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Brachistochrones are constructed for attractive central force, with logarith-
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1 Logarithmic Potential

Under any force field, the path of quickest descent from one point to another is called
the brachistochrone for those points. For any central force, each brachistochrone is
in a plane through the startpoint, the endpoint and the centre of force.

Logarithmic potential applies to forces between parallel lines of uniform charge
or mass etc. Such problems are inherently 2–dimensional, with every plane normal to
the parallel lines having the same potential field. Any force field can be produced on
a spaceship (with adequate propellant); but otherwise there do not seem to be any
realistic physical instances of 3–dimensional fields with radial symmetry and logarith-
mic potential. Nonetheless, such 3–dimensional fields can be studied as mathematical
problems, with each brachistochrone being a plane curve.

A central logarithmic potential of the form

ϕ(r) = μ log r (1)

where r is the radius from a centre O, gives a force (per unit mass) directed towards
O, which is inversely proportional to the radius:

F =
μ

r
. (2)

The unit of time can be scaled so that μ = 1 for attraction, and μ = −1 for repulsion.
For a particle released from rest at A, whose radius is taken as 1, the speed at

radius r is v(r) (cf. Tee, 1999, (14)), where

1
2
v(r)2 = −ϕ(r) = −μ log r, (3)
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with r ≤ 1 for attraction and r ≥ 1 for repulsion. Thus the speed is unbounded as
r ↘ 0 for attraction, and as r ↗ ∞ for repulsion. Hence,

r = eμϕ = e−μv2/2, (4)

since μ = 1/μ.

1.1 Radial Motion

For attractive logarithmic potential μ = 1, if the endpoint B lies inside the interval
OA then the line AB is the brachistochrone, with the particle falling freely towards
the centre, at speed v(r) = −dr/dt. Hence, the time taken to reach radius r ≤ 1 is:

t =
∫

dt =
∫ 1

r

dx

v(x)
=

∫
v−1 d

(
e−v2/2

)
=

∫ √
−2 log r

0
e−v2/2 dv. (5)

In terms of

erf(z)
def
=

2√
π

∫ z

0
e−u2

du, (6)

this can be written as
t(r) =

√
π/2 erf(

√
− log r). (7)

Hence as r ↘ 0, the time for falling from radius 1 to r approaches the limit:

t(0) =
√

π/2 erf(∞) =
√

π/2 = 1.2533141373155003 . (8)

This limit can conveniently be abbreviated, by saying that the particle falls to the
centre at time t(0).

Figure 1 shews a graph of radius versus time, for a particle falling to the centre.
For repulsive logarithmic potential (μ = −1), if the starting point A is inside the

interval OB then the line AB is the brachistochrone, with the particle moving freely
outwards in the radial direction, with speed v(r) = dr/dt. Hence, the time to reach
radius r > 1 is:

t =
∫

dt =
∫ r

1

dx

v(x)
=

∫
v−1 d

(
ev2/2

)
=

∫ √
2 log r

0
ev2/2 dv. (9)

Figure 2 shews a graph of radius versus time, for a particle repelled radially from the
centre. For each r, t is evaluated by numerical integration of the integral in (9).

2 Formulæ for Brachistochrones

Brachistochrones for central forces have been constructed (Tee, 1999) as the or-
bits of associated free particles under transformed central forces. The family of
brachistochrones starting at a fixed point A (whose polar coordinates are taken as
r = 1, ϑ = 0) can be parametrized by the angular momentum K of the associated
free particle. Here, it is more convenient to parametrize them by J = 2K2.
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Figure 1:    Radius versus Time, Radial Motion for Attractive Logarithmic Potential
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Figure 2: Radius versus Time, Radial Motion for Repulsive Logarithmic Potential
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Hereafter, we consider only J > 0, since radial motion has been dealt with in §1.1.
Equations (23), (31) and (37) in (Tee, 1999) then give angle ϑ, arclength s and

time t, each as a definite integral between radius 1 and r:

ϑ =
∫ r

1

dx

±x
√

2x2

Jv(x)2
− 1

=
∫ μ log r

0
±μ

√
−Jψ

e2μψ + Jψ
dψ , (10)

s =
∫ r

1

dx

±
√

1 − Jv(x)2

2x2

=
∫ μ log r

0

μe2μψ dψ

±
√

e2μψ + Jψ
, (11)

t =
∫ r

1

dx

±
√

v(x)2
(
1 − Jv(x)2

2x2

) =
∫ μ log r

0

μe2μψ dψ

±
√

2ψ (e2μψ + Jψ)
. (12)

Here, ψ = ϕ(x), with the particle released from rest at A always having ψ ≤ 0. In
each of these integrals the positive square root is to be taken where radius increases
with t, and the negative square root is to be taken where radius decreases with t.

2.1 Equation for Apsidal Radius R

The orbit of the associated free particle with angular momentum K has an apsidal
radius R, if and only if K = R/v(R) (cf. Tee, 1999, (25)). In terms of J = 2K2,

J =
2R2

v(R)2
=

R2

−μ log R
, (13)

in view of (3).
At any apse,

0 =
dr

dϑ
=

dϕ

dϑ
=

dr

ds
=

dϕ

ds
=

dr

dt
=

dϕ

dt
. (14)

The integrands in (10), (11) and (12) are the reciprocals of these derivatives. There-
fore, each of those 6 integrands has an integrable singularity at the apse x = R, ψ =
μ log R.

The total angle of a particle on a brachistochrone is defined as
∫

dϑ. If the particle
has wound more than once around the centre, then the total angle is greater than 2π.

3 Attractive Logarithmic Potential

For attractive force, μ = 1. For fixed J > 0, equation (13) gives an equation in R:

R2 = −J log R. (15)

As R decreases from 1 towards 0, R2 decreases monotonically towards 0, whilst
−J log R increases monotonically and unboundedly from 0; so that the equation
(13) has exactly one real root R ∈ (0, 1). Therefore, each brachistochrone has one
apse, with r decreasing from 1 to the apsidal radius R > 0 on the first half–arch, and
increasing from R to 1 on the second half–arch.
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Hence, the brachistochrones can conveniently be parametrized by the minimum
radius R, rather than by J .

With μ = 1, (13) shews that, as R increases between 0 and 1, J increases
monotonically, with J ↘ 0 as R ↘ 0, and J ↗ ∞ as R ↗ 1.

3.1 Equations For Brachistochrone

Taking the negative square roots in (10) (11) (12), we get integral expressions for
angle, arclength and time as functions of radius on the first half-arch; each with the
minimum radius R as a parameter:

Θ(r, R) =
∫ 0

log r

√
R2ψ

log R e2ψ − R2ψ
dψ , (16)

S(r, R) =
∫ 0

log r

e2ψ√
e2ψ − R2

log R
ψ

dψ , (17)

T (r, R) =
∫ 0

log r

e2ψ√
2ψ

(
R2

log R
ψ − e2ψ

) dψ . (18)

Each brachistochrone is symmetric about each apsidal line; and hence on the
second half–arch the positive square roots are taken in (10), (11) and (12), giving

ϑ = 2Θ(R, R) − Θ(r, R), s = 2S(R, R) − S(r, R), t = 2T (R, R) − T (r, R). (19)

Or, if angle ω, arclength σ and time τ are measured from the apse, then the complete
brachistochrone is given in terms of r by the integrals

ω = ±
∫ log r

log R

√
R2ψ

log R e2ψ − R2ψ
dψ , (20)

σ = ±
∫ log r

log R

e2ψ√
e2ψ − R2

log R
ψ

dψ , (21)

τ = ±
∫ log r

log R

e2ψ√
2ψ

(
R2

log R
ψ − e2ψ

) dψ . (22)

3.1.1 Computation of Brachistochrones

The integral (16) for ϑ has a singularity in the derivative of the integrand at ψ = 0,
and when r = R it has an integrable singularity at ψ = log R. Those singularities may
be eliminated by an appropriate change of variable, to produce a smooth integrand
which is suitable for quadrature by Romberg integration.

In (16), substitute

log r = ψ(κ) = 1
2
log R (1 − cos κ) = log R sin2(κ/2), (23)

so that as ψ decreases from 0 to log R, κ increases from 0 to π, and

κ = κ(ψ) = arccos

(
1 − 2ψ

log R

)
. (24)
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Now,

cos2(κ/2) = 1 − sin2(κ/2) = 1 − log r

log R
=

ψ − log R

− log R
, (25)

and therefore

dψ = log R sin(κ/2) cos(κ/2) dκ

= − sin(κ/2)
√
− log R (ψ − log R) dκ. (26)

Then the integral (16) becomes

Θ(r, R) = −R log R
∫ κ(log r)

0
sin2(κ/2)

√
ψ − log R

R2ψ − log R e2ψ
dκ, (27)

where the function κ(ψ) is given by (24) and the inverse function ψ(κ) is given by
(24).

In (27) the integrand is smooth for all r ∈ (R, 1]. But, as r ↘ R, ψ ↘ log R,
and hence the argument of the square root approaches the form 0/0.

In order to avoid that indeterminate expression, substitute

w(κ) = ψ − log R = − log R cos2(κ/2), (28)

so that
x = eψ = ew+log R = Rew. (29)

Then, (27) becomes

Θ(r, R) =
∫ κ(log r)

0

− log R sin2(κ/2)√
1 − log R F(− log R cos2(κ/2))

dκ , (30)

where

F(w)
def
=

e2w − 1

w
(w 	= 0), (31)

and F(0)
def
= 2 (for continuity).

For |w| ≥ δ for some suitable δ < 1 (e.g. δ = 10−3), F(w) can safely be
evaluated directly from (31). But for |w| < δ, F(w) should be evaluated from the
rapidly convergent power series:

F(w) =
2

1!
+

2(2w)

2!
+

2(2w)2

3!
+

2(2w)3

4!
+ . . . . (32)

In this manner, the integral expression (30) for Θ(r, R) can be computed by
Romberg integration with respect to κ. In particular, the apsidal angle

Θ(R, R) =
∫ π

0

− log R sin2(κ/2)√
1 − log R F(− log R cos2(κ/2))

dκ , (33)

can be computed by Romberg integration with respect to κ.

3.1.2 Bound for Apsidal Angle
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For attractive central force proportional to 1/rn, with real n > 1, Ron Keam has
proved that (Tee, 1999, footnote to (74)) as R ↘ 0, the limit for the apsidal angle
is π/(n + 1), and hence the total angle has limit 2π/(n + 1). Here we consider
logarithmic potential with n = 1. The limit 1

2
π of Keam’s angle as n ↘ 1 suggests

that the apsidal angle has the limit 1
2
π as R ↘ 0, and hence the total angle has the

limit π. (The angle π cannot be attained, since the particle cannot pass through the
singularity at the centre, in any physically meaningful problem).

Substituting (3) (with μ = 1) into (Tee, 1999, (27)), we get the expression for ϑ
in the form:

ϑ = Θ(r, R) =
∫ 1

r

dx

x
√

log R
log x

. x2

R2 − 1
. (34)

Substituting

x =
R

z
, (35)

so that z increases from R to 1 as x decreases from 1 to R, and

dx =
−R

z2
dz, (36)

equation (34) becomes

Θ(r, R) =
∫ R/r

R

dz

z
√

log R
z2(log R−log z)

− 1

=
∫ R/r

R

dz√
log R

log R−log z
− z2

=
∫ R/r

R

dz√
log z

log R−log z
+ 1 − z2

. (37)

Substituting
z = sin α, (38)

this reduces to

Θ(r, R) =
∫ arcsin(R/r)

arcsin(R)

dα√
1 + sec2 α log sin α

log(R/ sin α)

. (39)

(This integrand is indeterminate at each bound, and its derivative has a singularity
at the lower bound. Hence, ϑ should be computed by (30).)

In particular, the apsidal angle is

Θ(r, R) =
∫ π/2

arcsin(R/r)

dα√
1 + sec2 α log sin α

log(R/ sin α)

=
∫ π/2

0
Ξ(α) dα, (40)

where

Ξ(α)
def
=

1√
1 + sec2 α log sin α

log(R/ sin α)

(α > arcsin R), (41)

and
Ξ(α)

def
= 0 (α ≤ arcsin R). (42)

Thus, for each α ∈ (0, π), Ξ(α) is a continuous function of R; which is the con-
stant 0 for R > sin α, and it is the integrand in (39) for R ≤ sin α. As R ↘
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0, log(R/ sin α) ↘ −∞; and hence Ξ(α) ↗ 1, for all α ∈ (0, π). (The convergence of
Ξ(α) to 1 is not uniform in α).

Therefore, as R ↘ 0, the apsidal angle Θ(R, R) converges to 1
2
π, and the total

angle of the complete brachistochrone converges to π.
Table 1 gives the apsidal angle for R = 10−m, m = 1, 2, . . . , 8. Even with

R = 10−8 (which requires rather delicate computation by (33)), the apsidal angle
1.52763786999141 differs from the limit 1

2
π = 1.57079632679489661 by 0.043 .

Table 1

m R x Apsidal Angle Extrapolation

1 10−1 1/1 1.18454904348185 1.57065542051970
2 10−2 1/2 1.38567877967839 1.57063431294604
3 10−3 1/3 1.45182977320007 1.57065075063140
4 10−4 1/4 1.48298052830808 1.57078376162025
5 10−5 1/5 1.50108588140844 1.57088727006925
6 10−6 1/6 1.51296377451786 1.57061423215590
7 10−7 1/7 1.52137031732430 1.57151073866118
8 10−8 1/8 1.52763786999141 1.52763786999141

The sequence of 8 apsidal angles given in Table 1 can be extrapolated in various
ways, to estimate their limit as R ↘ 0. However, their convergence is slower than
linear, so that even Aitken acceleration (applied iteratively) does not provide much
improvement. Simple polynomial interpolation (by polynomials in R) to R = 0
cannot be expected to work well here, since most of the tabular points are very close
to R = 10−8.

However, if we take x = −1/ log10 R as the independent variable, then the tabu-
lated values are given for x = 1

1
, 1

2
, · · · , 1

7
, 1

8
. Hence, if we construct the interpolation

polynomials in x for suitable subsets of these 8 points, then we expect their values
at x = 0 to give improved estimates of the limit 1

2
π.

In the column Extrapolation in Table 1, row m gives the result of polynomial
extrapolation from x = 1/8, 1/7, · · · , 1/m to x = 0. Even linear extrapolation (from
x = 1/8, 1/7) reduces the error from 0.043 to 0.00072, and quartic extrapolation
(from x = 1/8, 1/7, 1/6, 1/5, 1/4) reduces the error to 0.000013 .

We have shewn that the total angle has the upper bound π. Therefore, no
brachistochrone connects points A and B, if the interval AB passes through the
centre O. With such an endpoint B the particle could fall down the radius vector
OA until it gets very close to the centre 0, then smoothly swerve close to the centre
around to the radius vector OB and rise up it to B at radius ρ ≤ 1. For such a
smooth path from A to B the passage time has (cf. (7)) the least upper bound

η(ρ)
def
= t(0) + (t(0) − t(ρ)) =

√
π/2(2 − erf(

√
− log ρ)). (43)

3.1.3 Pictures of Brachistochrones, for Attractive Inverse Square Force
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Figure 3 shews the complete brachistochrones from A for minimum radius R =
0.005 (0.005) 0.05 (0.05) 0.95, with ϑ computed for many values of r by Romberg
integration of (30). The dashed curve is the apsidal locus, which separates the first
half–arches from the second half–arches.
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Figure 3:   Brachistochrones, for minimum radius R = 0.005 (0.005) 0.05 (0.05) 0.95

Note that the small complete brachistochrones do indeed resemble complete cycloid
arches, as expected. As R ↘ 0, the first half–arch converges towards the initial radius
vector OA, and the second half–arch converges towards the radius vector at the total
angle.

Figure 3 displays the very slow convergence of the total angle to π, as R ↘ 0.

3.2 Arclength as a Function of Radius

The integral (17) for s has an integrable singularity at ψ = log R, when r = R.
Apply the substitution

u =
√

ψ − log R, (44)

so that
u2 = ψ − log R (45)

and
eψ = Reu2

. (46)

Then the equation for S becomes:

S(r, R) =
∫ √

log(1/R)

√
log(r/R)

2Re2u2√
F(u2) − 1

log R

du , (47)

where the function F is to be evaluated as with (31).
In particular, the arclength to the apse is

S(R, R) =
∫ √

log(1/R)

0

2Re2u2√
F(u2) − 1

log R

du . (48)
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And these transformed integrals are suitable for Romberg integration with respect
to u.

3.2.1 Graphs of Radius versus Arclength

Figure 4 shews graphs of r versus s for various values of the minimum radius R,
with s computed for various values of r by Romberg integration of (47). Each graph
is symmetric about the line s = S(R, R).
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Figure 4: Radius versus Arclength, Logarithmic Attraction for minimum radius R = 0.1 (0.1) 0.9
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The dotted line is the limit of the graphs as R ↘ 0, with the first half representing
the radius vector at ϑ = 0, and the second half representing the radius vector at
ϑ = π.

3.3 Time as a Function of Radius

The integral (18) for t has an integrable singularity in the integrand at ψ = 0, and
when r = R it has an integrable singularity at ψ = log R. Those singularities may
be eliminated by an appropriate change of variable, to produce a smooth integrand
which is suitable for quadrature by Romberg integration.

With the substitution (23), the equation (18) becomes

T (r, R) =
∫ κ(r)

0

dκ

Rcos κ

√
2

(
F( − log R cos2(κ/2)) − 1

log R

) , (49)

where the function κ = κ(r) is given by (23). In particular, the time at the apse is

T (R, R) =
∫ π

0

dκ

Rcos κ

√
2

(
F( − log R cos2(κ/2)) − 1

log R

) . (50)

And these transformed integrals are suitable for Romberg integration with respect
to κ.
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3.3.1 Graphs of Radius versus Time

Figure 5 shews graphs of r versus t, for various values of the minimum radius R.
Each graph is symmetric about the line t = T (R, R).
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Figure 5: Radius versus Time, for minimum radius R = 0.1 (0.1) 0.9
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The dashed curve is the limit of the graphs as R ↘ 0, with the first half (cf. Figure 1)
representing free fall down the radius vector at ϑ = 0, and the second half representing
free rise up the radius vector at ϑ = π.

3.4 Relation between Arclength and Angle

For each value of the minimum radius R, each of ϑ, s and t can be computed from
(16), (17) (18) and (19) as functions of r.

Figure 6 shews graphs of ϑ versus s for various values of R, with the points on
each graph computed for the parameter r.
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The dashed line is the limit of the graphs as R ↘ 0, with the first vertical line
representing the radius vector at ϑ = 0, and the second vertical line representing the
radius vector at ϑ = π. The horizontal line represents the transition from the first
radius vector to the second, with zero arclength involved.

Since angle (20) arclength (21) (and likewise time (22)), measured from the apse,
are each even functions of r, each of these graphs is symmetric about its midpoint,
corresponding to the apse.

3.5 Relation between Time and Angle

Figure 7 shews graphs of t versus ϑ for various values of R, with the points on
each graph computed for many values of the parameter r. Since both angle (20) and
time (22) , measured from the apse, are even functions of r, each of these graphs is
symmetric about its midpoint, corresponding to the apse.
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The dashed line is the limit of the graphs as R ↘ 0, with the first vertical line
representing the radius vector at ϑ = 0, and the second vertical line representing the
radius vector at ϑ = π. The horizontal line represents the transition from the first
radius vector to the second, with zero time involved.

3.6 Relation between Arclength and Time

Figure 8 shews graphs of s versus t for various values of R, with the points on each
graph computed for many values of the parameter r.

13



0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 8: Arclength vs. Time, Attractive Logarithmic Potential for minimum radius R = 0.1 (0.1) 0.9

Limit of graphs as R → 0 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

√(π/2)
Time t

A
rc

 le
ng

th
 s

The dashed curve is the limit of the graphs as R ↘ 0, with the first half (cf. Figure 1)
representing free fall down the radius vector at ϑ = 0, and the second half representing
free rise up the radius vector at ϑ = π.

Since both arclength (21) and time (22) , measured from the apse, are even
functions of r, each of these graphs is symmetric about its midpoint, corresponding
to the apse.

4 Brachistochrone Through Two Points

Reasoning similar to that for inverse square attraction (Tee, 1999, §5) shews that,
through each point B = (ρ, ψ) (with ρ ≤ 1 and 0 ≤ ψ < π), there passes 1 and only
1 brachistochrone starting at A.

In order to construct the brachistochrone AB, we need to compute its minimum
radius R̃, which is the parameter for that particular brachistochrone starting from A
and passing though B.

Note that 0 < R̃ ≤ ρ ≤ 1.

4.1 Computation of the Parameter R̃
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If 0 < ψ ≤ Θ(ρ, ρ) < 1
2
π, then B is on the first half-arch of the brachistochrone.

Accordingly (cf. (30) ), the angle at B satisfies the equation

ψ = Θ(ρ, R̃), (51)

for some minimum radius R̃ ≤ ρ.
Otherwise, B is on the second half-arch, and the angle at B satisfies the equation

(19)
ψ = 2Θ(R̃, R̃) − Θ(ρ, R̃). (52)

In particular, this is the case if 1
2
π ≤ ψ < π.

Thus, the construction of the brachistochrone AB has been reduced to compu-
tation of the root R = R̃ of the equation

Υ(R) = ψ. (53)

For Θ(R, R) ≥ ψ,

Υ(R)
def
=

∫ κ(log ρ)

0

− log R sin2(κ/2)√
1 − log R F(− log R cos2(κ/2))

dκ, (54)

but otherwise

Υ(R)
def
= 2Θ(R, R) −

∫ κ(log ρ)

0

− log R sin2(κ/2)√
1 − log R F(− log R cos2(κ/2))

dκ . (55)

Here, κ(ψ) is defined by (24), and F(w) is defined by (31).
The equation (53) can readily be solved to high accuracy by the secant method,

which requires evaluation of the function Υ and which requires two initial estimates
of the root — e.g. R0 = 0.9ρ, R1 = 0.7ρ. When the pair of initial estimates are such
that the secant method does converge to a root (Rn → R̃), then it converges (for a
C2 function) with order γ = (

√
5 + 1)/2 = 1.6180340 . Since the convergence is of

order γ > 1 (which is faster than linear), then (Rn − R̃)/(Rn −Rn−1) → 0 as n → ∞,
and so the limit R̃ can reliably be estimated.

Once R̃ has been computed, then the arclength AB can be computed from (47),
and the minimum passage time from A to B can be computed from (49).

4.2 Examples of Construction of Brachistochrone
Through Two Points

Many examples of brachistochrones through two points have been computed by a
program written in Lightspeed PASCAL, using extended variables which have round-
off corresponding to 18 or 19 significant decimal figures. Some examples are presented
in Table 2, with initial estimates based on Figure 3. In each case, the secant method
ended with two successive estimates of R differing by less than 10−16. (Some other
initial estimates R0 & R1 gave divergence.)

Here, ρ and ψ give the polar coordinates of the endpoint B,
R0 and R1 are the initial estimates given for apse radius R,
Steps is the number of steps performed of the secant method,
R̃ is the computed value for R,
s is the arclength of the brachistochrone AB, and
t is the time for the particle to reach the endpoint B.
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Table 2

ρ ψ R0 R1 Steps Brachistochrone AB

1.0 0.157 0.996 0.99 6

⎧⎪⎪⎨⎪⎪⎩
R̃ = 0.948788343797909
s = 0.196476503746508
t = 0.968394666245991

0.9 1.5 0.8 0.7 6

⎧⎪⎪⎨⎪⎪⎩
R̃ = 0.426480927074592
s = 1.430723925548911
t = 2.082739096676244

0.9 2.5 0.1 0.08 6

⎧⎪⎪⎨⎪⎪⎩
R̃ = 0.062333726353732
s = 1.867880510968911
t = 2.059530248212051

0.6 0.5 0.599 0.598 7

⎧⎪⎪⎨⎪⎪⎩
R̃ = 0.598723464905918
s = 0.571271064389208
t = 1.057464760484534

0.45 0.6 0.44 0.43 8

⎧⎪⎪⎨⎪⎪⎩
R̃ = 0.443339148395256
s = 0.690499643593194
t = 1.124262547909142

0.4 0.5 0.3 0.35 8

⎧⎪⎪⎨⎪⎪⎩
R̃ = 0.367769532583414
s = 0.683831939327019
t = 0.795163104970152

0.2 0.26 0.15 0.14 7

⎧⎪⎪⎨⎪⎪⎩
R̃ = 0.098335703204582
s = 0.808955636324865
t = 1.168122386544447

5 Brachistochrones For
Repulsive Logarithmic Potential

The brachistochrones for repulsive logarithmic potential display some interesting com-
plexities, associated with the radius

√
e.
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