional semantic condition

for non-ground RDF graphs:

• If E is an RDF graph then I(E) is true if and only if [I + A](E) is true for some

mapping A from the set of blank nodes in E to IR

RDF entailment under simple interpretations has the following properties:

• Every graph is simply satisfiable

• A graph G simply entails a graph E if and only if a subgraph of G is an instance of

E

• The empty graph is simply entailed by any graph, and does not simply entail any

graph except itself

• A graph is simply entailed by any of its instances

• If E is a lean graph and E ′ is a proper instance of E then E does not simply entail

E ′

• If S is a subgraph of S ′ and S simply entails E, then S ′ simply entails E

• If S simply entails a finite graph E, then some finite subset S ′ of S simply entails

E

• If E contains an IRI which does not occur anywhere in S, then S does not simply

entail E
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The documentation on RDF semantics [58] defines three additional classes of inter-

pretations that are built on top of simple interpretations. D-Interpretations add further

semantic conditions for the specification of the datatypes of literals. RDF interpreta-

tions further add semantic conditions on the use of rdf:Property and rdf:type predicates.

RDFS interpretations further add semantic conditions for the RDFS classes and proper-

ties listed in tables 2.1 and 2.2. RDFS entailment extends upon simple entailment to allow

an interpretation to infer additional triples according to the rules laid out in table 2.3.

4.3 RDF Log

Assume U is an infinite set of unique identifiers, B is an infinite set of blank graph nodes,

L is a set of RDF literals, T is a set of totally ordered timestamps, and C is the set {+, i}
consisting of the two kinds of change types in the RDF log.

A change object then is of the form (t, c, s, p, o) ∈ T ×C× (U ∪B)×U × (U ∪B ∪L).

An RDF log H is a set of change objects with the following constraints:

1. For every (t, c1, s, p, o) ∈ H there exists no other change object (t, c2, s, p, o) ∈ H

2. For every pair of change objects (t1,+, s, p, o) ∈ H, (t2,+, s, p, o) ∈ H such that t1 <

t2 there must exist some change object (t3,−, s, p, o) ∈ H such that t1 < t3 < t2)

3. For every remove change object (t1,−, s, p, o) ∈ H there must exist some add change

object (t2,+, s, p, o) ∈ H such that t2 < t1, and there is no third change object

(t3,−, s, p, o) ∈ H such that t2 < t3 < t1

Such an RDF Log is used to describe the changes made to an RDF graph over time.

Let G(t)H define an RDF graph as a snapshot at time t ∈ T derived from the RDF log

H. The set H is an RDF source from which regular RDF graphs can be derived. Let

G(t)H define an RDF graph as a snapshot at time t ∈ T derived from the RDF log H.

G(t)H = {(s, p, o)|(t′,+, s, p, o) ∈ H : t′ ≤ t & (6 ∃t′′)((t′′,−, s, p, o) ∈ H & t′ < t′′ < t)}

Equivalently, G(t)H can be derived by first starting with an empty graph G and

applying all changes in turn up until time t. When applying the changes the subject,

predicate, and object are added to the graph as a triple if the change type is +. If the

change type is -, a triple with the same subject, predicate, and object is removed. If no

change exists that is less than or equal to t, the snapshot is the empty graph

Let us now consider the semantics of an RDF log in terms of a simple temporal

interpretation we call TI and that consists of the following:
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1. A non empty set IR of resources

2. A set T of time instants, a subset of IR

3. A set IP of properties

4. A mapping TIEXT from IP into the temporally qualified power set of IR×IR×T

5. A mapping IEXT from IP into the power set of IR× IR

6. A mapping IS from IR into IR ∪ IP

7. A partial mapping IL from literals into IR

8. A mapping IT from time instant literals into T

We can now state the semantic conditions for ground RDF logs under simple temporal

entailment:

• If E is a literal then TI(E) = IL(E)

• If E is a literal timestamp then TI(E) = IT (E) = IL(E)

• If E is an IRI then TI(E) = IS(E)

• If E is a temporally qualified ground triple (s, p, o, t) then TI(E) = true if TI(p) is

in IP and < I(s), I(o), I(t) > is in TIEXT (I(P )), otherwise TI(E) = false

• If E is an add change involving a ground triple (t,+, s, p, o) then TI(E) = false

if either TI((s, p, o, t)) = false, or there exists some t′ such that there is no t′′

where TI((s, p, o, t′)) = true and TI((s, p, o, t′′)) = false and t′ < t′′ < t, and true

otherwise

• If E is a remove change involving a ground triple (t,−, s, p, o) then TI(E) = false

if either TI((s, p, o, t)) = true, or there exists some t′ such that there is no t′′

where TI((s, p, o, t′)) = false and TI((s, p, o, t′′)) = true and t′ < t′′ < t, and true

otherwise

• If E is a temporally qualified RDF Graph that is a snapshot at time t then TI((E, t))

= false if TI((E ′, t)) = false for some triple E ′ in E, otherwise TI((E, t)) = true

• If E is an RDF log then TI(E) = false if TI((E ′, t) = false for any graph E ′ such

that E ′ = G(t)E , or if T (E ′) = false for any change E ′ in E

• If E is a ground triple (s, p, o) then TI(E) = true if I(p) is in IP and the pair

< TI(s), T I(o) is in IEXT (TI(p)), otherwise TI(E) is false
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The semantic conditions for blank nodes under simple temporal entailment is a little

more complicated than when compared to that in simple entailment. Previously we used

a function A from blank nodes to resources. In the temporal interpretation case the set

of triples changes at different time instants, so a single interpretation could use a distinct

mapping from blank node to resource at different time instants.

So now lets let TA be a function mapping a blank node and a timestamp to the

resources IR in TI, and [I + TA] be a composite mapping where I is used for mapping

names, TA is used for temporally mapping blank nodes, and which is similarly extended

for mapping to temporally qualified triples, RDF graph snapshots, and RDF logs using

the rules given above. For the evaluation of non-temporally qualified triples and RDF

graphs, the old [I + A] mapping for simple interpretations is used.

This leads us to the following additional semantic condition for blank nodes:

• If E is a temporally qualified triple (s, p, o, t) then TI(E) = true if TI(p) is in IP and

< I + TA(s, t), I + TA(o, t), I(t) > is in TIEXT (I(P )), otherwise TI(E) = false

• If E is an add change (t,+, s, p, o) then TI(E) = false if either TI((s, p, o, t)) =

false, or there exists some t′ such that there is no t′′ where TI((I + TA(s, t), p, I +

TA(o, t), t′)) = true and TI((I+TA(s, t), p, I+TA(o, t), t′′)) = false and t′ < t′′ <

t, and true otherwise

• If E is a remove change (t,−, s, p, o) then TI(E) = false if either TI((s, p, o, t)) =

true, or there exists some t′ such that there is no t′′ where TI((I + TA(s, t), p, I +

TA(o, t), t′)) = false and TI((I+TA(s, t), p, I+TA(o, t), t′′)) = true and t′ < t′′ <

t, and true otherwise

There are some interesting consequences for changes in a log involving blank nodes.

Consider an RDF graph G consisting of the two triples (s, p, o), (s, p, ). The graph G′,

obtained by assigning the blank node to o, is thus the graph containing just (s, p, o).

Consider then if a simple temporal interpretation performed a similar assignment of blank

nodes when considering the log (t,+, s, p, o), (t,+, s, p, ), (t′,−, s, p, ) where t′ > t. These

changes could be satisfied by an interpretation where the triple (s, p, o) holds at time t

but does not hold at time t′. Ultimately, however, this simple temporal interpretation

would not satisfy this log because it must satisfy each snapshot generated from the log.

As we defined the existence of a triple being in a snapshot as the existence of an add

change with that triple at some point prior to that snapshot with no remove change of

that exact same triple, the interpretation would also need to satisfy G(t′)H which would

include (s, p, o).

We can now note some properties of simple temporal entailment under simple temporal

interpretations. The properties identified for simple interpretation in regards to graphs
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also hold under simple temporal entailment with respect to snapshot graphs at the same

moment in time so we limit ourselves to properties relating to logs.

• All logs are simply temporally satisfiable

• The empty log is simply temporally entailed by every log, and does not simply

temporally entail any log but itself

• If E is an instance of H, and E is still a valid log that conforms to the constraints

of RDF logs, then E simply temporally entails H

• If E is a log that simply temporally entails the log H, then for every time t, the

snapshot G(t)E simply temporally entails G(t)H

• If E is a lean log, and E ′ is a proper instance of E, then E does not simply temporally

entail E ′

• If S is a subset of changes in the log S ′ containing changes with timestamps ranging

from t to t′, and for every add change in S, S also contains every corresponding

remove change that occurs between t and t′ in S ′, then S ′ simply temporally entails

S

• If S entails a finite snapshot graph G(t)S, then a finite subset of S entails G(t)S.

• If T ′ is a finite subset of T , and S entails a finite snapshot G(t)S|t ∈ T ′ then a finite

subset of S entails each finite snapshot G(t)S|t ∈ T ′

• If S is a finite RDF log, then the number of distinct snapshot RDF graphs simple

temporally entailed by S is also finite

• If S contains an IRI which does not occur anywhere in E, and the IRI is not

interpreted as a timestamp, then S does not simply temporally entail E

• If S is a log that is a subset of E that is still a valid log then E simply temporally

entails S

4.3.1 Monotonicity of Simple Temporal Interpretations

A general principle of extensions of semantic entailment is the notion of monotonicity. In

classical logic, monotonicity can be described as the fact that a valid argument cannot be

rendered invalid by adding new premises. Similarly, as simple temporal entailment is an

extension of simple entailment, to be monotonic then any fact entailed by a simple inter-

pretation I will need to also be entailed by a corresponding simple temporal interpretation

TI.
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This is straightforwardly the case because our extension does not change any of the

semantic conditions for regular RDF triples and RDF graphs. It instead simply allows one

to make further entailments about temporally qualified RDF graphs, temporally qualified

triples, changes, and logs. The relationship between temporally qualified triples and

graphs with their non qualified counter parts will depend on the interpretation- it might

be that the entailed non-qualified triples is the set of immutable triples that hold at all

points in time, the set of triples that are entailed at the most recent point in time, the

set of triples that hold at some point in time, or the set of triples which are simply not

temporally qualified in the interpretation.
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Log SPARQL

This chapter describes the formal syntax and semantics of our LSPARQL query language,

and also provides some example LSPARQL queries.

5.1 LSPARQL Syntax

LSPARQL is an extension of the query language SPARQL [54]. The SPARQL language

comprises OPTIONAL, UNION, FILTER, SELECT and concatenation operators applied

to graph pattern expressions. The syntax for regular SPARQL queries can be defined

recursively as follows:

• A triple in (U ∪B ∪ V )× (U ∪ V )× (U ∪B ∪L∪ V ) is a graph pattern, specifically

it is a triple pattern.

• If P1 and P2 are graph patterns then (P1, P2), (P1 UNION P2) and (P1 OPT P2)

are also graph patterns.

• If P is a graph pattern, then P FILTER f such that f ∈ F is a graph pattern.

Where U is a set of Unique Identifiers (IRIs), B is the set of blank nodes, and V is

the set of variables, and F is the set of filter expressions. We additionally add two more

items to this recursive definition for LSPARQL:
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Table 5.1: Relational Operations
Operation Definition
Ω1 ./ Ω2 {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and

µ1 and µ2 are compatible}
Ω1 ∪ Ω2 {µ | µ ∈ Ω1 or µ ∈ Ω2}
Ω1 \ Ω2 {µ1 ∈ Ω1 | there is no µ2 ∈ Ω2

that µ1 is compatible with}
Ω1 Ω2 (Ω1 ./ Ω2) ∪ (Ω1 \ Ω2)

• A quintuple in (T ∪(T ×T ))×(+,−,e,+−)×(U ∪B∪V )×(U ∪V )×(U ∪B∪L∪V )

is a graph pattern, specifically it is a change pattern.

• If P is a log pattern, then P FILTER f such that f ∈ F ? is a log pattern.

Where T is a set of time instants and F ? is the set F of filter expressions extended to also

include the binary relations of Allan’s Interval algebra.

5.2 LSPARQL Semantics

To describe the semantics of LSPARQL we borrow the terminology from [99]. A mapping

µ from V to (U∪B∪L∪T ∪(T×T )) is a partial function µ : V → (U∪B∪L∪T ∪(T×T )).

As a simplified notation we use µ(p) to denote replacing all variables in the triple or change

pattern p according to their mappings in µ.

A temporal value t can be either an instant, such that t ∈ T or an interval such

that t ∈ (T × T ). If t is an interval, we use tstart to represent the start of the interval,

and tend to denote its end. With two intervals t1, t2 we say that t1 and t2 intersect if

(t1start ≤ t2start ∧ t1end ≤ t2end). If t1 and t2 intersect, their intersection is the interval

max(t1start, t2start),min(t1end, t2end). If t1 is an interval, and t2 is an instant, they inter-

sect if t1start ≤ t2 ≤ t1end, and their intersection is t2. If both t1 and t2 are instants, then

they intersect only when t1 = t2 and their intersection is t1.

Two mappings µ1 and µ2 are compatible if for all variables ?x ∈ domain(µ1) ∩
domain(µ2)|µ1(?x) = µ2(?x)∨(µ1(?x) ∈ (T∩(T×T ))∧µ2(?x) ∈ (T∩(T×T ))∧µ1(?x) inter-

sects µ2(?x). We use µ1∪µ2 to define a combined function of two compatible functions µ1

and µ2. When ?t ∈ domain(µ1)∪ domain(µ2) and µ1(?t) and µ2(?t) are temporal values,

µ1∪µ2(?t) is the intersection of µ1(?t) and µ2(?t) if ?t ∈ domain(µ1) and ?t ∈ domain(µ2).

Else if they are not temporal values or ?t is not in the domain of both µ1 and µ2 then

µ1 ∪ µ2(?t) = µ1(?t) if ?t ∈ domain(µ1) and µ1 ∪ µ2(?t) = µ2(?t) if ?t ∈ domain(µ2).

Given the sets Ω1 and Ω2 of mappings, the table 5.1 defines the join of, the union of,

the difference between, and the left outer join in the same manner as in [99]. Using these
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operations we can define the evaluation of graph patterns over a transaction log. Let P

be a graph pattern, H a set of changes representing the history of changes made to an

RDF graph recorded in a transaction log, and G the current RDF Graph. Given a change

pattern c, we use c+ to denote c with a + change type, c− to denote c with a − change

type, and ct to denote c given a variable timestamp t. Further, for two changes c1 and c2,

we use c1 ≤ c2 to denote that the timestamp of c1 is less than or equal to the timestamp

of c2. Lastly, to simplify the formal semantics, we assume a function Opposite : H → H

which, given a + change returns the next − change with the same triple pattern if it

exists and ∅ otherwise. The evaluation of P over the history of changes H, denoted by

[[P ]]H is defined recursively as follows:

• If P is a RDF triple pattern r, then [[P ]]H = {µ | domain(µ) = var(r) and µ(r) ∈ G}

• If P is a change pattern c with a change type of either + or −, then [[P ]]H = {µ |
domain(µ) = var(c) and µ(c) ∈ H}

• If P is a change pattern c with a change type of +−, then [[P ]]H = {µ | domain(µ) =

var(c) and (µ(c)+ ∈ H or µ(c)− ∈ H}

• If P is a change pattern c with a change type of e, and has a constant timestamp tc,

then [[P ]]H = {µ1 | ∃µ2(domain(µ1) = var(c) = (domain(µ2) \ t) and µ2(c+) ∈ H
and µ2(t) ≤ tc and ∀x ∈ domain(µ1)(µ1(x) = µ2(x)) and @µ3 ∈ [[(Pt)−]]H(µ2(t) ≤
µ3(t) ≤ tc and ∀x ∈ domain(µ1)(µ1(x) = µ3(x)))

• If P is a change pattern c with a change type of e, and a variable timestamp t,

then [[P ]]H = {µ1 | domain(µ1) = var(c) and µ2(c+) ∈ H and ∀x ∈ domain(µ1) \
t(µ1(x) = µ2(x)) and µ1(t)start = µ2(t) and the timestamp of Opposite(µ2(c+)) is

µ1(t)end

• If P is (P1 AND P2) then [[P ]]H = [[P1]]H ./ [[P2]]H

• If P is (P1 OPT P2) then [[P ]]H = [[P1]]H [[P2]]H

• If P is (P1 UNION P2) then [[P ]]H = [[P1]]H ∪ [[P2]]H

5.3 Example LSPARQL Queries

When developing a query language based on SPARQL for temporal queries on an RDF

log, we notice an interesting duality in the kinds of queries that can be asked. The first

is queries over individual state of the store, such as searching for triple patterns in the

most current version, and ones over changes in the log, such as asking when a particular
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change was made. Despite the difference in these kinds of queries, we wish to keep their

syntax in the language quite similar.

As such, we extend the triple patterns of SPARQL into quintuple patterns we call

change patterns. In addition to the SPO pattern, our change patterns include a timestamp

and a change type. In addition to the + and − change types defined in the log, for queries

we additionally introduce the +− and the e change types. The +− change type acts like

a variable and is used when one wishes to do a query for any kind of change, regardless of

whether it is a + or a −. The e change type stands for ‘exists’, and is used to identify that

a triple holds at a particular point in time. Both the change type and timestamp fields can

be omitted, in which case the timestamp is assumed to be the most recent transaction,

and the change type is assumed to be of type e. So, if someone uses a normal triple

pattern without the timestamp and change type, this would be assumed to be asking for

all those triples that hold in the most recent snapshot that matches the pattern. In this

way we somewhat sidestep the interoperability issue common in approaches to temporal

RDF that extend the basic triple pattern by giving a reasonable interpretation of normal

non-temporal RDF queries in our query language. For readability we have omitted the

prefixes of the queries. Let us now look at some example queries:

SELECT ?x ? t WHERE {? t + : Vert igo : employs ?x}

This query is asking for all those people that have been employed by some company

called Vertigo and the time at which their employment was registered in the system. The

result will be a set of mappings for ?t and ?x, where the values for the mapping correspond

to changes in the log with ?t being mapped to a timestamp and ?x to an identifier for an

individual. A closely related query would be as follows:

SELECT ?x ? t WHERE {? t − : Vert igo : employs ?x}

This is the same query except that the change type has been modified to -. This will ask

for all those employees who have left Vertigo and the time at which their employment was

removed from the system. These two queries map directly to changes present in the log.

Next let us look at a query which uses the e change type and a temporal variable.

SELECT ?x ? t WHERE {? t e : Vert igo : employs ?x}

We can understand this as asking for all the individuals that Vertigo ever employed,

and when. We can see that this is a closely related query to the previous two, and in

fact it is like a combination of the prior two queries. Here ?t actually will be a map to

an interval, with the start of the interval being the timestamp one would receive from

the + query, and the end of the interval being the timestamp one would receive from



5.3 Example LSPARQL Queries 47

the − query. In the case where an individual has been employed multiple times, each

employment would form part of a different result with its own interval. Should there be

no − change for an employment, the end time for the interval will be a null value.

We can ask whether this query could be similarly described by the following:

SELECT ?x ? t1 ? t2 WHERE {
? t1 + : Vert igo : employs ?x .

Optional{? t2 − : Vert igo : employs ?x}}

The result of this query is much the same as the one previous in the situation where

each employee was only employed once. Then ?t1 corresponds to the start of their em-

ployment, and ?t2 (if it exists) corresponds to when they left. However when the employee

has left the company and returned more than once then there will be a mapping for every

pair of ?t1 and ?t2 where ?x is equal.

Let us now examine an e query with multiple change patterns:

SELECT ?x ? t WHERE {
? t e : Vert igo : employs ?x .

? t e ?x : hasFriend : Bob}

This query is asking for when an employee of Vertigo who was friends with Bob. However,

the fact that ?x is employed by Vertigo, and the fact that ?x is friends with Bob might

hold over different intervals. Instead of only matching two triple patterns with identical

intervals we instead take the intersection of the two intervals as that is when this particular

relationship expressed by two triples holds. So, in the case where someone was friends

with Bob before joining the company, but their friendship ended after some disagreement

at work, the start of this interval would be the time when they started working at Vertigo

(the start of the interval matched with the first pattern), and the end of the interval

would be when they stopped being friends (the end of the interval matched with that of

the second pattern). All of our queries which return intervals return maximal intervals, as

the number of sub intervals could be unreasonably large for any significantly long interval.

If one wanted all of these sub-intervals, then they could in theory always generate them

from the maximal interval anyway.

Next let us look at how a query which uses both e and + patterns functions. Consider

the following:

SELECT ?x ? t WHERE {
? t e : Vert igo : employs ?x .

? t + ?x : hasFriend : Bob}

We can see this query as asking for when someone who worked at Vertigo became

friends with Bob. We can see that the first e pattern would produce an interval for ?t,
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whereas the second + pattern would give a single timestamp for ?t. In this case we once

again take the intersection of the two. Namely the value will simply be the timestamp

from the second pattern so long as it falls somewhere within the interval of the first. This

kind of query can be used for determining the state of a snapshot at the point of time a

particular change was made.

Because we have introduced the notion of intervals into our LSPARQL language, it

is natural to also introduce some additional filters that can be used for comparing the

different temporal relationships between intervals. So, we have implemented separate

filters for each of the thirteen Allen relations [6], which can be seen in Table 2.4 in the

Background chapter. An example of such a query is as follows:

SELECT ?x ? t1 ? t2 WHERE {
? t1 e : Vert igo : employs ?x .

? t2 e : Vert igo : i n s u r e s ?x . f i l t e r (? t1 s t a r t s ? t2 )}

This query could be used to determine whether anyone who was employed by Vertigo was

insured by the company during the entirety of their employment, and for some additional

time afterwards.

Generalised Allen Interval relations can be achieved by using a disjunction of Allen

relations inside a filter statement. For example, to match an overlaps relation where

between intervals the order of operands does not matter this could be achieved with the

following query:

SELECT ? t1 ? t2 WHERE {
? t1 e : Vert igo : Employs : Bob .

? t2 e : Vert igo : Employs : Bert .

f i l t e r (? t1 overlaps ? t2 | | ? t2 overlaps ? t1 ) }
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This chapter discusses the evaluation of temporal LSPARQL queries. We provide some

high level optimisations based on the ordering of changes and intervals, and we also

propose new optimisations for Allen relation filter queries.

6.1 SPARQL Query Evaluation

One of the simpler kinds of query patterns in SPARQL is known as the Basic Graph

Pattern (BGP). A BGP pattern is simply a conjunction of triple patterns, with each triple

pattern consisting of at least one variable in the subject, predicate, or object position.

An example BGP would be the following:

s e l e c t ? customer id , ?name , ? address , ? emai l

where {
: AlbanyBranch : hasCustomer ? customer id .

? customer id : name ?name .

? customer id : address ? address .

? customer id : emai l ? emai l }

This BGP query is asking for the customer id, name, address, and email for all customers

registered with the Albany Branch of the store. There are different approaches to evalu-

ating this kind of query, and the approach depends largely on how this data is stored and

represented.

49
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Consider the following naive approach: We use an RDF triplestore that places all

triples in a single RDBMS table with three columns of subject, predicate, and object.

Each row represents a single triple. For each triple pattern we scan through every triple

in the table and identify those which match that triple pattern. When we find a match,

we create a variable assignment which is a map from variables to values.

Now that we have a group of variable assignments for each triple pattern, the next

step is to match those results across the four groups using the customer id. This process

of matching groups of values based on a shared value is known as a join, in particular this

would be an equijoin.

One existing well established approach to query plans is pipelining, where the solutions

of one operation are passed through to the operation that uses it [43]. This approach is

commonly applied to the evaluation of SPARQL queries as in [103, 56, 93], where results

for triple pattern queries are passed on to other triple patterns in the query, refining their

search space with existing variable assignments. One can then visualise the approach as a

tree of iterators, each of which perform the particular physical task of an operation. The

following pseudo code describes such a pipeline algorithm:

FUNCTION Open :

p r edec e s s o r = the i t e r a t o r r e s p o n s i b l e f o r $cp { i−1}$
c u r r e n t p a t t e r n = $cp i $

ass ignment = an i n i t i a l l y empty map o f v a r i a b l e

ass ignments

matching changes = an i n i t i a l l y empty i t e r a t o r o f t r i p l e s

e a r l y t e r m i n a t i o n = a s e t o f c o n d i t i o n s f o r

which t h i s i t e r a t o r may terminate

f i l t e r c o n d i t i o n s = a s e t o f c o n d i t i o n s that must

be t rue to re turn an assignment f o r a matching

change

FUNCTION GetNext :

matching change = matching changes . GetNext

WHILE matching change i s empty :

IF pr edec e s s o r e x i s t s :

ass ignment = predec e s s o r . GetNext

IF assignment i s empty :

Close

re turn empty

new pattern = assignment app l i ed to c u r r e n t p a t t e r n
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matching changes = i t e r a t o r o f t r i p l e s that match

new pattern

matching change = matching changes . GetNext

i f e a r l y t e r m i n a t i o n :

matching change = empty

matching changes . Close

re turn GetNext

IF not f i l t e r c o n d i t i o n s :

r e turn GetNext

ELSE:

matching changes = i t e r a t o r o f changes that match

c u r r e n t p a t t e r n

matching change = matching changes . GetNext

IF matching change i s empty or e a r l y t e r m i n a t i o n :

matching changes . Close

Close

re turn empty

IF not f i l t e r c o n d i t i o n s :

r e turn GetNext

new assignment = assignment extended to new v a r i a b l e s

based on t h e i r va lue s in the matching change

re turn new assignment

FUNCTION Close :

Free I t e r a t o r r e s o u r c e s

We can understand the pipelined iterators as having three functions: Open, GetNext,

and Close. Open is used to initialize the data structures used by the iterator, and close

is used to cease iteration and to free up resources. In a tree of iterators such as this, a

call to GetNext will usually result in a GetNext call to the children of the iterator.

6.2 Temporal Query Optimizations

Let us consider the task of finding all temporal triples that match a particular temporal

triple pattern. The kinds of temporal optimisations that are possible depends firstly on

the kind of query being asked, and secondly on how the data has been arranged and

indexed. Let us first then discuss the standard approach indexing in RDF.
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Suppose you have a list of RDF triples and you want to support people identifying

all triples that have a particular triple pattern. The naive approach would be to check

every single triple to see if it matches the specified pattern. A better approach is to have

your list of RDF triples sorted in a particular order. For instance, if it was sorted first

on subject, then on predicate, then on object, if someone had a query pattern that just

asked for all triples with a particular named subject, then one could easily find such a

triple by binary searching the list. If one created six copies of the list, each sorted using a

different permutation of SPO triples, then for every triple pattern one could binary search

the relevant list to find the location of the matching triples in logarithmic time and then

iterate through them. Triplestores such as [132] implement this idea using B+ trees where

the leaf nodes are stored in memory mapped files so that a range of values can be read

sequentially without excessive seeking on disk.

Now consider when we wish to introduce timestamps and support LSPARQL change

pattern queries. We may opt to represent the changes using a temporally qualified triple s

p o (t+, t−) that states for each triple the times at which was added and removed, or to use

change objects t c s p o which states the existence of a single add or remove. The B+ tree

approach could be adapted so that the timestamps are used as additional keys for sorting.

In the RDF archive x-rdf-3x [94] for instance in each of their indexes triples were finally

ordered by the start time of their intervals after being ordered by their SPO permutation.

With such an ordering temporal optimisations are mainly limited to triples which exist for

multiple intervals. One may opt to have some B+ tree indexes where temporal ordering

is applied earlier, but one may not wish to do this for all possible permutations as there

are 24 of them with a single timestamp and 120 with two. Even if one were to do so,

there is a further difficulty with temporal queries in that their typical use is not limited

to exact matches. One common task for instance is finding those temporal triples whose

interval contains a particular point, and this could potentially match any interval with a

starting time earlier than it.

In the literature some specific temporal indexes have been proposed [30, 124, 123, 49].

While temporal indexes such as these may be particularly useful for snapshot queries, they

do have some significant costs and tradeoffs associated. The Time-Index [30] indexes a set

of totally ordered ‘indexing points’, which is the set of time points at which any interval

begins or ends. In this approach the first key of a leaf node fully records all objects that

are valid at the snapshot referred to by the first key. Subsequent keys in the leaf node state

the changes that occurred since the previous key. Thus the approach is to store several

historic states in their entirety and to keep a record of the changes between them so that

intermediate snapshots can be reconstructed. Naturally the drawback of such an approach

is that when objects span multiple stored versions they are duplicated, potentially leading

to quadratic space consumption. The Time-Split index approach [83], which uses a two
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dimensional B-tree like structure where both the timestamp and attributes are keys,

includes in the leaf nodes all values that hold for a particular attribute at a particular

time, and so similarly can see significant duplication when they hold over many intervals.

The snapshot index [124] stores the intervals of attributes into distinct blocks, from which

a ’usefulness’ score is computed for each snapshot in which at least one of the attributes is

still active. Then the blocks are written in a sequential order for efficient reads, and any

block which is sufficiently ‘useful’ can be duplicated at different positions in the sequence

to minimise the number of non-useful blocks which are read for any given snapshot. Then

a B+ tree is used to map timestamps to the memory addresses of all relevant sequences

of blocks. But, as with other temporal indexes, efficient snapshot queries may rely on

significant duplication, particularly with a database that undergoes many updates with a

set of early facts that persist across each subsequent state.

Some of these snapshot indexes might be useful for temporal SPARQL queries, but

given the existing space requirements for just efficiently indexing regular triple patterns

we opted to use a much simpler and leaner form of temporal indexing. As we will discuss

in the chapter on implementation, we are using a hash-based index which returns all

triples corresponding to a particular triple pattern with the results ordered by time. Both

our hash-based approach and a standard B+ index which uses an intervals end points as

keys, face a general problem. Given an ordered set of intervals or timestamps, how do we

efficiently find those that meet the requirements of a temporal query? How one might go

about it depends on whether the intervals are sorted primarily on start time, end time,

or on either time point. We now consider these in turn.

6.2.1 Temporal Triples Sorted On Start time, then End Time

Let us start with the most intuitive ordering where the set of matching triples are anno-

tated with their valid intervals and are sorted according to their start times followed by

their end times. The following are some straightforward temporal query optimisations for

LSPARQL change patterns with fixed timestamps.

t + s p o. Binary search to find those temporal triples whose interval starts at time t

t − s p o. For each group of temporal triples whose intervals start at time t′ such that

t′ < t, binary search that group to find the temporal triples whose end time is t

t +− s p o. For each group of temporal triples whose interval starts at time t′ such that

t′ ≤ t, binary search that group to find temporal triples whose start or end time is t

t e s p o. For each group of temporal triples whose interval starts at time t′ such that

t′ ≤ t, binary search that group to find temporal triples whose interval ends at a

time after t
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(t+, t−) e s p o. Binary search to find temporal triples whose interval starts at time t+,

binary search those temporal triples to find those whose interval ends at t−

?t e s p o. Temporal join case. Assuming µ(?t) = (t+, t−) then for each group of temporal

triples whose intervals start at time t′, such that t′ < t− binary search that group

to find temporal triples whose intervals end after t+

We can see that t + s p o and (t+, t−) e s p o queries we see a worse case logarithmic

time to match the first temporal triple. All other matching triples can then be accessed

sequentially, and so these queries fit well in the B+ tree approach. For the other patterns

however one has to check every interval which starts earlier to determine whether it has an

appropriate end interval. In the worse case this could mean having to make a comparison

with every single interval. This can occur when every temporal triple has a unique start

time and which uses a timestamp greater than the start time of all triples. This does also

have an effect on the time required to update the index when a triple has been removed

as one may not necessarily know when the triple that is being removed was added.

6.2.2 Temporal Triples Sorted on End Time, then Start Time

Let us now consider the perhaps less intuitive but potential ordering where temporal

triples are first sorted by their end time, and then their start time.

t + s p o. For each group of temporal triples whose intervals end at time t′ such that

t′ > t, binary search that group to find the temporal triples whose start time is t

t − s p o. Binary search to find those temporal triples whose interval ends at time t

t +− s p o. For each group of temporal triples whose interval ends at time t′ such that

t′ ≥ t, binary search that group to find temporal triples whose start or end time is t

t e s p o. For each group of temporal triples whose interval ends at time t′ such that

t′ > t, binary search that group to find temporal triples whose interval starts at a

time before t

(t+, t−) e s p o. Binary search to find temporal triples whose interval ends at time t−,

binary search those temporal triples to find those whose interval ends at t+

?t e s p o. Temporal join case. Assuming µ(?t) = (t+, t−) then for each group of temporal

triples whose intervals end at time t′, such that t′ > t+ binary search that group to

find temporal triples whose intervals start before t−
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Similar to the optimisations we gave for ordering on start time, the t − s p o pattern

and the (t+, t−) e s p o pattern take, in the worst case, logarithmic time to match the first

temporal triple after which all other matching triples can then be accessed sequentially

while the other query patterns similarly need to check each interval based on their start

times. But there are two significant improvements. The first is on queries trying to

identify triples that hold at the most recent (current) state. For these kinds of queries it

is sufficient to find those temporal triples whose end times indicate that they have never

been removed- likely either by using a null value or a maximal timestamp. As these triples

are likely either at the very beginning or the very end of this sorted list of temporal triples,

one can identify the relevant triples in constant time. The analogous advantage for the

sort on start time, being able to identify all those triples that held in the first version,

is practically less useful. Secondly, the additional cost to update does not exist in this

case. This is because finding the relevant record to update on removal in this case takes

logarithmic time. When a new triple has been added this does not require updating any

existing entries, and only requires inserting a new value.

6.2.3 Changes Ordered by Time

Finally we consider the approach we took in our own implementation. Instead of using

temporal triples where each triple is assigned a start and end time, one instead uses sorted

change objects where each change object has a single timestamp and a change type.

t + s p o. Binary search to find changes at time t, filter out any change of type −

t − s p o. Binary search to find changes at time t, filter out any change of type +

t +− s p o. Binary search to find changes at time t

t e s p o. Binary search to time t. Iterate until earliest timestamp, filtering out all −
change types and any + whose triple has already been encountered

(t+, t−) e s p o. Run two binary searches- one to identify changes at time t+, and one to

identify changes at time t−

?t e s p o. Temporal join case. Assuming µ(?t) = (t+, t−) binary search to t−. Iterate to

earliest timestamp. Match any + or - change that occurs between t+ and t−, when

the timestamp is less than t+ filter out all − changes and any + changes whose

triple has already been encountered at a point in time less than t+

As both adds and removes are equally indexed, this scheme allows one to binary

search to find starting positions for both t + s p o queries and t − s p o queries. One

caveat though is that one has to filter out those changes without the matching change
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type. This could be a problem for − change patterns in particular, as there might be

far more adds than their are removes. In which case one might opt to have + and −
changes stored in separate indexes. For a t +− s p o query one would then run the query

on both the add and remove indexes, and take the union of the results. For the t e s

p o pattern and temporal join patterns, one does have to examine all matching triples

that occur prior to the particular point or interval, as any of them could potentially

have an intersecting interval. The approach here does also require one to keep track of

all the triples encountered so far while back tracking, which could potentially result in

significant memory overhead when processing a query. A better approach is to provide

a means for one to identify from a change that adds a triple the change that removes

it, and/or vice versa. This is what we do in our own implementation, though this is a

configurable option. The alternative approach we have implemented is to ask specifically

for the remove changes that match the precise triple of an add, as typically the number

of times an individual triple is added or removed is quite small.

6.3 Allen Filter Optimisations

Temporal optimisations are also possible for the set of Allen Interval relations. The first

optimisation deals with the early application of Allen filters with Intervals that are not

yet fixed. The second optimisation allows one to end iteration through matching changes

early, since by their ordering no subsequent match for the set of incoming assignments will

satisfy the Allen filter. The third kind of optimisation deals with identifying composite

Allen filters that can be applied when there are at least three intervals being filtered with

Allen relations.

6.3.1 Early Filtering Of Unfixed Intervals

Unlike regular variables in SPARQL queries the assignments on temporal variables are

not always fixed after being pipelined through to the next change pattern. In the process

of being passed across change patterns the interval stored by the temporal interval can

shrink while performing temporal joins across patterns. Recall that, as shown in table 2.4,

that the base Allen relation that holds between two definite intervals is determined by the

relationship between their respective start and end points. While the intervals need to be

fixed to determine which Allen relation holds, the intermediate result can still potentially

indicate that it does not hold a particular Allen relation. For instance, if we know the

intermediate intervals t1 = (1, 5) and t2 = (7, 15), then despite what subsequent temporal

joins that will occur later we know that its not the case that t1 overlaps t2. Table 6.1

shows the conditions that confirm whether an Allen relation definitely will not hold even
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Table 6.1: Conditions To Apply Allen Relation Filters Early
Filter Unfixed t1,t2 Fixed t1 Fixed t2 Fixed t1,t2
t1 precedes t2 t1+ ≥ t2− t1− ≥ t2− t1+ ≥ t2+ t1− ≥ t2+

t1 precededBy t2 t1− ≤ t2+ t1+ ≤ t2+ t1− ≤ t2− t1+ ≤ t2−

t1 meets t2 t1+ ≥ t2− or t1− ≥ t2− t1+ ≥ t2+ t1− > t2+

t1− < t2+

t1 metBy t2 t1+ > t2− or t1+ ≤ t2+ t1− ≤ t2− t1+ < t2−

t1− ≤ t2+

t1 overlaps t2 t1+ ≥ t2− or t1− ≥ t2− t1+ ≥ t2+

t1− ≤ t2+

t1 overlappedBy t2 t1+ ≥ t2− or t1+ ≤ t2+ t1− ≤ t2−

t1− ≤ t2+

t1 starts t2 t1+ ≥ t2− or t1+ < t2+ or t1+ > t2+

t1− ≤ t2+ t1− ≥ t2−

t1 startedBy t2 t1+ ≥ t2− or t1+ < t2+ t1+ > t2+ or
t1− ≤ t2+ t1− ≤ t2−

t1 during t2 t1+ ≥ t2− or t1+ ≤ t2+ or
t1− ≤ t2+ t1− ≥ t2−

t1 contains t2 t1+ ≥ t2− or t1+ ≥ t2+ or
t1− ≤ t2+ t1− ≤ t2−

t1 finishes t2 t1+ ≥ t2− or t1+ ≤ t2+ or t1− < t2−

t1− ≤ t2+ t1− > t2−

t1 finishedBy t2 t1+ ≥ t2− or t1− > t2− t1+ ≥ t2+ or
t1− ≤ t2+ t1− < t2−

t1 equals t2 t1+ ≥ t2− or t1+ < t2+ or t1+ > t2+ or
t1− ≤ t2+ t1− > t2− t1− < t2−

with subsequent temporal joins being applied. The unfixed conditions also hold in the

fixed cases- for instance, t1+ > t2− is sufficient to terminate early when t1 is fixed, even

if t1+ ≤ t2+ is not satisfied.

6.3.2 Discarding Remaining Matching Changes

Additionally there are conditions where all remaining changes matching a change pattern

derived from a pipelined set of variable assignments can be discarded as none of their

intervals will match the Allen Filter. This can be the case when, for example, all the

remaining changes will have a higher timestamp but no change with a higher timestamp

will match the given Allen filter. Assuming an Allen filter expression (t1 filter t2) where

t1 and t2 are intervals, and t1 is the timestamp associated with the currently examined

change, here are the conditions for each interval for terminating early:

t1 precedes t2 We can terminate early if we know either t1+ ≥ t2+ or t1− ≥ t2+ if either

matched start/end point can only subsequently increase
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t1 precededBy t2 We can terminate early if we know either t1+ ≤ t2− or t1− ≤ t2− if

either matched start/end point can only subsequently decrease

t1 meets t2 We can terminate early if t1+ ≥ t2+ , or t1− > t2+ and either matched

start/end point can only subsequently increase. Alternatively, we can terminate

early if t1− < t2+ and the matched end point can only subsequently decrease

t1 metBy t2 We can terminate early if t1+ > t2− if the matched start point can only

increase. Alternatively, we can terminate early if t2+ < t2− or t2− ≤ t2− and the

matched start/end point can only subsequently decrease

t1 overlaps t2 We can terminate early if t1+ ≥ t2+ or t1− ≥ t2− and the matched

start/end point can only ever increase. Alternatively we can terminate early if

t1− ≤ t2+ and the matched end point can only subsequently decrease.

t1 overlappedBy t2 We can terminate early if t1+ ≥ t2− and the matched start point

can only ever increase. Alternatively we can terminate early if t1+ ≤ t2+ or t1− ≤
t2− and the matched start/end point can only subsequently decrease.

t1 starts t2 We can terminate early if t1+ > t2+ or t1− ≥ t2− and the matched start/end

point can only ever increase. Alternatively we can terminate early if t1+ < t2+ or

t1− ≤ t2+ and the matched start/end point can only ever decrease

t1 startedBy t2 We can terminate early if t1+ > t2+ and the matched start point can

only ever increase. Alternatively we can terminate early if t1+ < t2+ or t1− ≤ t2−

and the matched start/end point can only ever decrease

t1 during t2 We can terminate early if t1+ ≥ t2− or t1− ≥ t2− and the matched

start/end point can only ever increase. Alternatively we can terminate early if

t1+ ≤ t2+ or t1− ≤ t2+ and the matched start/end point can only ever decrease

t1 contains t2 We can terminate early if t1+ ≥ t2+ and the matched start point can only

ever increase. Alternatively we can terminate early if t1− ≤ t2− and the matched

end point can only ever decrease

t1 finishes t2 We can terminate early if t1+ ≥ t2− or t1− > t2− and the matched

start/end point can only ever increase. Alternatively we can terminate early if

t1+ ≤ t2+ or t1− < t2− and the matched start/end point can only ever decrease

t1 finishedBy t2 We can terminate early if t1+ ≥ t2+ or t1− > t2− and the matched

start/end point can only ever increase. Alternatively we can terminate early if

t1− < t2− and the matched end point can only ever decrease
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Table 6.2: Conditions For Early Non-Satisfaction of Allen Relations with Increasing Start Time
t1+ ≥ t2+ t1+ > t2+ t1+ ≥ t2− t1+ > t2−

precedes starts during metBy
meets startedBy finishes
overlaps equals overlappedBy
finishedBy
contains

Table 6.3: Conditions For Early Non-Satisfaction of Allen Relations with Increasing End Time
t1− ≥ t2+ t1− > t2+ t1− ≥ t2− t1− > t2−

precedes meets overlaps finishedBy
starts finishes
during equals

Table 6.4: Conditions For Early Non-Satisfaction of Allen Relations with Decreasing Start Time
t1+ ≤ t2− t1+ < t2− t1+ ≤ t2+ t1+ < t2+

precededBy metBy overlappedBy startedBy
finishes equals
during starts

Table 6.5: Conditions For Early Non-Satisfaction of Allen Relations with Decreasing End Time
t1− ≤ t2− t1− < t2− t1− ≤ t2+ t1− < t2+

precededBy finishes during meets
metBy equals starts
overlappedBy finishedBy overlaps
startedBy
contains

t1 equals t2 We can terminate early if t1+ > t2+ or t1− > t2− and the matched start/end

point can only ever increase. Alternatively we can terminate early if t1+ < t2+ or

t1− < t2− and the matched start/end point can only ever decrease.

As we can see the conditions on which one can terminate early for a given Alan

Relation are based on comparisons between the two end points, and are either less than,

less than or equal, greater than, or greater than or equal to. As some of these conditions

are shared, they can be used to discount several possible Allen relations during iteration.

Tables 6.2, 6.3, 6.4, 6.5 demonstrate which Allen filters can be terminated early for

which condition. We can also see there is an increasing strength to each of the conditions-

for instance in table 6.2 any timestamp which matches the t1+ > t2− condition will also

match the t1+ ≥ t2+ condition. So, when given a generalised Allen Relation the condition
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for early termination should be the strongest condition required for any of the base Allen

Relations that form part of the generalized relation. If one of the base relations does not

have a early termination condition for this mode of iteration then it cannot be terminated

early.

6.3.3 Discarding Remaining Changes Without Fixed Intervals

As we have already demonstrated, there are situations where one can discard a particular

assignment prior to the intervals being fixed after being passed to subsequent change

patterns. We have also demonstrated that if the matching assignments for a particular

change pattern are in some particular temporal order, then it can be possible to discard

the remaining assignments for the current pattern and get a new assignment from the

previous pattern. Now we describe how these two approaches can be combined so that in

addition to discarding a particular assignment one can discard all subsequent assignments

for the current pattern and retrieve a new one from the previous pattern. Tables 6.6 ,

6.7, 6.8, 6.9 show the relevant conditions for when dealing with increasing start time,

increasing end time, decreasing start time, and decreasing end time.

We will now discuss how we created these tables. Let us assuming t1 and t2 are

intervals, where t1 refers to the interval referenced in the current pattern from which the

current assignment being considered is derived. Let us first consider the situation where

t1 is ordered by increasing start time. In table 6.2 we see four conditions to discard the

remaining assignments for the currently considered triple pattern. They are t1+ ≥ t2+,

t1+ > t2+, t1+ ≥ t2−, and t1+ > t2−. Note that the later conditions subsume the earlier

ones if t1+ > t1− then it is implied that t1+ ≥ t2+. For a given Allen relation, to discard

the remaining assignments early for the current pattern, the corresponding condition in

6.2 must be a sufficient condition in table 6.1. As an example, let us consider the precedes

relation when t1 and t2 are unfixed intervals. In table 6.2 the requirement is for t1+ ≥ t2+,

and the requirement in table 6.1 is t1+ ≥ t2−. So, t1+ ≥ t+ is not a sufficient condition

to discard the remaining changes when t1, t2 are unfixed. However, if it is the case that

t1+ ≥ t2− then this implies t1+ ≥ t2+ so this instead would be the sufficient condition to

discard the remaining assignments.

6.3.4 Optimisations for Compositions of Allen Filters

Suppose one has three LSPARQL change pattern e queries where each has been assigned

a separate variable for an interval, t1, t2, and t3. Filters are then used to describe the

relationships between intervals. Given that t1Qt2 and t2Rt3 what is the relationship Q.R

between t1 and t3? Consider the situation where we have a value assigned for the interval

t3, and we are currently processing t1. Then depending on the composite relationship
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Table 6.6: Conditions To Discard Remaining Changes Early With Increasing Start Time
Filter Unfixed t1,t2 Fixed t2
t1 precedes t2 t1+ ≥ t2− t1 ≥ t2+

t1 meets t2 t1+ ≥ t2− t1+ ≥ t2+

t1 metBy t2 t1+ > t2−

t1 overlaps t2 t1+ ≥ t2− t1+ ≥ t2+

t1 overlappedBy t2 t1+ ≥ t2−

t1 starts t2 t1+ ≥ t2− t1+ > t2+

t1 startedBy t2 t1+ ≥ t2− t1+ > t2+

t1 during t2 t1+ ≥ t2−

t1 contains t2 t1+ ≥ t2− t1+ ≥ t2+

t1 finishes t2 t1+ ≥ t2−

t1 finishedBy t2 t1+ ≥ t2− t1+ ≥ t2+

t1 equals t2 t1+ ≥ t2− t1+ > t2+

Table 6.7: Conditions To Discard Remaining Changes Early With Increasing End Time
Filter Fixed t1 Fixed t1, t2
t1 precedes t2 t1− ≥ t2− t1− ≥ t2+

t1 meets t2 t1− ≥ t2− t1− > t2+

t1 overlaps t2 t1− ≥ t2−

t1 starts t2 t1− ≥ t2−

t1 during t2 t1− ≥ t2−

t1 finishes t2 t1− > t2−

t1 finishedBy t2 t1− > t2−

t1 equals t2 t1− > t2−

Table 6.8: Conditions To Discard Remaining Changes Early With Decreasing Start Time
Filter Fixed t1 Fixed t1, t2
t1 precededBy t2 t1+ ≤ t2+ t1+ ≤ t2−

t1 metBy t2 t1+ ≤ t2+ t1+ < t2−

t1 overlappedBy t2 t1+ ≤ t2+

t1 starts t2 t1+ < t2+

t1 startedBy t2 t1+ < t2+

t1 during t2 t1+ ≤ t2+

t1 finishes t2 t1+ ≤ t2+

t1 equals t2 t1+ < t2+

between t1 and t3 we may have already reached a condition for early termination without

having to consider the exists change pattern with interval t2.

To identify the composite relationship between t1 and t3 one may use the composition

table in table 6.10 to find those for the base relationships. If one wishes to find the
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Table 6.9: Conditions To Discard Remaining Changes Early With Decreasing End Time
Filter Unfixed t1, t2 Fixed t2
t1 precededBy t2 t1− ≤ t2+ t1− ≤ t2−

t1 meets t2 t1− < t2+

t1 metBy t2 t1− ≤ t2+ t1− ≤ t2−

t1 overlaps t2 t1− ≤ t2+

t1 overlappedBy t2 t1− ≤ t2+ t1− ≤ t2−

t1 starts t2 t1− ≤ t2+

t1 startedBy t2 t1− ≤ t2+ t1− ≤ t2−

t1 during t2 t1− ≤ t2+

t1 contains t2 t1− ≤ t2+ t1− ≤ t2−

t1 finishes t2 t1− ≤ t2+ t1− < t2−

t1 finishedBy t2 t1− ≤ t2+ t1− < t2−

t1 equals t2 t1− ≤ t2+ t1− < t2−

composition of two general Allen relations then calculate the pairwise composition of each

base relation in t1Rt3 with those of t2Q3, and then take the union of these compositions.

A query optimiser can read what Allen filters are used as part of a query pattern and

from those compute any composite relations that might exist between any two indirectly

related intervals and then add them to the query. The following algorithm adapted from

[6] can be used to find a full set of composite relations from which to create new filters:

computeCompositeRelations ( i n t e r v a l s ) :

toDoQueue = empty

f o r each A in i n t e r v a l s :

f o r each B in i n t e r v a l s :

i f A. to (B) == empty :

A. to (B) = MOST GENERAL

e l s e :

toDo . add ( ( a , b ) )

Get next A,B from toDoQueue

f o r each C in A. from (){
newRelat ions = C. to (B) i n t e r s e c t s

p a i r w i s e R e l a t i o n s (C. to (A) , A. to (B) )

i f ( newRelat ions != C. to (B) ) :

toDo . add ( (C,B) )

f o r each C in B. to ( ) :

newRelat ions = A. to (C) i n t e r s e c t s
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p a i r w i s e R e l a t i o n s (A. to (B) , B. to (C) )

i f ( newRelat ions != A. to (C) ) :

toDo . add ( (A,C) )

f o r each A in i n t e r v a l s :

f o r each B in i n t e r v a l s :

i f A. to (B) == MOST GENERAL:

A. to (B) = empty

c o n s t r u c t F i l t e r s ( i n t e r v a l s ) ;

p a i r w i s e R e l a t i o n s ( RAB, RBC) :

RAC = empty

f o r each rAB in RAB:

f o r each rBC in RBC:

RAC. addAll ( lookup ( rab , rbc ) )

re turn RAC

Despite adding new values to the toDo queue during execution this algorithm is still

guaranteed to terminate as the greatest number of relations that can hold between two

intervals is thirteen. As such, the largest number of modifications that are possible during

execution is thirteen times the number of defined intervals. Note that in our use case the

number of “defined intervals” refers to the number of variables denoting intervals as part

of a LSPARQL query, not on the number of stored intervals in PDStore. Additionally, if

during the processing of the queue any pair of intervals have 0 possible relations, then we

know the set of filters is impossible to satisfy. As noted in [6], the algorithm is heuristic

in nature and does not guarantee that the paired composite relations between each pair

are actually the strongest relations possibly derivable, and not all inconsistent assertions

are detectable. In fact solving these problems is NP-Complete [127].

These composite Allen relations can then be used as the basis of an early termination

according to one of the rules in tables 6.2, 6.3, 6.4, or 6.5. For example, suppose we have

the filters t1 meets t2, and t2 during t3. We could add the general relation t1 osd t3. Going

by the breakout rules in table 6.2 if we are currently processing different assignments to

t1 intervals and each new assignment of t1 has an increased start time, then we know that

no subsequent assignment for t1 will match the current assignment of t3.
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Table 6.10: Composition of Basic Allen Relations
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7
Implementation Framework

This chapter describes our proof of concept implementation. In particular, we discuss the

design and layout of our temporal indexes that allow for efficient temporal queries.

7.1 PDStore

Our LSPARQL query execution engine is implemented in our own triplestore named

PDStore [85]. PDStore is available at https://bitbucket.org/christof l/pdstore along with

the relevant test code. Entities and predicates in PDStore are represented internally with

Globally Unique Identifiers (GUIDS), which are a pair of 128 bit integers. By default

when a new GUID is created the first integer is derived from ones machine ID and is

treated as a branch ID, and the other is randomly generated. One can also explicitly

construct their own GUIDS with their preferred values, for example one might wish to

encode strings using the same MD5 hash so that different occurrences of a string obtain

the same GUID. One can also use literal values such as strings instead of GUIDs, though

this may well be a less compact representation, particularly for long strings. One can

either use a dictionary structure to map GUID identifiers to literal string values or add

an additional triple relating a GUID to an identifier using an inbuilt :hasName predicate,

and then when printing the result of a query translate the GUID identifier to its more

readable string identifier.

PDStore is an append only triplestore where the addition and removal of triples creates

65
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the addition of new PDChange objects. Probably unsurprisingly, the composition of a

PDChange object is the same as it is for our LSPARQL change objects- a transaction, a

change type, a subject, a predicate, and an object. By default when one adds a PDchange

to a pdstore instance, it firsts adds it to a transient current store that only contains the

changes made in the current transaction. The purpose of this transient store is to make

sure that the changes within this transaction is self consistent- the same triples have not

been added or removed multiple times.

When a command comes to commit the transaction, it attempts to add the changes

to the main store. Once again some sanitation checking is performed to make sure that

any change attempting to add a triple that already exists in the most recent state, or

to remove one which does not, is ignored. Further, there is a listener architecture that

listens for the insertion or deletion of particular triples in a transaction, which may trigger

an interceptor to perform an action such as cancelling the commit. These listeners and

interceptors can be defined, for instance, to enforce OWL constraints on RDF triples.

These safety measures are configurable and can be turned off to allow for the faster

insertion of data, though one has to be wary that the inserted data is sanitary or else this

can result in some unstable behaviour.

Currently, updates and queries to PDStore are done programmatically either in Java

or Scala. There is a parser for textual LSPARQL and SPARQL queries, though the

translation of this into programmatic PDStore queries is a work in progress and currently

not available. In addition, PDStore currently only supports basic graph pattern queries

with filters.

7.2 PDStore Indexes

When the changes in a transaction has been green lit, the triples are firstly written to

disk for persistent storage, and secondly the transaction is used to update the indexes.

PDStore supports both a B+ tree implementation index, and a in memory hash based

index. Currently the hash based index is used by default, and temporal queries are not

supported by the B+ tree index implementation. This is because our temporal query

execution engine makes certain assumptions about the order in which the changes are

processed to allow for temporal optimisations, and the B+ tree evaluation does not follow

this order. This aspect of PDStore is also configurable, and one may opt to enter into

a log only mode where changes are simply written to disk, or a index only mode where

PDStore relies entirely on the in memory hash based index. The in memory hash based

index is divided into two separate hash based indexes, the InstanceInstanceIndex and

the RoleInstanceIndex. Implementing these hash maps that persists on disk is a planned

improvement for the future, and could be implemented with a well established separate
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key value store such as Berkeley DB [97].

7.2.1 InstanceInstanceIndex

The InstanceInstanceIndex class contains a HashMap which maps a pair of Instances as

a key, and a Java ArrayList of PDChange objects as its value. An Instance is either a

GUID or literal value, and the key is derived from the hashing schemes of either value.

In essence, the InstanceInstance index is used to store all the changes that store a triple

relating the first instance to the second instance. When changes are added to the In-

stanceInstanceIndex, the key of the pair of instances belong to each change is computed,

and then if the key exists in the HashMap then the change is appended to the ArrayList

mapped by that key. If it does not, then a new entry is added to the HashMap.

7.2.2 RoleInstanceIndex

The RoleInstanceIndex class contains a Hashmap that maps a Role, which is the predicate

of a triple and which might be represented by a GUID or a String literal, to an Instan-

ceIndex. An InstanceIndex in turn is used to map an Instance as a key to an ArrayList

of PDChange objects.

When a PDChange is added to the RoleInstanceIndex the role is extracted and is

checked to see whether it already is a key in the HashMap. If it is not, then it adds the

Role as a key which maps to a new InstanceIndex. Next, once we have the InstanceIndex

we check firstly if the subject is a key for the InstanceIndex. If it does not, then we create

a new entry mapping the subject as a key to an ArrayList of PDChange objects, to which

we add the PDChange. If it does, the PDChange is appended to the returned ArrayList.

As we wish to differentiate subjects from objects, an InstanceClass has a getPartner

function that returns an Instance with a flag set to indicate that it is in the object

position. If getPartner has not been called before, it creates a new instance, else it uses

the previously created partner. So, when adding an entry into the RoleIndex for an

object, we use the partner change rather than the initial instance. As when considering

the subject, if the map does not contain a key for the object then a new mapping from

object to ArrayList is created and the change added. If the map does contain the object

as a key, then the PDChange is appended to the list.

7.3 PDStore Query Evaluation

PDStore implements query execution by using an iterator-based pipeline that can allow for

efficient parallelised execution of queries. When processing a query it can be represented

by a tree of logical operators. A pipelined query structure pipes each solution produced
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by one operation onto the operation that makes use of it. The iterators in PDStore are

laid out as the following:

For a LSPARQL BGP query {cp1, ..., cpn} there exists an iterator Ii for each cpi

pattern which is used in the argument of the Iterator Ii+1. Each iterator will return a

set of assignment mappings which are piped along to the next iterator. Doing this is a

four step process. First, they take each mapping of assignments from their predecessor.

Secondly, they then apply these mappings to their current change pattern, thirdly they

find the changes that match the change patterns that resulted from the application of

mappings to their current change pattern, and then finally they construct a new mapping

by using the old assignment of variables to values and extending them to include new

mappings based on the values of the change object retrieved in the current iteration.

The efficient execution of LSPARQL queries involves performing an optimisation step.

The PDStore query optimiser in the first instance reorders the triple patterns according

to some heuristics, such as by the number of free variables in the query pattern, and by

some stored statistics estimating the size of the result. Secondly, filter expressions are

broken down and reordered so that filters can be applied as early as possible. Thirdly if

the set of early termination conditions described in Chapter 6 that we use in deciding to

discard the remaining assignments from a child iterator.

The source of the iterator of matching changes for a given change pattern seen in step

three differs based on the change pattern query which we will address below. The process

of constructing a new mapping follows the LSPARQL semantics laid out in chapter 5.

Essentially, if an assignment already exists for a given variable in the old mapping, reuse

it, otherwise create a new assignment from a variable in the triple pattern to the value

of the instant or role in the same position as the variable in the retrieved change. The

exception is for temporal variables.

If we have an incoming mapping with an assignment for a temporal variable and the

change type of the change pattern is e, and if the incoming assignment provides a start

and end time pair, then a new assignment shall be given to that temporal variable. The

value of the new assignment is a new interval derived from comparing the old interval with

the interval of the matched pair of add and remove changes (or just the add change if

the remove does not exist). The start time of the newly mapped interval is the maximum

start time between the new and old intervals, and the end time will be the minimum end

time between the two. If instead the incoming mapping for the temporal variable is a

fixed single time point then the previous assignment for the temporal variable remains

unchanged.
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7.3.1 IXI and IRI Patterns

An IXI change pattern is one where both the instances of the change are fixed values,

but the role is unknown, whereas an IRI pattern is one where the entire triple pattern

is fixed. Such queries are executed against the InstanceInstanceIndex and an iterator is

constructed from the matching ArrayList. The particular iterator retrieved depends on

the remaining parts of the Query Pattern.

Let us consider the IXI case first. For an add or remove (+−) change pattern where the

timestamp is variable, the ArrayList bucket can directly be transformed into an iterator.

If the query pattern has a change type of + or − a lazy filter is added to the iterator

such that if the current change does not have a matching change type, then call getNext

again. IRI queries similarly use a lazy filter to discard changes which do not match the

fixed predicate.

In an e based query with a variable timestamp we instead initially treat it the same

as a + query. For each + change that we find we then try to identify any corresponding

− change that removes it. By default we keep a reference from a PDChange object that

is added to the PDChange object that removes it, so we can identify that removal imme-

diately. If it has been configured such that PDChange objects do not store its opposite

change, we instead do a forward scan to find the first − change with the same triple

pattern that occurs subsequently, if it exists. If we assume that instances generally have

few distinct predicates between them and that the same triples are not being repeatedly

added or removed then this forward scan takes only a constant amount of time, but in

the worst case this can take linear time.

When the timestamp is a constant and the query has a change type of +, −, or +−
we use binary search to locate the occurrence of a change at the specified time. We

then iterate and return each change that occurs earlier in the ArrayList with the same

timestamp before proceeding to iterate through those changes that occur later in the

ArrayList that have the same time stamp. As before, lazy iterators are used to filter out

any changes without the correct change type or predicate.

If the change type is e we binary search to locate either a change at time t or the

latest change whose timestamp is less than t. We then scan through the earlier changes

that exist in the array list. If the query has an IRI triple pattern then on the first change

we locate that matches the triple we check to see whether the change type is − or +. If it

is −, we return empty, whereas if it is + we match the change and return it. If the query

has an IXI pattern we must iterate back, lazily filtering all − changes, and any change

for which we have already encountered the triple during this iteration.
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7.3.2 IRX and XRI Patterns

Let us now consider IRX and XRI query patterns. First the role is used as a key on the

RoleInstanceIndex to get an InstanceIndex. Then if the instance is in the subject position

then instance is used as the key, whereas if it is in the object position then the partner

instance is used. This will give an ArrayList of all changes that use that Role and Instance

pair. Query evaluation then proceeds similarly to how it is with IXI patterns. If it is a +−
change with a variable timestamp, then the list of changes is straight forwardly iterated

through. If the change type is + or − then there is an additional lazy filter attached to

filter out those without the matching timestamp.

If the change type is e then the changes are iterated through, with each + change being

associated with any − change that removes it as before. In the case when an association

between a + change and a − change that removes it is not explicitly recorded, instead

of scanning through the ArrayList of IRX changes it is likely better to use an IRI query

with a remove change type as there might be a large number of irrelevant IRX patterns

to scan through.

If the timestamp is a fixed value, then for +, −, +− change types the ArrayList is

simply binary searched to locate the changes with the matching timestamp, and then

they are iterated through with non-matching change types lazily filtered out. If it is a e

change type then, as before, we binary search to locate the changes at time t or the latest

change whose timestamp is less than t. We then iterate backwards, lazily filtering all −
changes, and any change whose triple we have already encountered in this iteration.

7.3.3 XRX, IXX, XXI, and XXX Patterns

XRX, IXX, XXI, and XXX patterns do not strictly match the keys for either the Instan-

ceInstanceIndex, or the RoleInstanceIndex. However these query patterns can still be

answered using the RoleInstanceIndex. First, let us consider the XRX pattern. Supply-

ing the Role as a key we get an InstanceIndex which contains all the changes potentially

relevant to the query. First, retrieve from the InstanceIndex either all subject Instance

keys, or all object Instance keys, whichever is smaller. For each of these keys run a new

IRX (or XRI) query against the RoleInstanceIndex, getting a set of iterators. Care must

be taken so that any early termination conditions relying on temporal ordering, such as

those discussed in Chapter 6, are only applied to each IRX (or XRI) iterator and not

when iterating through the parent XRX iterator as the iteration of XRX changes is not

necessarily temporally ordered.

IXX and XXI query patterns work similarly, except that there is no Role to use as a

key on the RoleInstanceIndex. So, in this case we execute IRX (or XRI) queries using the

specified instance for every role. As in the XRX case early termination conditions relying
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on temporal ordering should only be applied to each IRX or XRI iterator and not when

iterating through the parent IXX or XXI iterator. Unfortunately, this approach does rely

on the number of distinct roles to be relatively small as otherwise this can result in a large

number of empty iterators that must immediately be discarded.

XXX queries, where all parts of the triple pattern are unassigned variables, requires

looking at every stored change. This could be done with the InstanceInstanceIndex in-

stead, though the advantage of using the RoleInstanceIndex is that work has already been

done to delegate to subordinate iterators. For every role in the RoleInstanceIndex an XRX

sub query is created, which in return leads to the creation of IRX or XRI iterators for

every subject (or every object). Then, as before, early termination conditions are only

applied on the IRX and XRI iterators as the changes in the parent XXX iterator might

not necessarily be temporally ordered.
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8
Experimental Evaluation

This chapter lays out the experimental evaluation for LSPARQL queries in pdstore. To

evaluate our proof of concept implementation and the effectiveness of our temporal index

we focus on two fundamental tasks- identifying whether a triple pattern holds at a certain

point of time, and finding the temporal join of a set of change patterns. The source code

and evaluation queries are available at https://bitbucket.org/christof l/pdstore.

We compare the performance of our LSPARQL query execution engine using our

temporal index against Apache Jena TDB with reification, PostgreSQL with temporal

labelling, and Blazegraph using RDFS nested triples. Our LSPARQL implementation

consists of 20,069,368 change objects in our (t, c, s, p, o) form. We used hash-based indexes

like those described in Section 4 using in-memory hashmaps. The reification scheme we

used for our evaluation with Jena is the same as in figure 3.1. When the same triple is

added and removed we reused the same reification and created a distinct blank node for

the interval instead. We used the default indexes for Jena TDB, namely SPO, OSP, POS

b-trees.

We also compare LSPARQL against a Blazegraph implementation using the RDF?

extension that realises reification through nested triples [55]. We used the default Blaze-

graph indexes and we record both the warm cached and cold cache results as it often

resulted in a significant difference in query performance.

The PostgreSQL implementation stored all the triples in a single HyperLinksTo table

with the schema (id, subject, object, start, end). Storing subject,object pairs in a table

73
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Table 8.1: Query Evaluation Of Single Change Pattern Queries Measured in Seconds
Query LSPARQL J Cold J Hot SQL BG Cold BG Hot |Ω|
(?t,+, S, P, ?x) 0.07 0.73 0.06 0.24 0.69 0.17 15438
(?t,+, ?x, P,O) 0.10 1.14 0.63 0.58 4.28 3.53 84596
(?t, e, S, P, ?x) 0.21 0.47 0.08 0.32 1.0 0.25 15438
(?t, e, ?x, P,O) 0.25 1.37 0.81 0.63 4.72 4.05 84596
(t, e, S, P, ?x) 0.03 0.64 0.12 0.24 0.91 0.21 421
(t, e, ?x, P,O) 0.13 1.58 0.95 0.30 4.37 3.95 41469

for a specific predicate is consistent with the vertical partitioning approach taken in [2].

Start and end are timestamps that correspond to when a triple was added or deleted, with

triples that were never deleted having a null timestamp for end. A separate id field is used

for the primary key as the same subject/object pair can appear at different intervals. We

also created six indexes corresponding to each permutation of SOT patterns, where T is

the start attribute followed by the end attribute.

Our dataset is a network of hyperlinks between pages on the Dutch Wikipedia, edges

annotated with when they were removed and added [1]. The dataset comprises around one

million vertices and twenty million edges. The recorded times are taken over an average

of ten runs on a desktop machine with 32 GB of main memory and which uses using an

Intel Core I7-2600 CPU.

The Jena implementation using reification consists of 106,435,728 triples, the Blaze-

graph implementation consists of 55,952,538 triples, the PostgreSQL implementation con-

sists of 15,340,911 rows, and the LSPARQL implementation consists of 20,069,368 change

objects .

8.1 Experiments

8.1.1 Single Change Pattern Queries

Table 8.1 records the time taken, in seconds, to execute some simple temporal queries for

each triplestore being evaluated and to iterate over the results. The fixed subject and

object were manually selected to be those that had the highest cardinality in the dataset.

The fixed timestamps were chosen arbitrarily. For our LSPARQL implementation these

queries required a single change pattern, and for the PostgreSQL implementation the

queries did not require any joins. For the Jena and Blazegraph implementations however

additional triple patterns were required to refer to the intervals of triples with reification.
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Figure 8.1: Boxplot for Temporal Join Query Execution

8.1.2 Single Temporal Join Evaluation

Next we consider the evaluation of temporal joins. The plots seen in figure 8.1 demon-

strates the time taken to perform queries with temporal joins on two change patterns using

the same dataset as the queries in table 8.1. Queries in the log pattern form (?t, e, S, P,O),

(?t, e, O, P, ?x) were executed using 22 different subject/object pairings with the highest

number of estimated interval comparisons required in the dataset. The number of in-

terval comparisons estimated was determined by multiplying the cardinality of the first

pattern with the cardinality of the second pattern, with the smallest of the 22 having an

estimated 940016 comparisons and the largest having an estimated 2314580. Table 8.2

shows each of the subject and object pairs chosen for the query as well as the number of

shared intervals.

The reification implementation in Jena TDB consistently performed significantly worse

than both of the approaches taken by our LSPARQL and PostgreSQL implementations

in all the queries we tested, especially in the temporal joins case. This is likely due

to the large number of additional triples added for reification that would require more

significant disk scans to answer queries. Blazegraph’s reification scheme in comparison

required storing significantly fewer triples and this is reflected by the faster query times

recorded in our evaluation. Blazegraph’s query performance was reduced when dealing

with queries with a variable subject, though this could likely be addressed with a different

indexing scheme.

Our LSPARQL and PostgreSQL implementations were both reasonably performant

in executing all of the tested queries though our LSPARQL implementation were more

so. The difference is likely attributable to firstly, LSPARQL using an in memory index

versus the on disk index used by PostgreSQL, and secondly that our hash based indexes

returning all changes with the matching triple pattern in constant time while searching a
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Table 8.2: Triples with the largest number of intervals
Subject Object Intervals
:3420 :15 940016
:38299 :536 944105
:280032 :216 970963
:363 :216 970963
:39725 :442 978419
:363 :15 990374
:219536 :536 1005015
:25240 :536 1005015
:15 :535 1005615
:39028 :4045 1012480
:536 :394 1072610
:536 :216 1102619
:536 :15 1124662
:14330 :536 1126835
:25645 :536 1187745
:394 :536 1309565
:38319 :15 1376452
:31387 :536 1675025
:143769 :536 1796845
:13691 :536 1979575
:39725 :536 2040485
:536 :536 2314580

b-tree index takes logarithmic time.

8.1.3 Temporal Joins over n Patterns

Next we consider the time taken for queries involving multiple joins. For this we created

a synthetic evaluation based on the hyperlinks dataset. Starting from a resource with

Identifier 0 we added a link to a randomly chosen identifier between 1 and 10,000. From

the randomly chosen link we would then add another randomly chosen link. We continued

to add random links to randomly chosen identifiers until we have a path of length 10 from

the node with identifier 0. Then, on the next time instant, we removed all 10 links.

We continually performed this action 50,000 times. From this we can evaluate the time

to perform an evaluation of a temporal query starting across n change patterns for any

0 < n < 11 and the result size is a constant 50,000. We do this instead of using real

data so that the increase in time to compute additional temporal joins is not conflated

with the time lost or gained from matching a greater or fewer number of matches across

a greater number of change patterns.

The plot seen in figure 8.2 shows the result of the evaluation for PostgreSQL, LSPARQL,
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Figure 8.2: Time To Execute Queries Across n Temporal Joins

BlazeGraph, and Jena. The times for each query pattern were taken as an average over 10

runs. As caching did not drastically change any of the results, we simply show the cached

times. The dataset was represented with 500,000 rows in PostgreSQL, 1,000,000 changes

with LSPARQL, 1958950 triples in Blazegraph, and 3794750 triples in Jena. The Blaze-

graph and Jena implementations were unable to perform all of the join pattern queries

within the 200 second limit imposed for this test, with the two reaching it before complet-

ing the 8th and 9th patterns respectively. The PostgreSQL implementation surprisingly

consistently maintained a low query execution time until around the eighth join before a

significant increase in query execution time on the 9th and 10th join. Similarly, Blaze-

graph initially had a lower query execution time than Jena, before being overtaken by the

8th join. In comparison, LSPARQL and Jena join query execution time had a consistent

linear increase for each additional join. It is important to note that as PostgreSQL is

a particularly robust and highly tuned DBMS its query optimiser is particularly good

at creating optimal query plans. One especially noteworthy difference is that the query

optimiser can create parallel plans that can be executed in separate threads, while in

LSPARQL our queries are executed entirely sequentially.
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9
Applying LSPARQL to Source Code

Analysis

This chapter describes the application of our LSPARQL queries to static source code

analysis. We describe generally why source code queries are desirable, how temporal

source code queries are useful, and some details on how one can parse source code in

a way which is amenable to being queried. We briefly test our approach by parsing a

reasonably large project from Github, running some example queries, and timing the

results.

9.1 Problem

Modern software development involves developing and maintaining an increasingly large

amount of source code, often with similarly large teams of software developers. The

coordination of these teams of developers relies on the usage of software repositories such

as Github and Subversion which allows a software project to be developed in parallel by

different developers and for the changes that they make to be merged. Now, many of

these software project repositories are available publicly which raises the possibility of

reusing existing code from other developers to solve similar problems.

A significant challenge when developing a large software project, or when adopting ex-

ternal code, is the difficulty of maintaining each developer’s understanding and awareness

79
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of the underlying source code. Source code querying systems, such as CIA [20], OMEGA

[81], and codeQuest [53] attempt to assist developers in understanding a code base by al-

lowing them to execute queries over the source code. Similarly, the CodeOntology project

leveraged semantic web technologies to extract structured information from source code

which can in turn be published on the web in the form of linked open data [10]. By

representing source code in RDF this allows it to be queried by SPARQL and can thus

be also be used for source code analysis.

There are some particularly useful applications of source code queries. One is to use

queries to identify the existence of any code that has a particular program pattern. This

can be used to automate the discovery of potential bugs, as is done in the FindBugs project

[12]. Potential buggy program patterns include using referential equality to compare two

values of different types, failing to store the return value of a method invocation whose

return type is not null, self comparisons or assignments, or repeated conditions in a

conditional. Similarly, one can search for patterns where the code is inefficient, such as

boxing a value then immediately unboxing it, redeclaring a variable with the same value

on each iteration of a loop, or accessing every entry in a map by iterating and using each

key instead of iterating through all the entries.

Another possible use of source code queries is to provide program slices [131, 16]. A

backwards program slice is where one finds all the statements in the source code that

can affect the value of a particular variable, including all control structures and transitive

dependencies. As such, typically a backwards slice is its own executable program that

is a subset of the original program. Such a slice is particularly useful when a variable

contains an unexpected value- only the fragment of the program that forms part of the

slice needs to be assessed during debugging. The forwards program slice meanwhile is

used to identify all statements which are affected by a variable which can also be quite

useful in understanding the execution of a program.

A limitation of CodeOntology is that it is limited to a single snapshot or version of a

source code repository. In this chapter we treat extending a source code ontology to the

temporal domain as a working example of applying our change-based model to support

temporal queries. This approach allows for some interesting queries, but also poses some

difficult problems in practice that we will address.

9.2 Motivating Examples for Temporal Source Code

Queries

Extending such a code ontology to a temporal one allows for some interesting queries.

One can search for temporal program patterns that look for changes that occurred in a
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particular order. Some example temporal queries one might ask include:

• Find all variables in the current version whose type has changed since some historic

version, but the old and new type has the same simple name

• Identify any method that, at the time it was added, was required due to an imple-

mented interface, but which is no longer required

• Find all changes that occurred to a method from the version in which it passed all

of its unit tests, to the version where it failed

• Identify any method that exists in a subclass that was added prior to its existence

in its super class

• Identify any class which had no changes made from when a bug report was filed

about that class and when it was reported as fixed

• Find any statement in the current version which in a previous version was in the

scope of a loop or conditional but which was moved due to the insertion of another

statement

• Identify any class for which there is a unit test that previously tested every method

of that class, but subsequently new methods were added to that class which are not

invoked in the unit test

• Identify any switch statement where historically each case corresponded to a con-

stant value in a defined enum, but subsequently a value was removed from the enum

but not as a case for the switch statement

Similarly, extending program slicing to a multiversion temporal setting leads to some

additional interesting usages for program slice-based queries. In [62] Horwitz et al. in-

troduced the notion of program interference. Given a program Base and two variants A

and B, the set of changes in A and B with respect to Base are said to interfere if any

statement in Base is in the forward or backwards slice of any change in either A or B, and

that change does not exist in both A and B. Essentially, detecting program interference

is a means of detecting a semantic merge conflict in version control.

While our temporal model is a linear one and so would be limited to the set of changes

on a single branch, one can similarly use the notion of program interference for detecting

earlier which affect the evaluation of a particular variable. Suppose one has a unit test

which is currently failing at version t2, but which passed at t1. Given the set of changes

that occur between t1 and t2, one can use the notion of program interference to identify

just those changes that affect the evaluation of the unit test at time t2. This is potentially
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quite a powerful technique as a change responsible for a failed unit test could be obfuscated

behind many intermediate method invocations.

Another use case for temporal program slicing is to help version control systems sup-

port semantic cherry picking. In version control systems, one can use a cherry picking

operation to merge with a subset of changes from a different branch. One difficulty with

cherry picking is that often the desired code has further dependencies not in the current

branch and it can be difficult to identify the correct set of changes to cherry pick that

allows the code to compile and run. With program slicing, one can identify all other

changes that occurred prior which the cherry picked code is reliant on. Using program

slicing on version histories in this way has been discussed in [79].

9.3 Abstract Semantic Graph Representation

While CodeOntology used an abstract syntax tree representation, we have instead opted to

use an abstract semantic graph (ASG) representation of source code. As with CodeOntol-

ogy, the work we do here focuses on the Java programming language, but could be applied

to other imperative programming languages such as C++ or Python. ASGs mainly differ

from abstract syntax trees in that they allow for additional edges that relate references

to semantic entities back to the vertices denoting their declarations, for instance they

permit an edge from a method invocation in a statement to the declared method being

invoked. The structure of our ASG representation is derived from the abstract syntax

tree parser library org.eclipse.jdt.core.dom.ASTParser which is used as part of the Eclipse

IDE source code compilation process.

While the ASTParser library parsers textual source code into an abstract syntax tree,

it also performs name resolution that allows one to link different references to the same

entity in the form of a binding. We use these bindings to transform the abstract syntax tree

into an abstract semantic graph where name instances are linked back to their declarations

where possible. In the case where such linking is not possible as the name refers to some

entity declared in an external library which has not been parsed, we simply refer to the

entity’s fully qualified name.

One caveat of this approach is that the source code needs to be successfully parsed.

This may not be possible if the underlying code contains syntax errors preventing it to

be compiled. The parser may also fail to resolve bindings for external libraries if it is

unable to acquire the required dependencies of a project. The parser can still function to

some extent by relying on the textual names that are available, but may be inconsistent

in relating instances of an entity if sometimes it is referred to by a simple name and other

times by a qualified name.

Let us consider the following simple Java class that simply wraps a java String object
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Figure 9.1: ASG of a Simple Class
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referred to as a name in a class called Person and which provides a get method for the

String.

public class Person{
private St r ing name ;

public Person ( S t r ing name){
this . name = name ;

}
public St r ing getName (){

return name ;

}

}

Figure 9.1 shows a sample ASG for this simple program. Due to space constraints,

the ASG is simplified and does not contain the full URLs for identifiers. We have also

simplified the hashed identifiers (which we will introduce and discuss later in this chapter)

used for individual statements.

9.4 Tracking Artefact Identity Across Versions

9.4.1 Considerations

One significant issue that needs to be considered is tracking the identifiers of artefact

across different versions. Giving a URL-based identifier for a named artefact such as

classes is straight forward. Likewise, one can derive an identifier for each method using

the name of the class they belong to and their method signature. Variable declarations

can still potentially be given an identifier-based on their scope, even though they can

occur multiple times within a method.

For other artefacts which lack a convenient name prescribing them a non-arbitrary

identifier which is human-readable and easily understood is more difficult to achieve.

When one is simply concerned with a single snapshot there are a number of viable options.

For example, one could refer to them using the name of the file they belong to and their

line number. However this does not work well when extended to a change-based model as

inserting or deleting code will change the line numbers of all subsequent artefact in the

file which would likely require one to process and update all their stored properties and

relationships.

Suppose instead an arbitrary identifier or blank node is used. To refer to such an arte-

fact one would instead identify them via query by using their properties and relationships
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to other artefact. One consequence is that queries become much more verbose to write as

one may require a fair number of triples to adequately specify a particular artefact as part

of a query. If the result of a query is simple an arbitrary ID, one may also need further

queries to figure out what artefact in the actual source code is referred to by that ID.

Having to rely on using the particular properties and relationships of an artefact to

identify that artefact raises another problem. Suppose we have two versions of a program,

V 1 and V 2, with V 2 being the snapshot that follows after applying changes to V 1. If

we use arbitrary identifiers to refer to individual artefact in V 1, how can we identify

them again in V 2? We might be able to do so for artefacts which are unchanged across

the two versions, but what if the artefact has undergone some change? If we decided

to use identifiers that were hash-based that required two versions of an artefact to have

the same properties and relationships to share the same identity across versions then we

would no longer be able to track changes to those artefacts. Moreover, if any change to

an artefact requires a change in its hashed identity, then this will in turn require further

changes to the hashed identities of any parent artefact that contains it. The advantage

of a hash-based artefacts is that they can be recycled with repeated use.

So then one might instead use a fine grained source code differencing algorithm such as

the Gumtree algorithm [34] which attempt to discover the minimal set of changes required

to derive v2 from V 1. As part of this process, the Gumtree algorithm attempts to match

artefacts in V 1 to successor artefacts in V 2 by way of a similarity heuristic. By using

an algorithm such as Gumtree we could identify the set of changes from one version to

another, and determine when to use an existing identifier as part of a change and when

to create a new one.

This is a viable option which we did initially consider but there are some problematic

consequences of this approach. A significant drawback is that the behaviour of the dif-

ferencing algorithm is not always easily predictable. Suppose in V 1 there is a particular

statement, and in V 2 there are instead three different but highly similar statements. The

decision by the algorithm as to which statement retains the identity of the old statement

and which are new will necessarily require an arbitrary determination of the similarity

cost of those differences. Suppose that one is interested in all changes that occurred

to a particular artefact. If at any point that artefact underwent a significant enough

change such that it does not meet the arbitrary threshold of the similarity function, then

no subsequent changes for that artefact will be tracked. Finally, suppose one deletes a

statement in one part of a program, and modifies another so that it is similar to the one

that is deleted, the algorithm may decide that it was the modified statement that was

deleted and the deleted statement was moved and modified. Due to this unpredictability

it is difficult to trust whether queries about changes made to specific artefacts adequately

represent the actual changes that occurred.
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9.4.2 Approach

The approach we have instead opted to take is to use a consistent scheme for identifying

high level artefacts while using a hash-based identifier for low level statement artefacts.

Firstly, we use the URL of the project as the prepended base URL for any identified

artefacts in that project. Named high level artefacts such as classes are identified with

either their fully qualified names (in the case where a package has been defined) or their

simple names appended onto the base URL. Class fields are referred to with their simple

names appended onto the URL identifying their class. All artefact declarations with names

are treated similarly - Method declarations are identified using their method signatures

appended onto the URL of the class or interface containing them, and variable declarations

are referred to by their simple names appended onto the URL for their parent artefact.

Within methods, aside from variable declarations, there are also block level constructs

such as loops and conditionals, as well as statements which may include variable assign-

ments and method invocations. The block level constructs we identify using an enumera-

tion followed by the top of artefact it is appended onto the URL for their parent artefact.

For example, the second while loop in the bar() method in the Foo class might be re-

ferred to by http://example.org/test-project/Foo/bar()/2while/. For statements such as

a method invocation statement we use a hash-based identity that is based solely on the

statements children in the underlying AST. For each statement we record what kind of

statement it is as well as all variables, methods, or classes used, and in the case of variable

assignments any variables that have been assigned. We also record for each statement the

string representation of that statement. We also included an optional linked-list structure

that boxes identifiers so that we can track the order of artefacts, such as method declara-

tions or statements within a block. The linked list structure also allows us to record that

a block level construct contains an identical statement multiple times.

We decided to use the hash-based identification for statements rather than enumer-

ating them as we do with conditionals and loops because insertions or removals would

affect all subsequent statements of the same type in the same block. While it might be

reasonable to assume that for higher level constructs the number of subsequent artefacts

affected would be fairly minimal, this is much less of a safe assumption with regards to

statements. As the identities of statements may frequently shift due to insertions and

deletions, it also makes tracking the changes made to those statements far less reliable.

As such, it makes sense to instead take advantage of being able to reuse hashed identifiers

for statements that occur multiple times.

We opted not to break down statements into sub-expressions as this greatly increases

the number of stored triples without providing much additional benefit. In addition to

increasing the number of stored triples, as mentioned earlier any modification of a sub-

expression would result in it requiring a new identifier which would in turn require new
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Table 9.1: Query Evaluation
Query # Time(seconds) Query Description
1 0.14 All recursive methods in the latest version
2 0.99 All classes in the current version which previously

removed a method
3 0.10 All classes which implemented an interface

that had some methods that were later removed
4 3.87 All methods whose return type changed at some point
5 0.03 All variables that had at some point been both

incremented and decremented
6 0.09 SwitchTypes that later added a new SwitchCase
7 2.80 All pairs of assignments that modified the same variable

at different points in time
8 0.007 All classes that existed when the ‘HashQuery’

class was added

identifiers for all parent artefacts using hashed identifiers. Moreover, the inclusion of the

sub-expressions likely would not be necessary for most queries interested in the structure

of those sub-expressions. If, for instance, one was interested in all assignments that used

a boolean expression literal involving conjunction it should still be possible to find this

out by using regular expressions on the stored string representations of statements.

9.5 Proof of Concept Evaluation

To demonstrate that our approach is viable, we have opted to parse the Chronicle Map

project, a Java-based key-value store publicly available on Github1. The latest version of

the project consists of 381 Java files over 57603 lines of code. While the project itself is

only modestly large, the abstract semantic graph model we are using is fairly fine grained,

and we are also wishing to account for every historical version which was developed over

2509 commits. In total the project involved 9465326 change objects.

We present our proof of concept by showing that our query system can answer some

ad hoc temporal queries in a reasonable amount of time. The machine running our

implementation has an intel I7-2600 cpu and 30 gigabytes of RAM. For each temporal

query we test the time taken to execute the query, and then iterate over all of the results.

The recorded time for each query is the average over ten separate runs. In table 9.1

demonstrates the execution of some simple temporal source code queries, each of which

executed within a few seconds.

Next, let us consider queries using program slices. Querying for program slices typi-

1https://github.com/OpenHFT/Chronicle-Map
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Table 9.2: Backwards Program Slice Evaluation Time
Query # Backwards Slice Sliced Artefact Type Result Size

Time(seconds)
1 0.09 MethodType 3
2 1.43 MethodType 17347
3 0.04 MethodType 11
4 3.94 MethodType 2524
5 0.001 VariableType 1
6 0.09 SwitchType 424
7 24.77 VariableType 191049

Table 9.3: Forwards Program Slice Evaluation Time
Query # Backwards Slice Sliced Artifact Type Result Size

Time(seconds)
1 0.09 MethodType 261
2 1.10 MethodType 102356
3 0.04 MethodType 522
4 4.71 MethodType 65417
5 0.003 VariableType 379
6 0.72 SwitchType 5260
7 770.013 VariableType 27888667
8 0.24 ClassType 20120

cally revolves around a structure called a dependency graph such as in [16]. A program

dependency graph encodes both control and data dependencies of source code artefacts

into a single structure. For any given statements X and Y in a program, X is dependent

on Y if either:

1. Y declares or modifies a variable used by X

2. Y is a control structure which has X in its scope

3. There exists some other statement Z which depends on Y, which X is also dependent

on

Theoretically our ASG model can also be used for these kinds of queries. One caveat

however is that currently our LSPARQL language specification does not have any specified

semantics for querying transitive closure. We instead perform these queries programati-

cally. We once again use the same Chronicle-Map project for evaluating program slices.

There are now additional triples denoting an immediate dependence between artefacts.

As such, there are now 10849874 recorded changes. We evaluate the same set of queries

in table 9.1, but have added on a transitive triple pattern to each of the queries for the
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purpose of identifying all dependent variables. In table 9.2 a backwards slice query is

used, and in 9.3 a forwards slice is used. In table 9.2 query 8 is omitted as the artefacts of

the query are classes which are considered top level entities and have no backwards slice.

All the queries evaluated in a reasonable amount of time, except for query 7 which by far

had the largest result size.
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10
Conclusion and Future Work

In this work we presented LSPARQL, an extension to SPARQL that allows us to write

queries over changes described in an RDF log. We have presented formal semantics and

syntax for our extension, and have also introduced a temporal index that can be used to

support efficient query evaluation. We have described a number of optimisations that can

be made with basic graph pattern queries and Allen relation filter queries. We presented a

proof of concept implementation of an interesting application of our LSPARQL queries for

static source code analysis using an implementation of our query engine in a stand-alone

triplestore we call PDStore. We provided an empirical evaluation of the performance of

our temporal queries, and compared them against some state of the art alternatives.

We see additional opportunities for future work. One limitation of using logs as

we have described is that they typically only record the inclusion of the addition or

removal of explicitly stored triples, and not of implicit facts which are inferred by RDFS

entailment and other entailment regimes. Our proof of concept implementation also does

not currently have any deductive mechanism outside of materialising the additional facts

in the store. One could reasonably extend our implementation and the corresponding

model to include a deductive reasoner that can infer additional triples on any individual

snapshot being queried. The next step would be to extend the deductive capabilities

with certain temporal considerations. For example, instead of limiting deductive queries

on explicitly named snapshots, it would be useful to identify the full intervals for which

these implied facts hold so that their intervals can be compared the same as they can for

91
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explicit facts in our current system. Another interesting consideration is how one could

additionally support temporal rules where one can specify facts at specific snapshots based

on which facts held in past and future states.

Another interesting area of future work would be on exploring branching models of

time. While the majority of work in temporal databases has been focused on linear models

of time, branching time models are particularly relevant for transaction time. There

is a close relationship between transaction time data and version control, but version

control models use a model with branching and merging. As we currently only support

a linear model for temporal queries, we are restricted to a single branch of changes when

performing cross version queries on archiving systems.

Extending our approach to allow for branching time queries is not as simple as extend-

ing our change objects to sextuples with an additional branchID. In our current system

we record changes simply as add and remove change objects which forms a simple pair

from which we can infer an interval. This is no longer straight forwardly the case in a

branching model however, as a single add change may have multiple subsequent remove

changes on separate branches, and each remove change may have multiple add changes

that occurred previously on parallel branches before merging. We could potentially treat

these as distinct intervals, but Allen relations would no longer be sufficient to compare

their relationships as their start or end points may be on separate branches and there is

no longer an ordering between them. Additional Allen relations could be created based

on a third ‘incomparable’ relation between end points but this would still be insufficient

to specify all of their possible relations as even when both end points are on separate

branches the two intervals may have intersected at some point.

Another option could be to treat each possible path through the version graph as a

separate timeline, with intervals only being comparable if they are on the same path.

This however could result in a combinatorial explosion in the number of stored intervals,

and identifying specific paths in queries may not be practical with large projects. One

interesting alternative could be to instead use these end points to create ‘tentacular’

intervals which would be connected sub-graphs of the version graph. When comparing

two of these ‘tentacular’ intervals one could specify a separate Allen relation for each

comparable path.
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A.1 Source Code Pattern Queries

A.1.1 LSPARQL queries

1.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ ?x : conta in s ?y . ?y : conta in s ? z .

? z : invokes ?x . ?x : a r t i f a c tType : methodType }

2.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ ?x : conta in s ?y . ? t − ?x : conta in s ?y .

?x : a r t i f a c tType c la s sDec la ra t i onType }

3.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ ?x : a r t i f a c tType c la s sDec la ra t i onType .

93
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? t1 + ?x : ha sSupe r In t e r f a c e ?y .

? t2 − ?y : conta in s ? z .

f i l t e r (? t2 > ? t1 ) }

4.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ ?x : r e tu rn s ?y . ? t + ?x : r e tu rn s ? z .

?x : a r t i f a c tType : methodType .

f i l t e r (? y != ? z )

}

5.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ ? t1 e ?x : increments ? z . ? t1 e ?y : decrements ? z }

6.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ ? t1 e ?x : a r t i f a c tType switchType .

? t2 e ?x : conta in s ?y .

? t2 e ?y : a r t i f a c tType : switchCaseType .

f i l t e r (? t2 > ? t1 )

}

7.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ ? t1 e ?y : d e f i n e s ?x . ? t2 e ? z : d e f i n e s ?x .

f i l t e r (? t1 > ? t2 ) .

}

8.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ ? t e ?x : a r t i f a c tType : c l a s sDec la ra t i onType .
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? t + https : // github . com/OpenHFT/ Chronic le−Map/hashQuery

: a r t i f a c tType : c l a s sDec la ra t i onType .

f i l t e r (? t1 > ? t2 ) .

}

A.1.2 Programmatic Queries

1.

s t o r e . query (

(v ‘ ‘ x ’ ’ , conta ins , v ‘ ‘ y ’ ’ ) , (v ‘ ‘ y ’ ’ , conta ins , v ‘ ‘ z ’ ’ ) ,

(v ‘ ‘ z ’ ’ , invokes , v ‘ ‘ x ’ ’ ) ,

(v ‘ ‘ x ’ ’ , a r t i f ac tType , methodType )

)

2.

s t o r e . query (

(v ‘ ‘ x ’ ’ , conta ins , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ y ’ ’ , a r t i f ac tType , methodType ) ,

(v ‘ ‘ t ’ ’ , ChangeType .LINK REMOVED, v ‘ ‘ x ’ ’ ,

conta ins , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ x ’ ’ , a r t i f ac tType , c l a s sDec la ra t i onType )

)

3.

s t o r e . query (

(v ‘ ‘ x ’ ’ , a r t i f ac tType , c l a s sDec la ra t i onType ) ,

(v ‘ ‘ t1 ’ ’ , ChangeType .LINK ADDED, v ‘ ‘ x ’ ’ ,

hasSuper Inte r face , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ t2 ’ ’ , ChangeType .LINK REMOVED, v ‘ ‘ y ’ ’ ,

conta ins , v ‘ ‘ z ’ ’ ) , (v ‘ ‘ t2 ’ ’ > v ‘ ‘ t1 ’ ’ )

)

4.

s t o r e . query (

(v ‘ ‘ x ’ ’ , r e turns , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ t ’ ’ , ChangeType .LINK ADDED, v ‘ ‘ x ’ ’ , r e turns , v ‘ ‘ z ’ ’ ) ,

(v ‘ ‘ x ’ ’ , a r t i f ac tType , methodType ) ,
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(v ‘ ‘ y ’ ’ != v ‘ ‘ z ’ ’ )

)

5.

s t o r e . query (

(v ‘ ‘ t1 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ ,

increments , v ‘ ‘ z ’ ’ ) ,

(v ‘ ‘ t1 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ y ’ ’ ,

decrements , v ‘ ‘ z ’ ’ )

)

6.

s t o r e . query (

(v ‘ ‘ t1 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ ,

a r t i f ac tType , switchType ) ,

(v ‘ ‘ t2 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ , conta ins , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ t2 ’ ’ , ChangeType . LINK EXISTS , v ‘ y ’ ’ ,

a r t i f ac tType , switchCaseType ) ,

(v ‘ ‘ t2 ’ ’ > v ‘ ‘ t1 ’ ’ )

)

7.

s t o r e . query (

(v ‘ ‘ t1 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ y ’ ’ , d e f i n e s , v ‘ ‘ x ’ ’ ) ,

(v ‘ ‘ t2 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ z ’ ’ , d e f i n e s , v ‘ ‘ x ’ ’ ) ,

(v ‘ ‘ t1 ’ ’ > v ‘ ‘ t2 ’ ’ )

)

8.

s t o r e . query (

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ , a r t i f ac tType ,

c l a s sDec la ra t i onType ) ,

(v ‘ ‘ t ’ ’ , ChangeType .LINK ADDED,

‘ ‘ https : // github . com/OpenHFT/ Chronic le−Map/hashQuery ’ ’ ,

a r t i f ac tType , c l a s sDec la ra t i onType ) )
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A.2 Program Slice Queries

Note that for program slice queries we only include programmatic queries. This is because

we have yet to define a formal semantics for transitive LSPARQL queries.

A.2.1 Programmatic Backwards Slice Queries

1.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ x ’ ’ , isDependentOn , v ‘ ‘ xx ’ ’ ) ,

(v ‘ ‘ x ’ ’ , conta ins , v ‘ ‘ y ’ ’ ) , (v ‘ ‘ y ’ ’ , conta ins , v ‘ ‘ z ’ ’ ) ,

(v ‘ ‘ z ’ ’ , invokes , v ‘ ‘ x ’ ’ ) ,

(v ‘ ‘ x ’ ’ , a r t i f ac tType , methodType )

)

2.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ y ’ ’ , isDependentOn , v ‘ ‘ yy ’ ’ ) ,

(v ‘ ‘ x ’ ’ , conta ins , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ y ’ ’ , a r t i f ac tType , methodType ) ,

(v ‘ ‘ t ’ ’ , ChangeType .LINK REMOVED, v ‘ ‘ x ’ ’ ,

conta ins , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ x ’ ’ , a r t i f ac tType , c l a s sDec la ra t i onType )

)

3.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ t1 ’ ’ , v ‘ ‘ z ’ ’ , isDependentOn , v ‘ ‘ zz ’ ’ ) ,

(v ‘ ‘ x ’ ’ , a r t i f ac tType , c l a s sDec la ra t i onType ) ,

(v ‘ ‘ t1 ’ ’ , ChangeType .LINK ADDED, v ‘ ‘ x ’ ’ ,

hasSuper Inte r face , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ t2 ’ ’ , ChangeType .LINK REMOVED, v ‘ ‘ y ’ ’ ,

conta ins , v ‘ ‘ z ’ ’ ) , (v ‘ ‘ t2 ’ ’ > v ‘ ‘ t1 ’ ’ )

)

4.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ x ’ ’ , isDependentOn , v ‘ ‘ xx ’ ’ ) ,
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(v ‘ ‘ x ’ ’ , r e turns , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ t ’ ’ , ChangeType .LINK ADDED, v ‘ ‘ x ’ ’ , r e turns , v ‘ ‘ z ’ ’ ) ,

(v ‘ ‘ x ’ ’ , a r t i f ac tType , methodType ) ,

(v ‘ ‘ y ’ ’ != v ‘ ‘ z ’ ’ )

)

5.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ t1 ’ ’ , v ‘ ‘ z ’ ’ , isDependentOn , v ‘ ‘ zz ’ ’ ) ,

(v ‘ ‘ t1 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ ,

increments , v ‘ ‘ z ’ ’ ) ,

(v ‘ ‘ t1 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ y ’ ’ ,

decrements , v ‘ ‘ z ’ ’ )

)

6.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ t2 ’ ’ , v ‘ ‘ x ’ ’ , isDependentOn , v ‘ ‘ xx ’ ’ ) ,

(v ‘ ‘ t1 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ ,

a r t i f ac tType , switchType ) ,

(v ‘ ‘ t2 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ , conta ins , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ t2 ’ ’ , ChangeType . LINK EXISTS , v ‘ y ’ ’ ,

a r t i f ac tType , switchCaseType ) ,

(v ‘ ‘ t2 ’ ’ > v ‘ ‘ t1 ’ ’ )

)

7.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ t1 ’ ’ , v ‘ ‘ x ’ ’ , isDependentOn , v ‘ ‘ xx ’ ’ ) ,

(v ‘ ‘ t1 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ y ’ ’ , d e f i n e s , v ‘ ‘ x ’ ’ ) ,

(v ‘ ‘ t2 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ z ’ ’ , d e f i n e s , v ‘ ‘ x ’ ’ ) ,

(v ‘ ‘ t1 ’ ’ > v ‘ ‘ t2 ’ ’ )

)

8.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ t ’ ’ , v ‘ ‘ x ’ ’ , isDependentOn , v ‘ ‘ xx ’ ’ ) ,

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ , a r t i f ac tType ,
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c la s sDec la ra t i onType ) ,

(v ‘ ‘ t ’ ’ , ChangeType .LINK ADDED,

‘ ‘ https : // github . com/OpenHFT/ Chronic le−Map/hashQuery ’ ’ ,

a r t i f ac tType , c l a s sDec la ra t i onType ) )

A.2.2 Programmatic Forwards Slice Queries

1.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ xx ’ ’ , isDependentOn , v ‘ ‘ x ’ ’ ) ,

(v ‘ ‘ x ’ ’ , conta ins , v ‘ ‘ y ’ ’ ) , (v ‘ ‘ y ’ ’ , conta ins , v ‘ ‘ z ’ ’ ) ,

(v ‘ ‘ z ’ ’ , invokes , v ‘ ‘ x ’ ’ ) ,

(v ‘ ‘ x ’ ’ , a r t i f ac tType , methodType )

)

2.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ yy ’ ’ , isDependentOn , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ x ’ ’ , conta ins , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ y ’ ’ , a r t i f ac tType , methodType ) ,

(v ‘ ‘ t ’ ’ , ChangeType .LINK REMOVED, v ‘ ‘ x ’ ’ ,

conta ins , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ x ’ ’ , a r t i f ac tType , c l a s sDec la ra t i onType )

)

3.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ t1 ’ , v ‘ ‘ zz ’ ’ , isDependentOn , v ‘ ‘ z ’ ’ ) ,

(v ‘ ‘ x ’ ’ , a r t i f ac tType , c l a s sDec la ra t i onType ) ,

(v ‘ ‘ t1 ’ ’ , ChangeType .LINK ADDED, v ‘ ‘ x ’ ’ ,

hasSuper Inte r face , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ t2 ’ ’ , ChangeType .LINK REMOVED, v ‘ ‘ y ’ ’ ,

conta ins , v ‘ ‘ z ’ ’ ) , (v ‘ ‘ t2 ’ ’ > v ‘ ‘ t1 ’ ’ )

)

4.

s t o r e . query (
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Trans i t i v ePat t e rn (v ‘ ‘ xx ’ ’ , isDependentOn , v ‘ ‘ x ’ ’ ) ,

(v ‘ ‘ x ’ ’ , r e turns , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ t ’ ’ , ChangeType .LINK ADDED, v ‘ ‘ x ’ ’ , r e turns , v ‘ ‘ z ’ ’ ) ,

(v ‘ ‘ x ’ ’ , a r t i f ac tType , methodType ) ,

(v ‘ ‘ y ’ ’ != v ‘ ‘ z ’ ’ )

)

5.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ t1 ’ ’ , v ‘ ‘ zz ’ ’ , isDependentOn , v ‘ ‘ z ’ ’ ) ,

(v ‘ ‘ t1 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ ,

increments , v ‘ ‘ z ’ ’ ) ,

(v ‘ ‘ t1 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ y ’ ’ ,

decrements , v ‘ ‘ z ’ ’ )

)

6.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ t2 ’ ’ , v ‘ ‘ xx ’ ’ , isDependentOn , v ‘ ‘ x ’ ’ ) ,

(v ‘ ‘ t1 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ ,

a r t i f ac tType , switchType ) ,

(v ‘ ‘ t2 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ , conta ins , v ‘ ‘ y ’ ’ ) ,

(v ‘ ‘ t2 ’ ’ , ChangeType . LINK EXISTS , v ‘ y ’ ’ ,

a r t i f ac tType , switchCaseType ) ,

(v ‘ ‘ t2 ’ ’ > v ‘ ‘ t1 ’ ’ )

)

7.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ t1 ’ ’ , v ‘ ‘ xx ’ ’ , isDependentOn , v ‘ ‘ x ’ ’ ) ,

(v ‘ ‘ t1 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ y ’ ’ , d e f i n e s , v ‘ ‘ x ’ ’ ) ,

(v ‘ ‘ t2 ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ z ’ ’ , d e f i n e s , v ‘ ‘ x ’ ’ ) ,

(v ‘ ‘ t1 ’ ’ > v ‘ ‘ t2 ’ ’ )

)

8.

s t o r e . query (

Trans i t i v ePat t e rn (v ‘ ‘ t ’ ’ , v ‘ ‘ xx ’ ’ , isDependentOn , v ‘ ‘ x ’ ’ ) ,
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(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ , a r t i f ac tType ,

c l a s sDec la ra t i onType ) ,

(v ‘ ‘ t ’ ’ , ChangeType .LINK ADDED,

‘ ‘ https : // github . com/OpenHFT/ Chronic le−Map/hashQuery ’ ’ ,

a r t i f ac tType , c l a s sDec la ra t i onType ) )
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B.1 Single Change Pattern Queries

The queries in this section were for the evaluation of the following change pattern queries:

1. (?t,+, s, p, ?x)

2. (?t,+, ?x, p, o)

3. (?t, e, s, p, ?x)

4. (?t, e, ?x, p, o)

5. (t, e, s, p, ?x)

6. (t, e, ?x, p, o)

B.1.1 LSPARQL Queries

1.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ ? t + :536 : hyperl inkTo ?x }

103
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2.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ ? t + ?x : hyperl inkTo :149 }

3.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ ? t e :536 : hyperl inkTo ?x }

4.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ ? t e ?x : hyperl inkTo :149 }

5.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ 1301598225 e :536 : hyperl inkTo ?x }

6.

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ 1190916663 e ?x : hyperl inkTo :149 }

B.1.2 LSPARQL programmatic queries

1.

s t o r e . query (

(v ‘ ‘ t ’ ’ , ChangeType .LINK ADDED, ‘ ‘ 5 3 6 ’ ’ , hyperl inkTo , v ‘ ‘ x ’ ’ )

)

2.

s t o r e . query (

(v ‘ ‘ t ’ ’ , ChangeType .LINK ADDED, v ‘ ‘ x ’ ’ , hyperl inkTo , ‘ ‘ 1 4 9 ’ ’ )

)
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3.

s t o r e . query (

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , ‘ ‘ 5 3 6 ’ ’ , hyperl inkTo , v ‘ ‘ x ’ ’ )

)

4.

s t o r e . query (

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ , hyperl inkTo , ‘ ‘ 1 4 9 ’ ’ )

)

5.

s t o r e . query (

( ts1 , ChangeType . LINK EXISTS , ‘ ‘ 5 3 6 ’ ’ , hyperl inkTo , v ‘ ‘ x ’ ’ )

)

6.

s t o r e . query (

( ts2 , ChangeType . LINK EXISTS , v ‘ ‘ x ’ ’ , hyperl inkTo , ‘ ‘ 1 4 9 ’ ’ )

)

B.1.3 Jena Queries

1.

PREFIX : <http :// example . org/>

PREFIX rdf :<http ://www. w3 . org /1999/02/22 rdf−syntax−ns#>

SELECT ?x ? t s t a r t 1

WHERE

{ [ ] rdf : s ub j e c t : 5 3 6 ;

rdf : ob j e c t ?x ;

: h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 : s t a r t s ? t s t a r t 1 .}

2.

PREFIX : <http :// example . org/>

PREFIX rdf :<http ://www. w3 . org /1999/02/22 rdf−syntax−ns#>

SELECT ?x ? t s t a r t 1

WHERE
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{ [ ] rdf : s ub j e c t ?x ;

rdf : ob j e c t :149 ;

: h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 : s t a r t s ? t s t a r t 1 .}

3.

PREFIX : <http :// example . org/>

PREFIX rdf :<http ://www. w3 . org /1999/02/22 rdf−syntax−ns#>

SELECT ?x ? t s t a r t 1 ? tend1

WHERE

{ [ ] rdf : s ub j e c t : 5 3 6 ;

rdf : ob j e c t ?x ;

: h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 : s t a r t s ? t s t a r t 1 ;

: ends ? tend1}

4.

PREFIX : <http :// example . org/>

PREFIX rdf :<http ://www. w3 . org /1999/02/22 rdf−syntax−ns#>

SELECT ?x ? t s t a r t 1 ? tend1

WHERE

{ [ ] rdf : s ub j e c t ?x ;

rdf : ob j e c t :149 ;

: h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 : s t a r t s ? t s t a r t 1 ;

: ends ? tend1}

5.

PREFIX : <http :// example . org/>

PREFIX rdf :<http ://www. w3 . org /1999/02/22 rdf−syntax−ns#>

SELECT ?x

WHERE

{ [ ] rdf : s ub j e c t : 5 3 6 ;

rdf : ob j e c t ?x ;

: h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 : s t a r t s ? t s t a r t 1 ;

: ends ? tend1 .

f i l t e r (1301598225 >= ? t s t a r t 1 && 1301598225 < ? tend1 ) }
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6.

PREFIX : <http :// example . org/>

PREFIX rdf :<http ://www. w3 . org /1999/02/22 rdf−syntax−ns#>

SELECT ?x

WHERE

{ [ ] rdf : s ub j e c t ?x ;

rdf : ob j e c t :149 ;

: h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 : s t a r t s ? t s t a r t 1 ;

: ends ? tend1 .

f i l t e r (1190916663 >= ? t s t a r t 1 && 1190916663 < ? tend1 ) }

B.1.4 Blazegraph Queries

1.

PREFIX : <http :// example . org/>

SELECT ?x ? t s t a r t 1

WHERE

{<<:536 , : hyperl inkTo , ?x>> h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 . : s t a r t s ? t s t a r t 1 }

2.

PREFIX : <http :// example . org/>

SELECT ?x ? t s t a r t 1

WHERE

{<<?x , : hyperl inkTo , :149>> h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 . : s t a r t s ? t s t a r t 1 }

3.

PREFIX : <http :// example . org/>

SELECT ?x ? t s t a r t 1

WHERE

{<<:536 , : hyperl inkTo , ?x>> h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 . : s t a r t s ? t s t a r t 1 ;

: ends ? tend1 }

4.
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PREFIX : <http :// example . org/>

SELECT ?x ? t s t a r t 1

WHERE

{<<?x , : hyperl inkTo , :149>> h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 . : s t a r t s ? t s t a r t 1 ;

: ends ? tend1 }

5.

PREFIX : <http :// example . org/>

SELECT ?x

WHERE

{ <<:536, : hyperl inkTo , ?x>> h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 : s t a r t s ? t s t a r t 1 ;

: ends ? tend1 .

f i l t e r (1301598225 >= ? t s t a r t 1 && 1301598225 < ? tend1 ) }

6.

PREFIX : <http :// example . org/>

SELECT ?x

WHERE

{ <<?x , : hyperl inkTo , :149>> h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 : s t a r t s ? t s t a r t 1 ;

: ends ? tend1 .

f i l t e r (1190916663 >= ? t s t a r t 1 && 1190916663 < ? tend1 ) }

B.1.5 PostgreSQL Queries

1.

SELECT h1 . ‘ ‘ ob j e c t ’ ’ , h1 . s t a r t s

FROM ‘ ‘ Hyper l inks ’ ’ AS h1

WHERE h1 . ‘ ‘ s ub j e c t ’ ’ = text (536)

2.

SELECT h1 . ‘ ‘ s ub j e c t ’ ’ , h1 . s t a r t s

FROM ‘ ‘ Hyper l inks ’ ’ AS h1

WHERE h1 . ‘ ‘ ob j e c t ’ ’ = text (149)

3.
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SELECT h1 . ‘ ‘ ob j e c t ’ ’ , h1 . s t a r t s , h1 . ends

FROM ‘ ‘ Hyper l inks ’ ’ AS h1

WHERE h1 . ‘ ‘ s ub j e c t ’ ’ = text (536)

4.

SELECT h1 . ‘ ‘ s ub j e c t ’ ’ , h1 . s t a r t s , h1 . ends

FROM ‘ ‘ Hyper l inks ’ ’ AS h1

WHERE h1 . ‘ ‘ ob j e c t ’ ’ = text (149)

5.

SELECT h1 . ‘ ‘ ob j e c t ’ ’

FROM ‘ ‘ Hyper l inks ’ ’ AS h1

WHERE h1 . ‘ ‘ s ub j e c t ’ ’ = text (536) AND

h1 . s t a r t s >= 1301598225 AND

h1 . ends < 1301598225

6.

SELECT h1 . ‘ ‘ s ub j e c t ’ ’

FROM ‘ ‘ Hyper l inks ’ ’ AS h1

WHERE h1 . ‘ ‘ ob j e c t ’ ’ = text (149) AND

h1 . s t a r t s >= 1190916663 AND

h1 . ends < 1190916663

B.2 Single Temporal Join Queries

For the single temporal join queries we retrieve all intervals for a specific triple, and

then temporally join those intervals with those with the object as a subject. We did

this for the 22 triples with the largest number of intervals to potentially join. Table 8.2

shows the subject and object pairs over which we executed these queries, and the number

of potential intervals. Here we show the queries just for the first entry on the table.

Subsequent queries simply change the subject and object being referred to.

B.2.1 LSPARQL Query

PREFIX : <http :// example . org/>

SELECT ? t ?x WHERE

{ ? t e :3420 : hyperl inkTo : 1 5 .

? t e : 15 : hyperl inkTo ?x}
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B.2.2 LSPARQL Programmatic Query

s t o r e . query (

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , ‘ ‘ 3 4 2 0 ’ ’ , hyperl inkTo , ‘ ‘ 1 5 ’ ’ )

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , ‘ ‘ 1 5 ’ ’ , hyperl inkTo , v ‘ ‘ x ’ ’ )

)

B.2.3 Jena Query

PREFIX : <http :// example . org/>

PREFIX rdf :<http ://www. w3 . org /1999/02/22 rdf−syntax−ns#>

SELECT ?x ? t s t a r t 1 ? tend1 ? t s t a r t 2 ? tend2

WHERE

{ [ ] rdf : s ub j e c t : 3 4 2 0 ;

rdf : ob j e c t : 1 5 ;

: h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 : s t a r t s ? t s t a r t 1 ;

: ends ? tend1 .

[ ] rdf : s ub j e c t : 1 5 ;

rdf : ob j e c t ?x ;

: h a s I n t e r v a l ? i n t e r v a l 2 .

? i n t e r v a l 2 : s t a r t s ? t s t a r t 2 ;

: ends ? tend2 .

f i l t e r (? t s t a r t 1 < ? tend2 && ? t s t a r t 2 < ? tend1 )

}

B.2.4 Blazegraph Query

PREFIX : <http :// example . org/>

SELECT ?x ? t s t a r t 1 ? tend1 ? t s t a r t 2 ? tend2

WHERE

{ <<:3420 : hyper l inksTo :15>>

: h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 : s t a r t s ? t s t a r t 1 ;

: ends ? tend1 .

<<:15 : hyper l inksTo ?x>>

: h a s I n t e r v a l ? i n t e r v a l 2 .

? i n t e r v a l 2 : s t a r t s ? t s t a r t 2 ;
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: ends ? tend2 .

f i l t e r (? t s t a r t 1 < ? tend2 && ? t s t a r t 2 < ? tend1 )

}

B.2.5 PostgreSQL Query

select h2 . de s t i na t i on , h1 . s t a r t s , h1 . ends ,

h2 . s t a r t s , h2 . ends FROM

‘ ‘ Hyper l inks ’ ’ AS h1 , ‘ ‘ Hyper l inks ’ ’ AS h2 WHERE

h1 . source = text (3420) AND

h1 . d e s t i n a t i o n = text (15) AND

h2 . source = text (15) AND

h1 . s t a r t s < h2 . ends AND

h2 . s t a r t s < h1 . ends

B.3 Temporal Join Queries With n Joins

Our evaluation of temporal join queries used a separate query for each value of n, where

1 ≤ n ≤ 10. For our LSPARQL queries, n represents the number of change patterns

in the query. For Jena and Blazegraph, n represents the number of reified statements

referred to in the query. For PostgreSQL n refers to the number of self joins in the query.

As the queries are quite similar, we only include in the appendix here the queries where n

is ten. The queries for lower values of n can simply be derived by removing the portions

of the query relating to patterns/reifications/self joins for higher values of n.

B.3.1 LSPARQL Query

PREFIX : <http :// example . org/>

SELECT ?x10 WHERE

{ ? t e : 0 : hyperl inkTo ?x1 . ? t e ?x1 : hyperl inkTo ?x2 .

? t e ?x2 : hyperl inkTo ?x3 . ? t e ?x3 : hyperl inkTo ?x4 .

? t e ?x4 : hyperl inkTo ?x5 . ? t e ?x5 : hyperl inkTo ?x6 .

? t e ?x6 : hyperl inkTo ?x7 . ? t e ?x7 : hyperl inkTo ?x8 .

? t e ?x8 : hyperl inkTo ?x9 . ? t e ?x9 : hyperl inkTo ?x10 .

}
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B.3.2 LSPARQL Programmatic Query

s t o r e . query (

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , ‘ ‘ 0 ’ ’ , hyperl inkTo , v ‘ ‘ x1 ’ ’ )

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x1 ’ ’ , hyperl inkTo , v ‘ ‘ x2 ’ ’ )

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x2 ’ ’ , hyperl inkTo , v ‘ ‘ x3 ’ ’ )

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x3 ’ ’ , hyperl inkTo , v ‘ ‘ x4 ’ ’ )

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x4 ’ ’ , hyperl inkTo , v ‘ ‘ x5 ’ ’ )

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x5 ’ ’ , hyperl inkTo , v ‘ ‘ x6 ’ ’ )

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x6 ’ ’ , hyperl inkTo , v ‘ ‘ x7 ’ ’ )

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x7 ’ ’ , hyperl inkTo , v ‘ ‘ x8 ’ ’ )

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x8 ’ ’ , hyperl inkTo , v ‘ ‘ x9 ’ ’ )

(v ‘ ‘ t ’ ’ , ChangeType . LINK EXISTS , v ‘ ‘ x9 ’ ’ , hyperl inkTo , v ‘ ‘ x10 ’ ’ )

)

B.3.3 Jena Query

PREFIX : <http :// example . org/>

PREFIX rdf :<http ://www. w3 . org /1999/02/22 rdf−syntax−ns#>

SELECT ?x10

WHERE

{ [ ] rdf : s ub j e c t : 0 ; rdf : ob j e c t : x1 ; : h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 : s t a r t s ? t s t a r t 1 . ? i n t e r v a l 1 : ends ? tend1 .

[ ] rdf : s ub j e c t ?x1 ; rdf : ob j e c t ?x2 ; : h a s I n t e r v a l ? i n t e r v a l 2 .

? i n t e r v a l 2 : s t a r t s ? t s t a r t 2 . f i l t e r (? t s t a r t 2 < ? tend1 ) .

? i n t e r v a l 2 : ends ? t s t a r t 2 . f i l t e r (? t s t a r t 1 < ? tend2 ) .

[ ] rdf : s ub j e c t ?x2 ; rdf : ob j e c t ?x3 ; : h a s I n t e r v a l ? i n t e r v a l 3 .

? i n t e r v a l 3 : s t a r t s ? t s t a r t 3 .

f i l t e r (? t s t a r t 3 < ? tend1 ) . f i l t e r (? t s t a r t 3 < ? tend2 ) .

? i n t e r v a l 3 : ends ? tend3 .

f i l t e r (? t s t a r t 1 < ? tend3 ) . f i l t e r (? t s t a r t 2 < ? tend3 ) .

[ ] rdf : s ub j e c t ?x3 ; rdf : ob j e c t ?x4 ; : h a s I n t e r v a l ? i n t e r v a l 4 .

? i n t e r v a l 4 : s t a r t s ? t s t a r t 4 .

f i l t e r (? t s t a r t 4 < ? tend1 ) . f i l t e r (? t s t a r t 4 < ? tend2 ) .

f i l t e r (? t s t a r t 4 < ? tend3 ) .

? i n t e r v a l 4 : ends ? tend4 .

f i l t e r (? t s t a r t 1 < ? tend4 ) . f i l t e r (? t s t a r t 2 < ? tend4 ) .

f i l t e r (? t s t a r t 3 < ? tend4 ) .
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[ ] rdf : s ub j e c t ?x4 ; rdf : ob j e c t ?x5 ; : h a s I n t e r v a l ? i n t e r v a l 5 .

? i n t e r v a l 5 : s t a r t s ? t s t a r t 5 .

f i l t e r (? t s t a r t 5 < ? tend1 ) . f i l t e r (? t s t a r t 5 < ? tend2 ) .

f i l t e r (? t s t a r t 5 < ? tend3 ) . f i l t e r (? t s t a r t 5 < ? tend4 ) .

? i n t e r v a l 5 : ends ? tend5 .

f i l t e r (? t s t a r t 1 < ? tend5 ) . f i l t e r (? t s t a r t 2 < ? tend5 ) .

f i l t e r (? t s t a r t 3 < ? tend5 ) . f i l t e r (? t s t a r t 4 < ? tend5 ) .

[ ] rdf : s ub j e c t ?x5 ; rdf : ob j e c t ?x6 ; : h a s I n t e r v a l ? i n t e r v a l 6 .

? i n t e r v a l 6 : s t a r t s ? t s t a r t 6 .

f i l t e r (? t s t a r t 6 < ? tend1 ) . f i l t e r (? t s t a r t 6 < ? tend2 ) .

f i l t e r (? t s t a r t 6 < ? tend3 ) . f i l t e r (? t s t a r t 6 < ? tend4 ) .

f i l t e r (? t s t a r t 6 < ? tend5 ) .

? i n t e r v a l 6 : ends ? tend6 .

f i l t e r (? t s t a r t 1 < ? tend6 ) . f i l t e r (? t s t a r t 2 < ? tend6 ) .

f i l t e r (? t s t a r t 3 < ? tend6 ) . f i l t e r (? t s t a r t 4 < ? tend6 ) .

f i l t e r (? t s t a r t 5 < ? tend6 ) .

[ ] rdf : s ub j e c t ?x6 ; rdf : ob j e c t ?x7 ; : h a s I n t e r v a l ? i n t e r v a l 7 .

? i n t e r v a l 7 : s t a r t s ? t s t a r t 7 . f i l t e r (? t s t a r t 7 < ? tend1 ) .

f i l t e r (? t s t a r t 7 < ? tend2 ) . f i l t e r (? t s t a r t 7 < ? tend3 ) .

f i l t e r (? t s t a r t 7 < ? tend4 ) . f i l t e r (? t s t a r t 7 < ? tend5 ) .

f i l t e r (? t s t a r t 7 < ? tend6 ) .

? i n t e r v a l 7 : ends ? tend7 . f i l t e r (? t s t a r t 1 < ? tend7 ) .

f i l t e r (? t s t a r t 2 < ? tend7 ) . f i l t e r (? t s t a r t 3 < ? tend7 ) .

f i l t e r (? t s t a r t 4 < ? tend7 ) . f i l t e r (? t s t a r t 5 < ? tend7 ) .

f i l t e r (? t s t a r t 6 < ? tend7 ) .

[ ] rdf : s ub j e c t ?x7 ; rdf : ob j e c t ?x8 ; : h a s I n t e r v a l ? i n t e r v a l 8 .

? i n t e r v a l 8 : s t a r t s ? t s t a r t 8 .

f i l t e r (? t s t a r t 8 < ? tend1 ) . f i l t e r (? t s t a r t 8 < ? tend2 ) .

f i l t e r (? t s t a r t 8 < ? tend3 ) . f i l t e r (? t s t a r t 8 < ? tend4 ) .

f i l t e r (? t s t a r t 8 < ? tend5 ) . f i l t e r (? t s t a r t 8 < ? tend6 ) .

f i l t e r (? t s t a r t 8 < ? tend7 ) .

? i n t e r v a l 8 : ends ? tend8 .

f i l t e r (? t s t a r t 1 < ? tend8 ) . f i l t e r (? t s t a r t 2 < ? tend8 ) .

f i l t e r (? t s t a r t 3 < ? tend8 ) . f i l t e r (? t s t a r t 4 < ? tend8 ) .

f i l t e r (? t s t a r t 5 < ? tend8 ) . f i l t e r (? t s t a r t 6 < ? tend8 ) .

f i l t e r (? t s t a r t 7 < ? tend8 ) .

[ ] rdf : s ub j e c t ?x8 ; rdf : ob j e c t ?x9 ; : h a s I n t e r v a l ? i n t e r v a l 9 .

? i n t e r v a l 9 : s t a r t s ? t s t a r t 9 .
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f i l t e r (? t s t a r t 9 < ? tend1 ) . f i l t e r (? t s t a r t 9 < ? tend2 ) .

f i l t e r (? t s t a r t 9 < ? tend3 ) . f i l t e r (? t s t a r t 9 < ? tend4 ) .

f i l t e r (? t s t a r t 9 < ? tend5 ) . f i l t e r (? t s t a r t 9 < ? tend6 ) .

f i l t e r (? t s t a r t 9 < ? tend7 ) . f i l t e r (? t s t a r t 9 < ? tend8 ) .

? i n t e r v a l 9 : ends ? tend9 .

f i l t e r (? t s t a r t 1 < ? tend9 ) . f i l t e r (? t s t a r t 2 < ? tend9 ) .

f i l t e r (? t s t a r t 3 < ? tend9 ) . f i l t e r (? t s t a r t 4 < ? tend9 ) .

f i l t e r (? t s t a r t 5 < ? tend9 ) . f i l t e r (? t s t a r t 6 < ? tend9 ) .

f i l t e r (? t s t a r t 7 < ? tend9 ) . f i l t e r (? t s t a r t 8 < ? tend9 ) .

[ ] rdf : s ub j e c t ?x9 ; rdf : ob j e c t ?x10 ; : h a s I n t e r v a l ? i n t e r v a l 1 0 .

? i n t e r v a l 1 0 : s t a r t s ? t s t a r t 1 0 .

f i l t e r (? t s t a r t 1 0 < ? tend1 ) . f i l t e r (? t s t a r t 1 0 < ? tend2 ) .

f i l t e r (? t s t a r t 1 0 < ? tend3 ) . f i l t e r (? t s t a r t 1 0 < ? tend4 ) .

f i l t e r (? t s t a r t 1 0 < ? tend5 ) . f i l t e r (? t s t a r t 1 0 < ? tend6 ) .

f i l t e r (? t s t a r t 1 0 < ? tend7 ) . f i l t e r (? t s t a r t 1 0 < ? tend8 ) .

f i l t e r (? t s t a r t 1 0 < ? tend9 ) .

? i n t e r v a l 1 0 : ends ? tend10 .

f i l t e r (? t s t a r t 1 < ? tend10 ) . f i l t e r (? t s t a r t 2 < ? tend10 ) .

f i l t e r (? t s t a r t 3 < ? tend10 ) . f i l t e r (? t s t a r t 4 < ? tend10 ) .

f i l t e r (? t s t a r t 5 < ? tend10 ) . f i l t e r (? t s t a r t 6 < ? tend10 ) .

f i l t e r (? t s t a r t 7 < ? tend10 ) . f i l t e r (? t s t a r t 8 < ? tend10 ) .

f i l t e r (? t s t a r t 9 < ? tend10 ) .

}

B.3.4 Blazegraph Query

PREFIX : <http :// example . org/>

SELECT ?x10

WHERE

{ <<:0 : hyper l inksTo ?x1>> : h a s I n t e r v a l ? i n t e r v a l 1 .

? i n t e r v a l 1 : s t a r t s ? t s t a r t 1 . ? i n t e r v a l 1 : ends ? tend1 .

<<?x1 : hyper l inksTo ?x2>> : h a s I n t e r v a l ? i n t e r v a l 2 .

? i n t e r v a l 2 : s t a r t s ? t s t a r t 2 . f i l t e r (? t s t a r t 2 < ? tend1 ) .

? i n t e r v a l 2 : ends ? t s t a r t 2 . f i l t e r (? t s t a r t 1 < ? tend2 ) .

<<?x2 : hyper l inksTo ?x3>> : h a s I n t e r v a l ? i n t e r v a l 3 .

? i n t e r v a l 3 : s t a r t s ? t s t a r t 3 .

f i l t e r (? t s t a r t 3 < ? tend1 ) . f i l t e r (? t s t a r t 3 < ? tend2 ) .

? i n t e r v a l 3 : ends ? tend3 .
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f i l t e r (? t s t a r t 1 < ? tend3 ) . f i l t e r (? t s t a r t 2 < ? tend3 ) .

<<?x3 : hyper l inksTo ?x4>> : h a s I n t e r v a l ? i n t e r v a l 4 .

? i n t e r v a l 4 : s t a r t s ? t s t a r t 4 .

f i l t e r (? t s t a r t 4 < ? tend1 ) . f i l t e r (? t s t a r t 4 < ? tend2 ) .

f i l t e r (? t s t a r t 4 < ? tend3 ) .

? i n t e r v a l 4 : ends ? tend4 .

f i l t e r (? t s t a r t 1 < ? tend4 ) . f i l t e r (? t s t a r t 2 < ? tend4 ) .

f i l t e r (? t s t a r t 3 < ? tend4 ) .

<<?x4 : hyper l inksTo ?x5>> : h a s I n t e r v a l ? i n t e r v a l 5 .

? i n t e r v a l 5 : s t a r t s ? t s t a r t 5 .

f i l t e r (? t s t a r t 5 < ? tend1 ) . f i l t e r (? t s t a r t 5 < ? tend2 ) .

f i l t e r (? t s t a r t 5 < ? tend3 ) . f i l t e r (? t s t a r t 5 < ? tend4 ) .

? i n t e r v a l 5 : ends ? tend5 .

f i l t e r (? t s t a r t 1 < ? tend5 ) . f i l t e r (? t s t a r t 2 < ? tend5 ) .

f i l t e r (? t s t a r t 3 < ? tend5 ) . f i l t e r (? t s t a r t 4 < ? tend5 ) .

<<?x5 : hyper l inksTo ?x6>> : h a s I n t e r v a l ? i n t e r v a l 6 .

? i n t e r v a l 6 : s t a r t s ? t s t a r t 6 .

f i l t e r (? t s t a r t 6 < ? tend1 ) . f i l t e r (? t s t a r t 6 < ? tend2 ) .

f i l t e r (? t s t a r t 6 < ? tend3 ) . f i l t e r (? t s t a r t 6 < ? tend4 ) .

f i l t e r (? t s t a r t 6 < ? tend5 ) .

? i n t e r v a l 6 : ends ? tend6 .

f i l t e r (? t s t a r t 1 < ? tend6 ) . f i l t e r (? t s t a r t 2 < ? tend6 ) .

f i l t e r (? t s t a r t 3 < ? tend6 ) . f i l t e r (? t s t a r t 4 < ? tend6 ) .

f i l t e r (? t s t a r t 5 < ? tend6 ) .

<<?x6 : hyper l inksTo ?x7>> : h a s I n t e r v a l ? i n t e r v a l 7 .

? i n t e r v a l 7 : s t a r t s ? t s t a r t 7 . f i l t e r (? t s t a r t 7 < ? tend1 ) .

f i l t e r (? t s t a r t 7 < ? tend2 ) . f i l t e r (? t s t a r t 7 < ? tend3 ) .

f i l t e r (? t s t a r t 7 < ? tend4 ) . f i l t e r (? t s t a r t 7 < ? tend5 ) .

f i l t e r (? t s t a r t 7 < ? tend6 ) .

? i n t e r v a l 7 : ends ? tend7 . f i l t e r (? t s t a r t 1 < ? tend7 ) .

f i l t e r (? t s t a r t 2 < ? tend7 ) . f i l t e r (? t s t a r t 3 < ? tend7 ) .

f i l t e r (? t s t a r t 4 < ? tend7 ) . f i l t e r (? t s t a r t 5 < ? tend7 ) .

f i l t e r (? t s t a r t 6 < ? tend7 ) .

<<?x7 : hyper l inksTo ?x8>> : h a s I n t e r v a l ? i n t e r v a l 8 .

? i n t e r v a l 8 : s t a r t s ? t s t a r t 8 .

f i l t e r (? t s t a r t 8 < ? tend1 ) . f i l t e r (? t s t a r t 8 < ? tend2 ) .

f i l t e r (? t s t a r t 8 < ? tend3 ) . f i l t e r (? t s t a r t 8 < ? tend4 ) .

f i l t e r (? t s t a r t 8 < ? tend5 ) . f i l t e r (? t s t a r t 8 < ? tend6 ) .
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f i l t e r (? t s t a r t 8 < ? tend7 ) .

? i n t e r v a l 8 : ends ? tend8 .

f i l t e r (? t s t a r t 1 < ? tend8 ) . f i l t e r (? t s t a r t 2 < ? tend8 ) .

f i l t e r (? t s t a r t 3 < ? tend8 ) . f i l t e r (? t s t a r t 4 < ? tend8 ) .

f i l t e r (? t s t a r t 5 < ? tend8 ) . f i l t e r (? t s t a r t 6 < ? tend8 ) .

f i l t e r (? t s t a r t 7 < ? tend8 ) .

<<?x8 : hyper l inksTo ?x9>> : h a s I n t e r v a l ? i n t e r v a l 9 .

? i n t e r v a l 9 : s t a r t s ? t s t a r t 9 .

f i l t e r (? t s t a r t 9 < ? tend1 ) . f i l t e r (? t s t a r t 9 < ? tend2 ) .

f i l t e r (? t s t a r t 9 < ? tend3 ) . f i l t e r (? t s t a r t 9 < ? tend4 ) .

f i l t e r (? t s t a r t 9 < ? tend5 ) . f i l t e r (? t s t a r t 9 < ? tend6 ) .

f i l t e r (? t s t a r t 9 < ? tend7 ) . f i l t e r (? t s t a r t 9 < ? tend8 ) .

? i n t e r v a l 9 : ends ? tend9 .

f i l t e r (? t s t a r t 1 < ? tend9 ) . f i l t e r (? t s t a r t 2 < ? tend9 ) .

f i l t e r (? t s t a r t 3 < ? tend9 ) . f i l t e r (? t s t a r t 4 < ? tend9 ) .

f i l t e r (? t s t a r t 5 < ? tend9 ) . f i l t e r (? t s t a r t 6 < ? tend9 ) .

f i l t e r (? t s t a r t 7 < ? tend9 ) . f i l t e r (? t s t a r t 8 < ? tend9 ) .

<<?x9 : hyper l inksTo ?x10>> : h a s I n t e r v a l ? i n t e r v a l 1 0 .

? i n t e r v a l 1 0 : s t a r t s ? t s t a r t 1 0 .

f i l t e r (? t s t a r t 1 0 < ? tend1 ) . f i l t e r (? t s t a r t 1 0 < ? tend2 ) .

f i l t e r (? t s t a r t 1 0 < ? tend3 ) . f i l t e r (? t s t a r t 1 0 < ? tend4 ) .

f i l t e r (? t s t a r t 1 0 < ? tend5 ) . f i l t e r (? t s t a r t 1 0 < ? tend6 ) .

f i l t e r (? t s t a r t 1 0 < ? tend7 ) . f i l t e r (? t s t a r t 1 0 < ? tend8 ) .

f i l t e r (? t s t a r t 1 0 < ? tend9 ) .

? i n t e r v a l 1 0 : ends ? tend10 .

f i l t e r (? t s t a r t 1 < ? tend10 ) . f i l t e r (? t s t a r t 2 < ? tend10 ) .

f i l t e r (? t s t a r t 3 < ? tend10 ) . f i l t e r (? t s t a r t 4 < ? tend10 ) .

f i l t e r (? t s t a r t 5 < ? tend10 ) . f i l t e r (? t s t a r t 6 < ? tend10 ) .

f i l t e r (? t s t a r t 7 < ? tend10 ) . f i l t e r (? t s t a r t 8 < ? tend10 ) .

f i l t e r (? t s t a r t 9 < ? tend10 ) .

}

B.3.5 PostgreSQL Query

SELECT h1 . source , h2 . source , h3 . source , h4 . source ,

h5 . source , h6 . source , h7 . source , h8 . source , h9 . source ,

h10 . source , h10 . d e s t i n a t i o n FROM

‘ ‘ H y p e r l i n k j o i n s ’ ’ AS h1 , ‘ ‘ H y p e r l i n k j o i n s ’ ’ AS h2 ,
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‘ ‘ H y p e r l i n k j o i n s ’ ’ AS h3 , ‘ ‘ H y p e r l i n k j o i n s ’ ’ AS h4 ,

‘ ‘ H y p e r l i n k j o i n s ’ ’ AS h5 , ‘ ‘ H y p e r l i n k j o i n s ’ ’ AS h6 ,

‘ ‘ H y p e r l i n k j o i n s ’ ’ AS h7 , ‘ ‘ H y p e r l i n k j o i n s ’ ’ AS h8 ,

‘ ‘ H y p e r l i n k j o i n s ’ ’ AS h9 , ‘ ‘ H y p e r l i n k j o i n s ’ ’ AS h10 WHERE

h1 . source = text (0 ) AND h1 . d e s t i n a t i o n = h2 . source AND

h2 . d e s t i n a t i o n = h3 . source AND h3 . d e s t i n a t i o n = h4 . source AND

h4 . d e s t i n a t i o n = h5 . source AND h5 . d e s t i n a t i o n = h6 . source AND

h6 . d e s t i n a t i o n = h7 . source AND h7 . d e s t i n a t i o n = h8 . source AND

h8 . d e s t i n a t i o n = h9 . source AND h9 . d e s t i n a t i o n = h10 . source AND

h1 . s t a r t s < h2 . ends AND h1 . s t a r t s < h3 . ends AND

h1 . s t a r t s < h4 . ends AND h1 . s t a r t s < h5 . ends AND

h1 . s t a r t s < h6 . ends AND h1 . s t a r t s < h7 . ends AND

h1 . s t a r t s < h8 . ends AND h1 . s t a r t s < h9 . ends AND

h1 . s t a r t s < h10 . ends AND h2 . s t a r t s < h1 . ends AND

h2 . s t a r t s < h3 . ends AND h2 . s t a r t s < h4 . ends AND

h2 . s t a r t s < h5 . ends AND h2 . s t a r t s < h6 . ends AND

h2 . s t a r t s < h7 . ends AND h2 . s t a r t s < h8 . ends AND

h2 . s t a r t s < h9 . ends AND h2 . s t a r t s < h10 . ends AND

h3 . s t a r t s< h1 . ends AND h3 . s t a r t s < h2 . ends AND

h3 . s t a r t s < h4 . ends AND h3 . s t a r t s < h5 . ends AND

h3 . s t a r t s < h6 . ends AND h3 . s t a r t s < h7 . ends AND

h3 . s t a r t s < h8 . ends AND h3 . s t a r t s < h9 . ends AND

h3 . s t a r t s < h10 . ends AND h4 . s t a r t s < h1 . ends AND

h4 . s t a r t s < h2 . ends AND h4 . s t a r t s < h3 . ends AND

h4 . s t a r t s < h5 . ends AND h4 . s t a r t s < h6 . ends AND

h4 . s t a r t s < h7 . ends AND h4 . s t a r t s < h8 . ends AND

h4 . s t a r t s < h9 . ends AND h4 . s t a r t s < h10 . ends AND

h5 . s t a r t s < h1 . ends AND h5 . s t a r t s < h2 . ends AND

h5 . s t a r t s < h3 . ends AND h5 . s t a r t s < h4 . ends AND

h5 . s t a r t s < h6 . ends AND h5 . s t a r t s < h7 . ends AND

h5 . s t a r t s < h8 . ends AND h5 . s t a r t s < h9 . ends AND

h5 . s t a r t s < h10 . ends AND h6 . s t a r t s < h1 . ends AND

h6 . s t a r t s < h2 . ends AND h6 . s t a r t s < h3 . ends AND

h6 . s t a r t s < h4 . ends AND h6 . s t a r t s < h5 . ends AND

h6 . s t a r t s < h7 . ends AND h6 . s t a r t s < h8 . ends AND

h6 . s t a r t s < h9 . ends AND h6 . s t a r t s < h10 . ends AND

h7 . s t a r t s < h1 . ends AND h7 . s t a r t s < h2 . ends AND

h7 . s t a r t s < h3 . ends AND h7 . s t a r t s < h4 . ends AND
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h7 . s t a r t s < h5 . ends AND h7 . s t a r t s < h6 . ends AND

h7 . s t a r t s < h8 . ends AND h7 . s t a r t s < h9 . ends AND

h7 . s t a r t s < h10 . ends AND h8 . s t a r t s < h1 . ends AND

h8 . s t a r t s < h2 . ends AND h8 . s t a r t s < h3 . ends AND

h8 . s t a r t s < h4 . ends AND h8 . s t a r t s < h5 . ends AND

h8 . s t a r t s < h6 . ends AND h8 . s t a r t s < h7 . ends AND

h8 . s t a r t s < h9 . ends AND h8 . s t a r t s < h10 . ends AND

h9 . s t a r t s < h1 . ends AND h9 . s t a r t s < h2 . ends AND

h9 . s t a r t s < h3 . ends AND h9 . s t a r t s < h4 . ends AND

h9 . s t a r t s < h5 . ends AND h9 . s t a r t s < h6 . ends AND

h9 . s t a r t s < h7 . ends AND h9 . s t a r t s < h8 . ends AND

h9 . s t a r t s < h10 . ends AND h10 . s t a r t s < h1 . ends AND

h10 . s t a r t s < h2 . ends AND h10 . s t a r t s < h3 . ends AND

h10 . s t a r t s < h4 . ends AND h10 . s t a r t s < h5 . ends AND

h10 . s t a r t s < h6 . ends AND h10 . s t a r t s < h7 . ends AND

h10 . s t a r t s < h8 . ends AND h10 . s t a r t s < h9 . ends
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