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A Bayesian method has been proposed for analysing radiocarbon dates� The method takes into account

stratigraphic constraints on recovered calendar dates� We �nd that the non�informative priors in

use in the literature apply a bias towards wider date ranges which is not in general supported by

substantial prior knowledge� We recommend using a prior which has a uniform marginal date range�

We show how such priors are derived from a model of the deposition and observation process� We

apply the method to relatively large data sets� examining the e�ect that various priors have on the

reconstructed dates�
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� Introduction

Buck� Kenworthy� Litton and Smith have described a Bayesian method for estimating calendar

dates from radiocarbon measurements �see Buck et al� ���� and Buck et al� �����	 Stratigraphic

constraints may be incorporated in the analysis	 The authors give a straightforward inference scheme�

based on MCMC simulation from the posterior	 Christen ���
 gives an outlier analysis� within

the same Bayesian�MCMC framework	 A statistical package� OxCal� described in Ramsey �����

implements some of the methods presented in Buck et al� ����	 See Buck et al� ��� and Litton

and Buck ��� for reviews of the �eld	 Note that Bro�t ���
 gives a Bayes estimator for ordered

parameters� using conjugate priors and a class of likelihoods excluding those treated here	

It was our intention to report a simple application of these methods to a particular data set� using

non�informative priors from the families described in Buck et al� ��� �and below in Section �	��	

However� when dates cover an interval of time which is not large compared to the error in the

radiocarbon dating process� we �nd that such priors push the earliest and latest reconstructed dates

towards unrepresentatively early and late values respectively	 We derive� in Sections �	� and �	�� a

family of priors from a model of the deposition and aging processes	 Our models turn out to have the

property that the marginal prior distribution of the date range is uniform	 In Section � we illustrate

the posterior inference in two case studies	 Data sets have been chosen which are sensitive �Case I�

and insensitive �Case II� to the information supplied by the priors under consideration	

We suppose a total of K uncalibrated radiocarbon ages� for K distinct objects� are obtained from

M strata	 Let Nm denote the number of dates obtained in the m�th stratum� running from the

topmost stratum where m � � to the deepest� with m � M 	 Let �m�n be the unknown true date

�in years before the present �years BP�� where the present is the year ���� � like all dates in this

paper� �m�n is in fact an age� on which object �m�n� ceased exchanging carbon dioxide with its

environment	 This event date must be distinguished from the context date� where object �m�n��s

context date is the unknown true date on which object �m�n� was deposited	 Clearly� the event

date will predate the context date by an interval of time	 However� we will further assume that

the context and event dates are identical	 We assume that all ages are known to lie in some �xed

interval �L�U �� with L � U � of years BP	 This interval can be chosen to be arbitrarily large� possibly

equal to ������ if such limits are not a part of the prior information	 Thus if � is the K component

vector ������ � � ����N�
������ � � ����N�
� � � ����M � � � ��M�NM

�� then � � �L�U �K 	

The dating laboratory returns measurements of radiocarbon ages with units �radiocarbon years BP�	

The mapping c � ��x� from an event date x in calendar years BP to a radiocarbon age c is given

by a pair of calibration curves c � �mrn�x� and c � �ttl�x�� calibrating specimens of marine and

terrestrial origin respectively	 Sections of these two curves are shown in Figure �	 Notice that the

terrestrial curve is not monotone	 The uncertainties in the calibration curves are given by standard

errors �cmrn���� �
c

ttl��� depending on the age of the sample	 We have interpolated the bidecadal

calibrations of Stuiver and Pearson ���� and Stuiver and Braziunas ���� using cubic splines� storing

the results in a lookup table� constant in a one year interval	 Let ym�n denote the n�th observed

�uncalibrated� radiocarbon age obtained in layer m	 Each datum ym�n is reported from the lab with

an estimated standard error �m�n	 There is an uncertainty associated with calibrating radiocarbon

ages measured in the southern hemisphere using curves estimated from northern hemisphere reference

material	 We return to this issue in Section �	 Let

��x�m� n�� ��m�n�x�
� �
�

�ttl�x�� �m�n
� � �cttl�x�
� if specimen �m�n� is of terrestrial origin

�mrn�x�� �m�n
� � �cmrn�x�
� if specimen �m�n� is of marine origin

Let �m�n represent a trial value for �m�n and let y� �� ����� and � respectively denote theK component

vectors �y���� � � � y��N�
� � � � y��M � � � � yM�NM

� etc� so that y � �K and � � �L�U �K 	 The likelihood

density function is

g�yj�� � ZL���
�� exp��jy � ����j��������
�
��

�
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Figure �� Calibration curves� �A� terrestrial curve� �ttl��� and �B� marine curve� �mrn���� from Stuiver

and Pearson ���	 and Stuiver and Braziunas ���	
 In each graph ���� and ����� ��c��� are represented

by solid and dashed lines respectively
 Horizontal lines indicate a radiocarbon age ym�n �dotted� with ��

limits ym�n � ��m�n �dot�dashed�
 The histogram below is proportional to the likelihood� g�ym�nj�m�n�


where

�jy � ����j��������
�
� �

MX
m��

NX
n��
�ym�n � ���m�n�m� n��
�����m�n��m�n�
�

���

and ZL��� is a straightforward normalising function	 We must allow the K measurements ym�n

to date up to K distinct context dates �m�n	 If it is known that radiocarbon ages ym�n and ym�n�

measure a single context date� there is a straightforward modi�cation of the likelihood	

� Analysis

��� Non�informative priors

Context dates are constrained by their stratigraphic relations	 In our observation model no infor�

mation is recorded on intra�stratum ordering� whilst inter�strata ages are known to be ordered as

�m�n 	 �m��n if m 	 m� �greater depth indicates greater age�	 The space of possible true calendar

dates is �� where

�� � f� � L � ����� � � � ���N�

� ����� � � � ���N�

� � � � � ���M � � � � �M�NM

� Ug� ���

Let f��� be some unnormalised prior density on ��	 We give the posterior probability distribution

H��d�jy� f� � Prf� � d�jy� fg for ages in terms of a density� H��d�jy� f� � h���jy� f�d� where

d� � d���� � � � � d�M�NM

�

h���jy� f� � Z�
P �y� f�
��g�yj��f���� ���

and Z�
P �y� f� is an intractable normalising function	 We wish to recover estimates of the unknown

true ages � given uncalibrated radiocarbon data �y� ��� and to quantify the range of ��values which

the data will admit	

�

Several authors� following Buck et al� ����� use the non�informative prior density f � f���� � �

in Equation ���	 Since this puts equal weight on all states� the mode of the posterior is equal to

the maximum likelihood estimator for �	 Let ���� � max����min��� denote the unknown time

interval between the maximum and minimum of all the true ages and let 
 be some trial value for

�	 We have computed the marginal prior density for � when K � � and �nd

f���
� 	 �R� 
�
K��� �
�

where R � U �L	 This result is independent of the way dates are alloted to layers �via Nm values�	

As the number of carbon dates is increased� the number of random variables in the model �ie K� goes

up� driving reconstructed dates to wider intervals	 Equation �
� is obtained by a straightforward

summation of the marginal integrals over all complete orderings of ���� � � ��M�NM

consistent with

the partial ordering given in Equation ���	 Buck et al� ���� compute numerically the marginal

prior distributions of the �m�n parameters	 If K is small as in that paper the resulting marginals are

perhaps acceptable� in the sense that they represent a plausible prior state of knowledge	 However�

it is clear from Equation �
� that� when K is large� this cannot be the case	

Perhaps the most popular family of prior models in the literature� particularly for K large� are

the multi�phase models of Buck et al� ����	 Dated objects are here associated with phases� which

may overlap� rather than strata� which do not in general overlap	 We introduce variables �m� �m �

�L�U �� �m 	 �m� with units years BP� parameterising the start ��m� and end ��m� of phase m	

Thus �m � �m�n and �m�n � �m for each n � � � � �Nm	 If it is known that the start of phase m

coincides with the end of phase m� �� then we set �m � �m��	 Let C��� �� L� U� denote an event�

de�ned as a set of equalities and inequalities between ��s� ��s and L and U only	 The relations

C��� �� L� U� will be those constraints available to us as part of the prior knowledge	 C��� �� L� U�

may be represented as a digraph� with a node for each component of � and �� and nodes for L and

U 	 The relations a 	 b and a � b are represented by a directed edge from a�s node to b�s node	

The relation a � b is represented by an undirected edge between nodes a and b	 We assume this

graph contains no cycles	 For example� when phases correspond to stratigraphic layers� the bottom

of layer m at �m years BP naturally occurs after the top of layer m� � at �m�� years BP� so that

�m�� � �m	 Thus� when phases correspond to strata�

C��� �� L� U� � fL � �� � �� � �� � �� � � � � �M � �M � Ug� ���

and the corresponding constraint graph is given in Figure �	 Returning to the general case� if Am
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Figure �� Graph of the constraint relations C��� �� L� U� for the simple phase model of strata� Equation ��


Nodes correspond to parameters �m and �m� and limits� L and U � if they are present
 Directed edges ��

run from a node a to node b if either of the constraints a � b or a � b are present


and Bm denote the unknown true values of �m and �m� and � � ��� � � � �M � etc� the full state space

of this second model is

�A�B�� � f��� �� �� � C��� �� L� U�� ����� � � � ���N�

� ���� ���� � � � �M��� � � � �M�NM

� ��M � �M �g�

Each variable �m�n is taken by Buck et al� ��� to be a priori uniform over the interval ��m� �m��

with normalising constant ����m � �m� so the unnormalised prior density is

fA�B����� �� �� �

MY
m��
��m � �m�
�Nm � ��






Let E denote the number of equalities present in the constraint set C��� �� L� U�	 The number

of distinct phase variables is then �M � E	 Now the marginal prior distribution of the variable

��A�B� � max�A� �min�B� is

fA�B��� �
� 	 �R� 
�
�M�E���

This result is derived in the same way as Equation �
�	 Again� the obvious non�informative prior

favours widely spread dates	 If HA�B���d� d� d�jy� f� � PrfA � d�� B � d�� � � d�jy� fg for

some density f��� �� ��� and HA�B���d� d� d�jy� f� � hA�B����� �� �jy� f�d� d� d�� then the posterior

density on �A�B�� is

hA�B����� �� �jy� f� � ZA�B��

P �y� f���g�yj��f��� �� ���

with ZA�B��

P �y� f� an intractable normalising function	

We wish to simplify the model given above	 When we date layered strata� we have no need to dis�

tinguish the end of one phase �ie layer� from the start of the next	 We set �m � �m�� and use a re�

stricted set of parameters m to represent these boundary transition ages	 Let  � � �� �� � � � M �

be a vector containing the unknown true layer transition ages	 The state space of � ��� is

���� � f�� �� � L � � � � � � � � � M � U �

����� � � � ���N�

� ��� ��� � � � �M��� � � � �M�NM

� �M��� M �g� �!�

If  is a vector of trial values for the components of  � the prior density is given by Equation ���

f������ � �

MY
m��
�m � m���
�Nm �

If H����d d�jy� f� � Prf � d� � � d�jy� fg for some density f�� ��� and H����d d�jy� f� �

h����� �jy� f�d d�� then the posterior density on ���� is

h����� �jy� f� � Z���

P �y� f���g�yj��f�� ���

with Z���

P �y� f� an intractable normalising function	

��� A model of the deposition process

Up to this point we have been describing models already in use in the literature	 We prefer to work

with a distinct family of priors� which we derive from a simple model of the deposition process	

We work with the variables  ��� taking values in the state space ���� constrained according to

Equation �!�	 We wish to model the process by which the unknown true  and � were formed	 Let

"�t� be the intensity of a Poisson point process in time t� t � �L�U �� which we will use to model the

layer formation process	 We suppose
"�t� �
�

"� t � � �� M ��

� t otherwise�

where "� is a constant and � �� M � is the period for which the layer formation process was active	

Realisations of this layer process include all distinguishable point sets � � � � � M��� with  m �

� �� M � and  m �  m�� for m � � � � �M � �	

We model the deposition process as a second Poisson point process� with intensity ��t�	 Its realisa�

tions are sets of context dates� �� years BP	 The setup is illustrated in Figure �	 ��t� represents the

�

ΨMΨΨ1 2 ΨΨM-2 M-1Ψ0

Λ(  )t

ρλ(  )t

1,1 2,1 M,1 M,NΘ Θ Θ ΘΘ1,N
1 M

Figure �� The deposition model is a doubly stochastic process built from a pair of Poisson point processes


Dated material is deposited at a rate ���t�
 The context dates associated with these dated events are labelled

�m�n
 Change points �m in the deposition rate ��t� occur at a rate ��t� which is constant through the active

period� and otherwise zero
 The process runs backwards in calendar time� however� it is time reversible� so

the forward process is equivalent


rate at which datable items were deposited through the active period	 We allow this rate to vary

from layer to layer	 We suppose

��t� �
�

�m t � � m��� m�� for each m � � � � �M

� t otherwise�

for some constants ��� � � � �M 	 Now� suppose each item of potentially datable deposited material is

in fact found and dated with constant probability �� and missed with probability �� �	 Let � 
 ��

be the unknown true ages belonging to the subset of deposited materials which were in fact dated	

The set � is a realisation of a Poisson point process with intensity ���t�	

We assume that the number of layersM is counted exactly� without missing any of the change points

m in the intensity ��t�	 This allows us to condition on knowledge of M and thereby set aside the

unknown intensity "�t�	 No such assumption is necessary in respect of the process generating ��

since its realisations are just the unknown ages of the dated objects	 The number Nm of � variables

in a layer is counted exactly� and so we can condition on knowledge of Nm� and thereby avoid

inference about ���t� itself	

Our model leads to the following prior distribution for � ��� � �����

Prf � d� � � d�g �

MY
m��

d�

�m � m���Nm

�

�M � ��#

�M � ��M��
d� � � � dM�� � Prf � � d�� M � dMg�

Let I�X� denote the indicator function for the event X 	 We take a uniform prior

Prfd � � d�� d M � dMg 	 I�L � � � M � U�d�dM

on the only two remaining unmodeled variables	 Now if Prf� � d��  � dg � $f����� ��d d��

with d � d� � � � � dM � our modelling has lead us to the prior density

$f����� �� �

�

�M � ��M��
�

MY
m��
�m � m���
�Nm � ���

di%ering by a factor �M � ��
�M�� from the non�informative prior density f��� de�ned above	





If we wish to impose a constant deposition rate ��t� in � �� �� then we set M � � in Equation ���	

Integrating out variables M and � leads to a prior density $f
���� for the variables � � �� given

approximately by

$f���� �

�

�max����min����K��
�

The approximation treats terms �U �min�����K�� and �max��� � L��K�� as small	

��� Modi�ed priors

Since the prior is a vehicle for archaeological fore�knowledge� we suggest taking a non�informative

�and unnormalised� density with known properties� and using this as a base� incorporating knowledge

via further multiplied densities and conditioning	

We de�ne such base priors by dividing the original densities f�� fA�B�� and f��� by the associated

marginal density for �	 Recall that R � U � L	 For the simplest model� with � � ���

�f���� �

�

R� �max����min����
�

�

�max����min����K��
� ���

while for the general phase model� with ��� �� �� � �A�B���

�fA�B����� �� �� �

�

R� �max��� �min����
�

�

�max����min�����M��
�

MY
m��
��m � �m�
�Nm �

and �nally for the simpli�ed layer model� with �� �� � �����

�f����� �� �

�

R� �M � ��
�

�

�M � ��M��
�

MY
m��
�m � m���
�Nm �

These prior densities are attractive to us for two reasons	 Firstly� they have the property that the

marginal density for the di%erence between the top and bottom dates� or phases� is a priori uniformly

distributed over its allowed range ��� R�� that is

� � �f����  max����min��� � U��� R��

�A�B��� � �fA�B���A�B���  max�A��min�B� � U��� R��

� ��� � �f���� ���   M � � � U��� R��

Secondly� �f� and �f��� are equal to the corresponding deposition model prior densities� $f� and

$f���� up to factors R� �max����min���� and R� �M ��� respectively	 These extra state space

factors are needed to get exactly uniform marginal priors for the range parameter� �	 They will

be near to constant in analyses where a conservative �L ��  � and  M �� U� range is chosen�

as the likelihood will then penalise states sensitive to R � �max��� � min���� or R � �M � ��	

When a tight range can be used� so that L and U are close to the true start and end of the dated

process� we regard the uniform marginal range as too valuable to give up� and retain the factors

R� �max����min���� and R� �M � ��	

!

� Case studies

The marginal prior distributions of the range variable � under the priors f�� fA�B�� and f��� show

strong power�law dependence	 Thus if 
 and �
 are two candidate date ranges in a model with M

phases and K data points� the range �
 is favoured over the range 
 by a factor of �K under prior

f�� ��M�E�� under prior fA�B�� and �M�� under prior f���	 However� the likelihood has a �

dependence which is approximately Gaussian �at least over large date ranges� and so any spreading

e%ect of the prior will be visible in the posterior only if the likelihood admits both 
 and �
	 Under

priors �f�� �fA�B�� and �f��� candidate ranges 
 and �
 are� a priori� equally probable	

In simulation studies from synthetic data we have found that context dates reconstructed under

priors �f�� �fA�B�� or �f��� are typically distributed across their true values while context dates

reconstructed under priors f�� fA�B�� or f��� are not	 When the synthetic dates � are spread

across a range which is not large compared to the observation uncertainties �� then priors f��

fA�B�� or f��� give results which are often quite wrong	 We do not present these studies� as the

conclusion is unsurprising� given the marginal densities of the range variable � in these priors	

We present two case studies comparing all three pairs of models f� and �f�� f��� and �f���� and

fA�B�� and �fA�B��	 In Case I� the likelihood functions g�ym�nj�m�n� show strong overlap in �m�n�

from the earliest to the latest data �see Figure 
�	 When the data has this property� our conclusions

will be sensitive to the choice of prior	 The data in Case II is taken from Buck et al� ���	 We repeat

their analysis using the prior fA�B��� and place it alongside an analysis using the prior �fA�B��	 In

this case the data is scattered over range which is large in comparison to the range of support of the

likelihood functions g�ym�nj�m�n� �see Figure !�� and our conclusions are consequently insensitive to

the choice of prior	 The models used in these case studies are set out in Table �	

Case� Data Model Number State Prior �L�U � Prior density

label of parameters space density of range� 


I Shag mouth M� K � �
� M � � �� f���� ����� ���� �R � 
�
	�

I Shag mouth M� K � �
� M � �� ���� f����� �� ����� ���� �R� 
�



I Shag mouth M	 K � �
� M � � �� �f���� ����� ���� �

I Shag mouth M� K � �
� M � �� ���� �f����� �� ����� ���� �

II Jama river M� K � �!� M � ! �A�B�� fA�B����� �� �� ��� ����� �R � 
�
��

II Jama river M K � �!� M � ! �A�B�� �fA�B����� �� �� ��� ����� �

Table �� Models trialed in case studies I and II
 Minimum and maximum age limits L and U were chosen

to be computationally equivalent to ����� and otherwise as tight as possible


Case study I� The Shag River Mouth data

We will investigate the extent to which our choice of prior e%ects our summary of a large data set

gathered at the mouth of Shag river� in southern New Zealand	 Quantities of interest to archae�

ologists include the length of time for which the site was occupied� and the actual dates at which

occupation began and ended	 We analyse a large subset of the data� a set of �
 radiocarbon ages

from a single series of �� distinct strata	 The data is published in Anderson et al� ���	 We are

analysing the SM�C�Dune series	 Relevant information is summarised in Table �	

The SM�C�Dune series is up to �	� metres deep� comprising many distinct layers	 For this and other

�



Layer Terrestrial radiocarbon ages Marine radiocarbon ages

L� �������
!� ���������

L� ��	������ ����	������ !
!	�	���� ��	���
�� ����	������ ���	��
��

���	���
�� ����	������ ���	�
���� ��	������

���	����
�� ���	����
�� ��!�	��	���� ��
�	����
��

���	����
�� ���	���
�� ����	������� ��!�	����
��

L
 ��!����

� ��!�����!�� ����	����

L� !�����
!� �
������� ����	�
��

L 
���
!� �������� ����	�!�� ����������

L! �!�����
��

L�� ������
� !�!�����!�� �!
���	�
��

Table �� The SM�C�Dune series radiocarbon data of Anderson et al� ����
 	� radiocarbon ages are arranged

in �� layers
 We do not model an empty level above L�
 As a consequence our level labels L� to L�� di�er

from those in Anderson et al� ���� �our L� is their L��
 There were no dated materials in layers �� � or �


The notation is ym�n��m�n�� with the layer index m and within�layer index n in subscript �m�n�
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Figure 
� Likelihood factors showing g�ym�nj	m�n� for each data point as a histogram against 	m�n
 The

width of the strip is proportional to the likelihood at that value of 	m�n
 Indices � through 	� correspond

to labels ��� �� through ���� 	� of text
 Indices ��  and �� of this graph �ie �	� ��� �	� �� and ��� �� of text�

were identi�ed as outliers


�

reasons� it was expected that the occupation span of the site would be some signi�cant number

of years� possibly centuries	 Anderson et al� ��� suggest �� to �� years� however their analysis is

based on grouping context dates according to the chi�squared statistics of the associated radiocarbon

ages	 Such a methodology is unreliable when the terrestrial radiocarbon ages correspond to a non�

monotonic section of the calibration curve� as is the case here	 However� we �nd that a short

occupation span� consistent with the results of Anderson et al� ���� is not ruled out	

Archaeological and chronometric considerations led Anderson et al� ��� to reject several dates as

outliers	 We applied the outlier analysis of Christen ���
 to this set of data� as well as exploring a

scheme like that of George and McCulloch ���	 We identi�ed data ��� ��� ��� �� and �
� �� �NZ�!!
��

NZ�!��
 and NZ�!!�! of Anderson et al� ���� as outliers �see Figure 
�	 Since the outliers did not

lie in the sensitive top or bottom layers� we choose to carry out the analysis with the outliers in place�

and recover their radiocarbon ages in simulation	 The outliers were assigned ��m�n��m�n� � ���� so

that their individual likelihood was e%ectively uniform over the allowed range	 Thus all our models

haveK � �
 distinct context date parameters �m�n corresponding to the radiocarbon ages of Table �	

In Section � we referred to the southern hemisphere o%set	 It is believed this can be modelled as

an o%set d to be subtracted from the ym�n �since they are ages� with units years BP�	 However�

measurements reported in Sparks et al� ���� and Barbetti et al� ���� indicate that� for calibration

of terrestrial material from New Zealand� this o%set is consistent with zero	 We do not attempt to

account for the uncertainty introduced by this aspect of the measurement	 For calibration of marine

material from New Zealand� McFadgen and Manning ���� give dmrn � ��� with standard deviation

�dmrn � ��	 We substitute ym�n � ym�n � dmrn and �
�

m�n � ��m�n � ��
d

mrn�
� so that our expression

for the likelihood g�yj�� is unchanged	

We focus on the posterior distribution of the minimum occupation span� max����min��� �rather

than  M � �� to allow comparison between f
� and f��� etc�	 We trial 
 models� with properties

given in Table �	 We have �
 data points� and no a priori justi�cation for treating groups of data

points as measurements of a single context date	 We therefore have K � �
 of the �m�n parameters

in models M� through M�	 Our phase models f
��� and �f��� have �� layer�age parameters� m

m � � � � � ��	

Samples f��j�gJj�� and f
�j�� ��j�gJj��� distributed with densities h
���jy� f� and h����� �jy� f�� were

simulated using MCMC for modelsM� �M�	 See Appendix A for details of the sampling algorithm	

We have checked our MCMC simulations for convergence according to the conditions of Geyer ����	

In particular the integrated auto�covariance time� per sample� computed from the likelihood� was

close to � in all our simulations of the Shag mouth data	 Each of the ����� realisations sampled

from each of the four posterior distributions are therefore very nearly independent	 This approach

is e�cient when computer memory for storing samples is in short supply	

Posterior distributions of max��� � min��� and of max��� and min��� are plotted for models M�

to M� on axes with equal age ranges and scales in Figure �	 Models M� and M� lead to far

higher estimates for the minimum occupation period than do modelsM	 andM�� as the marginal

prior range distributions of Table � lead us to expect	 We found it di�cult to estimate accurate

Bayes factors for these models and data	 In lieu of Bayes factors we plot in Figure  distributions

of reconstructed dates alongside their original likelihood distributions	 We have chosen a subset of

seven dates spanning the strata	 Posterior distributions from models M	 and M� lie within the

range suggested by the likelihood� distributions from models M� and M� favour dates close to

the boundary of the region where the likelihood becomes small	 Priors �f� and �f��� give a better

summary than do f� and f��� of the prior knowledge available in this analysis	 Figures ��M� and ��

M� will very likely overestimate the occupation span	

��
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Figure �� Labels M��M� indicate the prior used� as in Table �
 M��A to M��A� histograms quantifying the

range of plausible posterior values for the minimum occupation time� max�	��min�	�� at the Shag mouth

site
 M��B to M��B� posterior distributions of max�	� �solid histograms� and min�	� �dashed histogram�
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Figure � Labels M��M� indicate the prior used� as in Table �
 Posterior distributions of 	m�n for selected

data� � � ��� ��� � � �	� ��� 	 � ��� ��� � � �� ���  � ��� ��� � � ��� ��� � � ���� �� �solid histograms�� likelihood

of 	m�n as in Figure � �dashed histogram left of solid�
 The prior densities of models M� and M� favour

dates near the limits of the allowed range� while those of models M� and M� allow a range of dates from

the centre of the likelihood


��

Case study II� The Jama river valley� Ecuador

The data treated in this section is taken from Buck et al� ��� pages �� to ��� where it is analysed

using the multi�phase prior fA�B�� as in modelM�	 All data is terrestrial	 There are M � ! seven

phases� and K � �! data points	 The likelihood functions g�ym�nj�m�n� of all �! dates are plotted
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Figure !� Likelihood factors g�ym�nj	m�n� as for Figure �
 Indices � through 	� correspond to labels ��� ��

through ��� � of the Jama river valley data of Buck et al� ���� pages ��� to �	�
 Phases Muchique  through

�� Tabuchila and Piquigua of Buck et al� ���� are here labelled phases P� through P� respectively


as histograms in Figure !	 Prior knowledge restricts the phases of this model in the following way

C��� �� L� U� � f �m 	 �m�m � � � � �M � �� 	 L� U 	 ���

�� 	 �� � 	 ��� �� 	 ��� �� 	 �	 	 ��� �� 	 �	 	 ��� �� � �� g� ����

A graph representing the constraint set C��� �� L� U� is given in Figure �	 We examine the posterior

distribution HA�B���d� d� d�jy� f� under priors f � fA�B����� �� �� and �fA�B����� �� ��� ie� models

M� andM of Table �	

Simulation was carried out using a Metropolis�Hastings algorithm similar to that described in Ap�

pendix A	 As in Case I� the integrated auto�correlation time of the likelihood per sample was close

to � in both MCMC runs �under models M� and M�	 The posterior distributions of the phase
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Figure �� Graph of the constraint relations C��� �� L� U� for the Jama multi�phase model of Equation ����


An undirected edge between the nodes of variables a and b represents the constraint a � b
 Refer to Figure �

for label conventions
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Figure �� A comparison of the posterior distributions of the phase variables � and � under modelsM� and

M�
 Solid histogramsM�� dashed histograms� M�


variables � and �� under models M� and M� are plotted in Figure �	 As anticipated for Case

II data� there is little di%erence between the posterior distributions under priors with uniform and

spreading marginal range distributions	

To conclude� the priors �f� and �f��� are appropriate for radiocarbon dating in the presence of hard

temporal constraints� since they are derived from a model of the deposition process� albeit a simple

one	 Moreover their marginally uniform prior range makes them convenient non�informative base

priors� to be modi�ed as further information becomes available	
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Appendix A� Sampling algorithm

We implemented a Metropolis Hastings MCMC algorithm to generate samples � � distributed with

density h����� �jy� f�	 Earlier authors note that the Gibbs sampler functions quite e�ciently for

sampling h����� �jy� f� when the prior density is f���� and that in this case the necessary condi�

tional distributions are fairly straightforward to write down and compute	 However� prior densities

like f � �f���� lead to more complicated expressions for conditionals� depending on max��� and

min���	 This is not a signi�cant obstacle to simulation� a small set of Metropolis Hastings updates

give ergodic behaviour on useful time scales	

We de�ne an algorithm generating a realisation f�j�� ��j�gJj�� of a Markov chain of random variables

f �j����j�gJj��� with equilibrium distribution H����d d�jy� f�	 Once this is done we will be able

to form empirical estimates (u for the posterior expectation Efu� ���jy� fg of any function u�� ��

on ���� we wish	 If C is a suitable burn�in period� chosen to allow for the sequence of samples to

reach equilibrium� we estimate
Efu� ���jy� fg �

�
J � C

JX
j�C��

u��j�� ��j���

�




for data y and prior density f 	 We de�ne the Markov chain via a stochastic update rule	 This

update is chosen so that it determines a transition kernel

Prf �j��� � d�� ��j��� � d��j �j� � ���j� � �g

from � � into d�d�� which preserves H����d� djy� f�	 In order to get an e�cient sampler� it is

most e%ective to use several transition rules� labelled v � �� � � � �� each with its own transition kernel	

Each rule is made up of a generation step� in which a candidate state ��� ��� is generated according

to a distribution Qv for rule v�
Qv�d
�d��j� �� � qv�
�� ��j� ��d�d���

and an acceptance step� in which the candidate state is accepted with probability �v�
�� ��j� ��� or

rejected	 The algorithm is as follows	

Let � �j����j�� � �� ��	 � �j������j���� is determined in the following way	

�	 Pick a new state ��� ��� � Qv�d
�d��j� ��	

�	 Accept ��� ��� �ie� set � �j������j���� � ��� ���� with probability

�v�
�� ��j� �� f� � min
�

��
H����d�d��jy� f�Qv�d d�j
�� ���

H����d d�jy� f�Qv�d�d��j� ��
�

�

If ��� ��� is not accepted� set � �j������j���� � �� �� �ie� no change�	

Su�cient conditions for � ��� to have equilibrium distribution H��� are given� for example� in

Tierney ���	 We have four update types� with distinct generation distributions Qv� so the above

algorithm is repeated for each update type� v � �� �� �� 
 in sequence� and the sequence repeated

until enough samples have been generated	

Our update types are as follows	

� Update a single � variable� v � �� �� � � � ���	

A parameter �i�j is chosen uniformly at random �UAR� from the set f���� � � � �N�NM

g	 A new

value for �i�j ��
�

i�j say� is selected UAR on the interval �i��� i���	 Let �
� � ������ � � � �
�

i�j � � � � �M�NM

�	

In this case q���
�j� �� is equal to q���j� �
�� since �i��� i� is the same for both transitions

� � �� and �� � �	 Now

����
�j� �� f� � min
�

��
g�yj���f����

g�yj��f���
�

� min
�

��
e��yi�j����

�
i�j �i�j��
�����i�j ��
�

i�j�
�

e��yi�j����i�j �i�j��
�����i�j ��i�j�
�

�

��i�j��i�j�

��i�j���i�j�
�

for both f � f��� and f � �f���	

� Update a single  variable� v � �� �� � � �� ��	

An index i is chosen UAR in �� � � � �M 	 A new value of �
i for i is selected UAR on the

interval �max��i������min��i���� �the interval is �L�min������� if i � � and �max��M������ U � if

i �M�	 Let � � ��� � � � 
�

i� � � � M �	 Here q��
�j� �� is equal to q��j
�� �� since the sample

interval is the same for transitions  � � and � � 	 Now

���
�j� �� f� � min
�

��
f��� ���

f�� ��
�

��

where� if f � f����

f������ ���

f����� ��
�

������
�����

�i�� � i�
Ni���i � i���
Ni���

i�� � �
i�
Ni����

i � �
i���
Ni if � � i � M

�� � ��
N����

� � �
��
N� if i � �

�M � M���
NM ���

M � �
M���
NM if i �M

and if f � �f���
�f������ ���

�f����� ��
�
f������ ���

f����� ��
�
	

R� �M � ��

R� ��
M � �
��
�
�M � ��
M��

��
M � �
��
M��




though the factor in square brackets is equal one unless i � � or i �M 	

� Shift all dates� v � �� �� � � �� ���	

In this update S is a positive constant with units years chosen to give a reasonable acceptance

rate for the update	 A scalar shift s is chosen uniformly at random in ��S� S� and added to

each variable� ��m�n � �m�n � s� and �
m � m � s� for each m � � � � �M and n � � � � �N 	

In this case q	�
�� ��j� �� � q	�� �j
�� ���� since the probabilities to choose the forward and

reverse shifts are equal	 This time

�	�
�� ��j� �� f� � min
�

��
g�yj���

g�yj��
�

with

g�yj���

g�yj��
�
e�jy������j����������

e�jy�����j���������

�

MY
m��

NY
n��

��i�j��i�j�

��i�j���i�j�

for both priors f��� and �f��� we are considering	 Refer to Equation ��� for notation	

� Expand the dates about their mean� v � 
� �� � � �� ���	

A scalar multiplying factor � is chosen uniformly at random in ����� ����	 Let av�� �� denote

the arithmetic mean of the sequence � � of dates	 We set ��m�n � ��m�n � ��� ��av�� �� and

�
m � �m � �� � ��av�� ��� for each m � � � � �M and n � � � � �N 	 This operation scales all

the dates by � whilst keeping av�� �� � av��� ���	 This time the correct acceptance rates are

more di�cult to calculate	 We �nd

���
�� ��j� �� f���� � min
�

��
g�yj���

g�yj��
� �M��
�

and

���
�� ��j� �� �f���� � min
�

��
g�yj���

g�yj��
�

R� �M � ��

R� ��M � ��
�

�
�

�

with g�yj����g�yj�� as in move v � �	

Our implementations were checked by varying the proportions of moves� and checking that all

statistics measured on the output were unchanged	 We checked also that the prior distribution

of the range was uniform under models M	� M� and M	 Finally� we compared the posterior

distributions of phase variables � and � under M� with those reported in the identical earlier

analysis of Buck et al� ���	 No visible di%erences were detected	

The posterior H����d d�jy� f���� may in general be simulated adequately with moves v � � and

v � � alone	 However� in order to simulate reliably the posterior with prior density �f�� we require

in addition move v � 
	 Move v � � improves the e�ciency of the sampling process	

�


