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Abstract

Christiaan Huygens proved in 1659 that a particle sliding smoothly
(under uniform gravity) on a cycloid with axis vertically down reaches
the base in a period independent of the starting point. He built very
accurate pendulum clocks, with cycloidal pendulums. Mark Denny has
constructed another curve purported to give descent to the base in a period
independent of the starting point; but the cycloid is the only smooth plane
curve with that property. Johann Bernoulli 1st proved in 1696 that, for
any pair of fixed points, the brachistochrone (the curve of quickest descent)
under uniform gravity is an arc of a cycloid. In 1976, Ian Stewart asked,
what is the brachistochrone for central gravity under the inverse square
law? The solution is found explicitly, in terms of elliptic integrals.
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Epigraph

“In this enormous volume, the author never succeeds in proving that the shortest
distance between two points is a straight line.”

G. H. Hardy [15], on Forsyth’s treatise Calculus of Variations [8].

1 Cycloids as Isochrones and Brachistochrones

In 1582, when Galileo Galilei (1564-1642) was a student of medicine in Pisa,
he observed a lamp swinging on a long chain in Pisa Cathedral. Timing the
swings against his own pulse, he found that the oscillation period remained
effectively constant as the amplitude of the oscillations decayed. Soon afterwards
he applied that observation to design his pulsilogium for measuring pulse rates.
That consisted of a board to which a pendulum was attached, so that a thumb
could be pressed against the board to stop the string to give any desired length
from the string to the swinging bob. The physician synchronized the swinging
of the bob with the patient’s pulse, and the pulse rate could then be read from
the position of the thumb against calibrations marked on the board. That
pulsilogium was the first instrument ever to be used to measure medical data.
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The device was elaborated by others, and Galileo never claimed the invention
of the pulsilogium for himself (Bedini [1], page 257).

Galileo, to the end of his life in 1642, insisted that he had proved that the
period of a simple pendulum is independent of the amplitude of the oscillation
(Galileo [9], page 95). When he was old and blind, a prisoner of the Holy
Inquisition in his own home, in 1641 he discussed with his son Vincenzio Galilei
his ideas on pendulums, and attempted to produce a clock with a pendulum
regulator. Vincenzio died in 1649, leaving an incomplete pendulum clock based
on Galileo’s design (Bedini [1], pages 287–288).

Some working pendulum clocks were then made by Christiaan Huygens and
others, and by 1656 some of those makers had found that a simple pendulum
is not strictly isochronous. Small swings have periods that are closely equal,
but increasing the amplitude of swing does increase somewhat the period of the
swing. In 1659, Huygens discovered that a particle sliding on a smooth cycloid
(generated by a circle of radius α), with uniform gravitational acceleration g in
the direction of the axis of symmetry, reaches the bottom of the cycloid arch
after the period π

√
α/g, wherever on the arch the particle starts from rest.

In view of that remarkable property, the cycloid is called an isochrone (or a
tautochrone).

Huygens built highly accurate pendulum clocks, for which purpose he in-
vented the theory of evolutes and involutes of curves [10]. The pendulum rod
was supported by a flexible strip, which wrapped around two opposing cycloidal
cheeks, which constrained the pendulum bob to move on an equal cycloid.

Huygens’s illustration of a cycloidal pendulum is reproduced here as Figure 1,
from Fig. 19 in the collected edition (1934) of Horologium Oscillatorium
[10].
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1.1 Cycloid

The cycloid is defined kinematically, as the plane curve traced by a point on
a circle rolling along a straight line. Take the line as y = 2α, with y–axis
orthogonal to that line. The cycloid generated by a point (initially at the origin
O) on a circle of radius α rolling under that line has the equation in parametric
form:

x = ±α(η + sin η), y = α(1 − cos η), (1)

where η is the angle though which the circle has rolled from O. Eliminating η,
we obtain the non–parametric equation of the cycloid for y ∈ [0, 2α] as:

x = ±
(
α arccos

(
1 − y

α

)
+

√
y(2α − y)

)
. (2)

1.1.1 Incorrect Diagrams of Cycloids

At the ends of a cycloid arch, the tangents are parallel to the axis of symmetry.
But, many published diagrams of cycloids incorrectly represent them with the
ends of the arch having tangents which make misleading nonzero angles to the
axis of symmetry. As examples, there are the diagrams (apart from Figure
18) in the collected edition (1934) of Horologium Oscillatorium which are
reproduced in the 1968 edition [10] (with Huygens’s Fig. 19 reproduced above
as Figure 1), Fig. 13 in Munem & Foulis [12] (page 729), and Figures 9.11.1 &
9.11.2 in Salas & Hille ([14], 7th edition, pages 630 & 631). There are also the
diagrams on page 135 and page 207 in Edwards [5]—but the diagram there on
page 250 correctly depicts an end of the cycloid half–arch with tangent parallel
to the axis of symmetry.

1.2 All Plane Isochrones Are (Piecewise) Cycloids

Mark Denny [3] has constructed another curve purported to have the property
of isochronism under uniform gravity. He asserts that, in the frictionless case,
“the only force acting on the particle is gravity”. But there is also the normal
reaction force on the particle, which constrains the particle to move on that
curve! [4]

In fact, it is easy to prove (cf. (Routh [13], §209, pages 125–126) that the
half-arch of a cycloid is the only smooth plane curve such that particles released
from rest anywhere on the curve move (under uniform gravity) to the base of
the curve in the same time. (Huygens also constructed clocks [10] (Part 5), with
conical pendulum revolving isochronously in horizontal circles on a paraboloid
of revolution.)

1.2.1 Uniqueness of the Cycloid

Take the base of any differentiable-everywhere curve in a vertical plane as ori-
gin, with horizontal x–axis and uniform gravitational acceleration –g in the
y–direction. Denote by s the arc length of the curve from the origin, represent
the curve by s = f(y), and denote the speed of the particle on the curve by
v = |ds/dt|. Release the particle at height h at time t = 0, so that at height y
the kinetic energy equals the loss of potential energy, and hence g(h− y) = 1

2v2
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and v =
√

2g(h − y) = −ds/dt. Therefore, the time T for reaching the lowest
point is:

T =
∫

dt =
∫ 0

h

dt

ds

ds

dy
dy =

∫ h

0

f ′(y)
v

dy =
1√
2g

∫ h

0

f ′(y)√
h − y

dy . (3)

Substitute y = hz, so that

T
√

2g =
∫ 1

0

f ′(hz)
√

h√
1 − z

dz =
∫ 1

0

f ′(hz)
√

hz
dz√

z
√

1 − z
. (4)

If the curve is an isochrone, the time T for descent to the base is to be the same
for all positive values of h, and so dT/dh = 0. Therefore,∫ 1

0

∂

∂h

(
f ′(hz)

√
hz

) dz√
z(1 − z)

= 0 . (5)

If that derivative in the integrand were non-zero for any values of hz, then by
taking h sufficiently small we could ensure that the derivative does not change
sign for 0 < z < 1, but the derivative is positive (or else negative) for part
of that range of z. The other factor in the integrand is 1/

√
z(1 − z), which

is positive for all z ∈ (0, 1), and hence the integral would be positive (or else
negative). But the integral equals 0, and hence that derivative must equal 0 for
all z and h.

Therefore f ′(hz)
√

hz = ±
√

2α, where α is some positive constant, indepen-
dent of h and z, and so f ′(y) = ±

√
2α/y. Thus,(

ds

dy

)2

=
2α

y
, (6)

and hence the curve has vertical tangent at height y = 2α.
Substitute y = 2α sin2(η/2) = α(1 − cos η), so that dy = α sin η dη. Now,

(dx)2 = (ds)2 − (dy)2 =

[(
ds

dy

)2

− 1

]
(dy)2

=
[
2α

y
− 1

]
(dy)2 =

[
2α

2α sin2(η/2)
− 1

]
α2 sin2 η (dη)2

=
1 − sin2(η/2)

sin2(η/2)
4α2 sin2(η/2) cos2(η/2)(dη)2

= 4α2 cos4(η/2)(dη)2. (7)

Therefore dx = 2α cos2(η/2) dη = α(1 + cos η) dη , and hence

x = α

∫
(1 + cos η)dη = α(η + sin η), (8)

since the base of the curve is taken as the origin (x, y) = (0, 0).
Hence, every smooth isochrone is given in the parametric form as in (1).
Thus, every smooth curve with equal descent times (for uniform gravity) is

an half–arch of a cycloid, with vertical axis of symmetry and concave upwards.

4



Since (cf. (6))
ds

dy
= ±

√
2α

y
, (9)

the arc length s of a cycloid from the base to height y is:

±s =
√

2α

∫ y

0

dz√
z

= 2
√

2α
√

y , (10)

so that

y =
s2

8α
. (11)

In 1659, Huygens discovered [10] that an isochronous curve must have this
property, which he recognized as being a property of the cycloid generated by a
circle of radius α. He also found that the tangential force on a particle sliding
smoothly on a cycloid is proportional to s. Thereupon he developed the theory of
simple harmonic motion, and applied that theory (and Hooke’s Law for springs)
by inventing (simultaneously with Hooke) the clock balance-wheel controlled by
a spiral elastic spring.

1.2.2 Alternatives To Complete Cycloid

If two opposed half–arches of cycloids (with parameters α and β) in the same
plane are joined at their bases, a particle sliding smoothly on the combined
half–arches will oscillate isochronously, with period 2π

(√
α +

√
β
)
/
√

g.
Figure 2 shews the bob on an half-arch with parameter of 1, which is joined

to an half-arch with parameter of 1
2 .

However, it would be difficult to construct an accurate pendulum of that
form with unequal half–arches, since Huygens’ flexible strip would slap abruptly
against the smaller cycloidal cheek. Figure 3 shews the bob on the smaller half-
arch.

Furthermore, at any point C on a cycloid AB with vertical axis, the cycloid
could be reflected (within its plane) from a vertical line through C, with the arc
CB getting reflected into an arc CD, as is shewn in Figure 4. Then, a particle
sliding under uniform gravity from A to B could bounce off the vertical line
through C, reversing the horizontal component of its velocity but leaving its
vertical component unchanged, so that the particle oscillates isochronously on
the joined cycloid arcs AC and CD. And similarly for 2 or more such reflections
of arcs of a cycloid. But it would be difficult to construct an accurate pendulum
of that form, since infinite force would have to be applied to the particle when
it bounces at C, unlike the smoothly–varying reactive force elsewhere on the
curve.
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Figure 2:    Asymmetric Isochrone: Bob on Larger Half-Arch
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Figure 3:    Asymmetric Isochrone: Bob on Smaller Half-Arch
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Figure 4:   Reflected Cycloid Arch as Isochrone

Hence, for practical pendulums the cycloid is the only plane curve that gives
isochronous oscillations under uniform gravity.

1.3 Brachistochrone

The Calculus of Variations was founded in 1696 by Johann Bernoulli 1st, when
he found that, for any pair of fixed points in a uniform gravitational field, the
curve of quickest descent for a particle released at the higher point to reach
the lower is an arc of a cycloid generated by a point on a circle, rolling un-
der the horizontal line through the higher point, with a vertical cusp at the
higher point. Johann Bernoulli 1st challenged other mathematicians to find the
curve of quickest descent, which he called the brachistochrone. The cycloid so-
lution was found by his brother Jakob Bernoulli 1st, by Newton, by Leibniz and
by l’Hôpital, using diverse methods that significantly advanced the calculus of
variations (Westfall [19], pages 581–583).

1.3.1 Conservative Force Fields

For a particle moving with speed v under a conservative force field with potential
ϕ, the kinetic energy plus the potential energy is constant:

1
2v2 + ϕ = C. (12)

This conservation of energy holds for a free particle, and also for a particle
constrained to move on a smooth curve or surface.

For each point C on a brachistochrone (under a conservative force field)
between A and B the arc AC is also a brachistochrone; since if some arc ADC
gave a shorter time for descent from A to C than did the arc AC, then the path
ADCB would take less passage time than the path ACB. (The speed of the
particle at C is independent of the path from A to C).

In any smooth force field, as the entire arc AB converges to the startpoint A
(so that the force field over the arc AB converges to a uniform force field), the
brachistochrone AB approaches the shape of an arc of a cycloid. In particular, if
ϕA = ϕB , so that the particle ends at rest at B, then the curve AB approaches
the shape of a complete cycloid arch.
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2 Brachistochrones Under Central Forces

For a spherically symmetric potential ϕ(r), where the radius r is the distance
from O, the force (per unit mass) on the particle is directed to the centre O,
with magnitude

F =
dϕ

dr
. (13)

For a particle P (either free, or sliding smoothly) released from rest at radius
a, with speed v at radius r,

0 + ϕ(a) = 1
2v2 + ϕ(r). ... v2 = 2(ϕ(a) − ϕ(r)). (14)

Ian Stewart published in 1976 a query [16], in which he remarked that “it
is well known that in a uniform gravitational field, the path of quickest descent
between two given points is a cycloid. Reformulate this question for a central
field, and in particular for the case of an inverse square force”. In response,
Henry George Forder pointed out [7] that the problem was dealt with by Edward
John Routh ([13], page 373).

2.1 Reduction of Brachistochrones to Free Orbits

In 1850, John Hewitt Jellett shewed [11] that each brachistochrone between a
pair of points in a conservative force field is also the path in space (but not in
time) of a free particle, moving under a transformed potential (Routh [13], page
368). That transformed potential must be such that, at each point where the
constrained particle has speed v, the associated free particle has speed w = 1/v.
In particular, for a central force field where the constrained particle has speed
v = v(r) at radius r, the brachistochrone is the path of a free particle that
moves with speed w = w(r) = 1/v(r) at each radius r. Thus the extensively-
developed theory of orbits of a free particle under a central force can be applied
to brachistochrones under central forces.

In particular, each orbit of a free particle lies in a plane through the centre
of force. If an orbit under central force has any point at which the radius vector
is a maximum or minimum then that point is called an apse, and that extreme
length is called an apsidal distance. The tangent at an apse is orthogonal to
the radius vector, and each orbit is symmetrical about each apsidal line. An
orbit might not have any apse, or it might have any number of apses; and a
circular orbit (under any attractive central force) has an apse at each point.
But, however many apses an orbit might have, there can only be either one
apsidal distance (e.g. parabola or hyperbola under inverse square force), or two
apsidal distances (e.g. ellipse under inverse square attraction) (Tait & Steele
[17], pages 123–124). In view of Jellett’s Theorem, each of these geometrical
properties of orbits under general central forces also applies to brachistochrones
under central forces.

Routh gave only a sketchy and obscure hint about brachistochrones under
central forces ([13], page 373). Jellett’s theorem is applied here to answer Ian
Stewart’s question in detail, with equations for the brachistochrone “for the case
of an inverse square force” being constructed in terms of elliptic integrals.
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2.2 Construction of Brachistochrone

Let a particle be released from rest at A and move under central force directed
to O with potential ϕ(r), along a smooth curve to B (where ϕA ≥ ϕB), reaching
B in minimum passage time. If ϕA = ϕB , so that the particle ends at rest at
B, then the curve AB is called a complete brachistochrone.

If B lies on the line OA then the brachistochrone must lie in every plane
through OA, and hence the brachistochrone then is the interval AB.

Otherwise, consider polar coordinates (r, ϑ) in the plane AOB, with the
initial radius vector OA as the angle origin ϑ = 0. Take the initial radius OA
as the unit of length. Denote by s the arclength, increasing from s = 0 at A to
B, so that at radius r the constrained particle has speed v(r), as given by (14).
Hence, the associated free particle has speed

ds

dt
= w(r) =

1
v(r)

. (15)

The angular momentum of the free particle is constant:

r2 dϑ

dt
= K, (16)

so that
wr2 dϑ

ds
= K. (17)

Hence,
r dϑ

ds
=

K

wr
=

Kv

r
. (18)

At the starting point A the speed v = 0, so that dϑ/ds = 0, and hence the
brachistochrone is tangential to the radius vector at A (and likewise at B, for a
complete brachistochrone).

Now,
(ds)2 = (dr)2 + (r dϑ)2, (19)

and so (
dr

ds

)2

= 1 −
(

r dϑ

ds

)2

= 1 −
(

Kv

r

)2

, (20)

and hence
dr

ds
= ∓

√
1 − K2v2

r2
. (21)

The positive square root is to be taken where r increases with time t (and hence
with arclength s), and the negative square root is to be taken where r decreases
with time t.

2.3 Angle as a Function of Radius

Dividing (21) by (18), we get the differential equation:

dr

dϑ
=

∓r2
√

1 − K2v2

r2

Kv
= ∓r

√
r2

K2v2
− 1 . (22)
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Therefore, the polar equation of the free particle’s orbit (and hence of the
brachistochrone for the constrained particle) is given explicitly as

ϑ =
∫ r

1

dx

∓x
√

x2

K2v(x)2 − 1
. (23)

The brachistochrones starting at a fixed point A form a one–parameter fam-
ily parametrized by K, the angular momentum of the associated free particle.
The direction for increasing ϑ can be chosen so that K ≥ 0.

2.3.1 Brachistochrone With Apse

The brachistochrone has an apse at apsidal distance R, if and only if R is a
stationary value of r; and it follows from (21) that that is equivalent to

0 =
(

dr

ds

)2

= 1 −
(

Kv(R)
R

)2

. (24)

If such an apsidal distance R exists, then it follows that

K =
R

v(R)
, (25)

and hence
ϑ =

∫ r

1

dx

∓x

√(
v(R)

R

)2
x2

v(x)2 − 1

. (26)

Attractive Force For central force which is attractive everywhere the apsidal
radius is R, with 0 < R ≤ r ≤ 1, and initially r is a decreasing function of s (and
of t). Thus, on the first half–arch of the brachistochrone the negative square
root is to be used in (26), and the polar equation is:

ϑ = Θ(r, R) def=
∫ 1

r

dx

x

√(
v(R)

R

)2
x2

v(x)2 − 1

(R < 1) . (27)

Repulsive Force For central force which is repulsive everywhere the apsidal
radius is R, with R ≥ r ≥ 1, and initially r is an increasing function of s (and of
t). Thus, on the first half–arch of the brachistochrone the positive square root
is to be used in (26), and the polar equation is:

ϑ = Θ(r, R) def=
∫ r

1

dx

x

√(
v(R)

R

)2
x2

v(x)2 − 1

(R > 1) . (28)

For both attractive and repulsive force, the first half–arch of the brachis-
tochrone ends at the apse with apsidal distance R, where the angle is ϑ =
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Θ(R, R). The orbit is symmetrical about the the apsidal line, so that on the
second half–arch the angle is

ϑ = 2Θ(R, R) − Θ(r, R), (29)

and the complete brachistochrone has angle ϑ = 2Θ(R, R).
Or, if angle ω is measured from the apse, then the complete brachistochrone

has the polar equation

ω = ±
∫ r

R

dx

x

√(
v(R)

R

)2
x2

v(x)2 − 1

, (30)

for both attractive and repulsive force.

2.4 Arclength as a Function of Radius

It follows from (21) that the arclength at radius r is given by

s(r) =
∫ r

1

dx

∓
√

1 − K2v(x)2

x2

, (31)

with the sign of the square root chosen as for ϑ.

2.4.1 Brachistochrone With Apse

If an apsidal distance R exists, then it follows from (25) and (31) that the
arclength at radius r is:

s =
∫ r

1

dx

∓
√

1 −
(

R
v(R)

)2
v(x)2

x2

. (32)

Attractive Force Similarly to the treatment of ϑ as a function of r, we get
that on the first half–arch of the brachistochrone the arclength s is given as a
function of radius r by

s = S(r, R) def=
∫ 1

r

dx√
1 −

(
R

v(R)

)2
v(x)2

x2

(R < 1) . (33)

Repulsive Force Similarly to the treatment of ϑ as a function of r, we get
that on the first half–arch of the brachistochrone the arclength s is given as a
function of radius r by

s = S(r, R) def=
∫ r

1

dx√
1 −

(
R

v(R)

)2
v(x)2

x2

(R > 1) . (34)

For both attractive and repulsive force, the first half–arch of the brachis-
tochrone ends at the apse with apsidal distance R, where the arclength is
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s = S(R, R). On the second half–arch the arclength is s = 2S(R, R)−S(r, R),
and the complete brachistochrone has arclength s = 2S(R, R).

Or, if arclength σ is measured from the apse, then the complete brachis-
tochrone is given by

σ = ±
∫ r

R

dx√
1 −

(
R

v(R)

)2
v(x)2

x2

, (35)

for both attractive and repulsive force.

2.5 Time as a Function of Radius

The time required for the constrained particle to reach radius r is given by

t =
∫

dt =
∫

dt

ds

ds

dr
dr =

∫
ds

dr

dr

v(r)
, (36)

where ds/dr is given by (21). Take t = 0 at the start A.
Then, the radius r is reached at time

t =
∫ r

1

dx

∓v(x)
√

1 − K2v(x)2

x2

, (37)

with the sign of the square root chosen as for ϑ.

2.5.1 Brachistochrone With Apse

If an apsidal distance R exists, then it follows from (25) and (37) that

t =
∫ r

1

dx

∓v(x)

√
1 −

(
R

v(R)

)2
v(x)2

x2

. (38)

Attractive Force Similarly to the treatment of ϑ as a function of r, we get
that on the first half–arch of the brachistochrone the time t is given as a function
of radius r by

t = T (r, R) def=
∫ 1

r

dx

v(x)

√
1 −

(
R

v(R)

)2
v(x)2

x2

(R < 1) . (39)

Repulsive Force Similarly to the treatment of ϑ as a function of r, we get
that on the first half–arch of the brachistochrone the time t is given as a function
of radius r by

t = T (r, R) def=
∫ r

1

dx

v(x)

√
1 −

(
R

v(R)

)2
v(x)2

x2

(R > 1) . (40)

For both attractive and repulsive force, the first half–arch of the brachis-
tochrone ends at the apse with apsidal distance R, at time t = T (R, R). On
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the second half–arch the time is t = 2T (R, R) − T (r, R), and the complete
brachistochrone is traversed at t = 2T (R, R).

Or, if time τ is measured from the apse, then the complete brachistochrone
is given by

τ = ±
∫ r

R

dx

v(x)

√
1 −

(
R

v(R)

)2
v(x)2

x2

, (41)

for both attractive and repulsive force.

3 Inverse Square Force

Consider a particle constrained to a smooth curve, under potential

ϕ(r) =
−μ

r
, (42)

so that the force (per unit mass) is

F =
μ

r2
. (43)

Scale the unit of time so that μ = 1 for attractive force, or μ = −1 for
repulsive force — this makes the problem non–dimensional.

For a particle released at rest from radius 1, the speed at radius r is v, where:

v2 = 2(ϕ(1) − ϕ(r)) = 2μ

(
1
r
− 1

)
=

2μ(1 − r)
r

=
2 |r − 1|

r
. (44)

Thus, for repulsive force, as r ↗ ∞, then v ↗
√

2.

Radial Motion For attractive inverse square force, if the endpoint B lies
inside the interval OA then the line AB is the brachistochrone, with the particle
moving freely towards the centre O, with speed (cf. (44))

dr

dt
= −v = −

√
2(1 − r)

r
. (45)

Hence the time to reach radius r < 1 is

t(r) =
1√
2

∫ 1

r

√
x

1 − x
dx =

[
1
2 arccos(2r − 1) +

√
r(1 − r)

]
/
√

2 , (46)

so that as r ↘ 0, the time for falling to radius r approaches the limit:

t(0) =
π√
8

= 1.1107207345385916 . (47)

Figure 5 shews a graph of time versus radius, for a particle falling to the centre.
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This limit can conveniently be abbreviated, by saying that the particle falls to
the centre at time t(0).

But, any mathematical model in which the particle passes through the sin-
gularity at the centre (e.g. by traversing a straight line passing through the
singularity) introduces serious paradoxes, and cannot be regarded as a useful
idealization of any physical motion. No physically meaningful path of a particle
can pass through the singularity at the centre.

For repulsive inverse square force, if the starting point A is inside the interval
OB then the line AB is the brachistochrone, with the particle moving freely
outwards in the radial direction, with speed (cf. (44))

v =
dr

dt
=

√
2(r − 1)

r
. (48)

Hence, the time to reach radius r > 1 is:

t(r) =
1√
2

∫ r

1

√
x

x − 1
dx =

[√
r(r − 1) + log(

√
r +

√
r − 1)

]
/
√

2 . (49)

Figure 6 shews a graph of time versus radius, for a particle repelled from the
centre.
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In these two cases of radial motion, K = 0. Hereafter, we shall consider the
general case where K > 0, and so AB is not a radial line.

3.1 Brachistochrones Under Inverse Square Force

For inverse square force, at radius r on the brachistochrone, the speed v(r) of
the particle is given by (44).

With this form of v, the general equations (23), (31) and (37) give angle,
arclength and time as functions of radius with parameter K, the angular mo-
mentum of the associated free particle:

ϑ =
∫ r

1

dx

±x
√

x3

2μK2(1−x) − 1

= K
√

2
∫ r

1

1 − x

±x
√

μ(1 − x) (x3 + 2μK2(x − 1))
dx . (50)

s =
∫ r

1

dx

±
√

1 − 2μK2 1−x
x3

=
∫ r

1

x2

±
√

x(x3 + 2μK2(x − 1))
dx . (51)

t =
∫ r

1

dx

∓
√

2μ(1−x)
x

(
1 − 2μK2 1−x

x3

)
=

∫ r

1

x2

±
√

2μ(1 − x)(x3 + 2μK2(x − 1))
dx . (52)
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Thus, each of ϑ, s and t is given as an elliptic integral of r, with K as a
parameter.

4 Attractive Inverse Square Force

With attractive force (μ = 1), r ≤ 1 and hence any apsidal distance (if it exists)
is R < 1, so that 0 < R ≤ r ≤ 1. It follows from (25) and (44) that

K2 =
R2

v(R)2
=

R3

2(1 − R)
, (53)

and hence as R increases from 0 to 1, K increases monotonically from 0 to
infinity. Thus, for any positive K, R satisfies the cubic equation

2K2(1 − R) = R3. (54)

Now, the function R3 increases with R, but the function 2K2(1 − R) decreases
with R. At R = 0, 2K2(1−R) = 2K2 > 0 = R3, and at R = 1, 2K2(1−R) =
0 < 1 = R3. Hence, for each K > 0, the cubic equation (25) has a single real
root 0 < R < 1; and so the brachistochrone does have an apse, with apsidal
distance R. As K ↘ 0, R ∼ (2K2)1/3, and as K ↗ ∞, 1 − R ∼ (2K2)−1.

Therefore, with attractive inverse square force the family of brachistochrones
through a fixed point A can be parametrized by the minimum radius R, as an
alternative to K.

4.1 Equations For Brachistochrone

The equations (23), (31), (37) and (50), (51), (52) give angle, arclength and time
on the first half-arch; each as an elliptic integral of radius with the minimum
radius R as a parameter:

Θ(r, R) =
∫ 1

r

1 − x

x
√

(1 − x)
((

1−R
R3

)
x3 + x − 1

) dx

=
√

R3

1−R

∫ 1

r

1 − x

x

√
(1 − x)(x − R)

[
x2 + Rx + R2

1−R

] dx . (55)

S(r, R) =
∫ 1

r

x2√
x

(
x3 +

(
R3

1−R

)
(x − 1)

) dx

=
∫ 1

r

x2√
x(x − R)

[
x2 + Rx + R2

1−R

] dx . (56)

T (r, R) =
∫ 1

r

x2√
2(1 − x)

(
x3 +

(
R3

1−R

)
x − R3

1−R

) dx
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=
∫ 1

r

x2√
2(1 − x)(x − R)

[
x2 + Rx + R2

1−R

] dx . (57)

Or, if angle ω (30), arclength σ (35) and time τ (41) are measured from the
apse, then the complete brachistochrone is given in terms of r by the elliptic
integrals

ω = ±
√

R3

1−R

∫ r

R

1 − x

x

√
(1 − x)(x − R)

[
x2 + Rx + R2

1−R

] dx ,

σ = ±
∫ r

R

x2√
x(x − R)

[
x2 + Rx + R2

1−R

] dx ,

τ = ±
∫ r

R

x2√
2(1 − x)(x − R)

[
x2 + Rx + R2

1−R

] dx . (58)

The discriminant of the polynomial x2 +Rx+ R2

1−R is R2(R+3)/(R−1), and
since R < 1 that discriminant is negative. Therefore, that quadratic polynomial
is positive for all real x.

4.1.1 Non-standardization of Elliptic Integrals

Every elliptic integral can be reduced to a standard form, as a linear combination
of elementary functions and of Legendre’s Elliptic Integrals of the First, Second
and Third Kinds. But, the reduction of elliptic integrals to such a standard form
is very complicated (Erdélyi [6], pages 294–312), with many hundreds of cases
to be distinguished carefully (Byrd & Friedman [2], pages 42–161). Moreover,
the only practical way to evaluate Elliptic Integrals of the Third Kind is to use
some appropriate numerical quadrature. Hence, it is simpler to evaluate our
various elliptic integrals directly, without reducing them to standard form.

4.1.2 Elimination of Singularities in Integrands

For minimum radius R � 1, the angle ϑ remains small until the particle has
reached radius x which is slightly greater than R, after which ϑ increases (during
very little time) to the apse angle Θ(R, R), during the small decrease of x to R.
Thus, almost all of the apse angle is generated by values of the integrand near
x = R, which are much larger than values of the integrand for smaller x, as a
consequence of the factor x in the denominator in (55). That near–singularity
of the integrand near x = R � 1 makes it difficult to evaluate the integral
numerically, and it greatly complicates analysis of the asymptotic behaviour of
the brachistochrones as R ↘ 0.

Accordingly, we shall apply the substitution

z =
R

x
, (59)
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so that z increases from R to 1 as x decreases from 1 to R. Then, the equation
(55) becomes

Θ(r, R) =
∫ R/r

R

z − R√
(1 − z)(z − R)

(
z2 + (1 − R)z + 1 − R

) dz . (60)

This transformed integrand (60) still has an integrable singularity at z = R,
and when r = R there is an integrable singularity at z = 1, and similarly for
(57). Accordingly, we shall apply substitution of variable in each integral to
remove those integrable singularities, so that the transformed integrands are
C∞–smooth, and hence the transformed integrals can readily be evaluated to
high accuracy by Romberg integration.

4.2 Angle as a Function of Radius

In the integral (60) for ϑ, substitute

z = z(λ) = 1
2 (1 + R + (1 − R) cos 2λ) = cos2 λ + R sin2 λ , (61)

so that λ increases from 0 to 1
2π as r increases from R to 1 and z decreases from

1 to R; and

λ = λ(z) = 1
2 arccos

(
2z − 1 − R

1 − R

)
. (62)

Therefore
z − R = (1 − R) cos2 λ , (63)

and
dz√

(1 − z)(z − R)
= −2 dλ . (64)

Thus, (60) becomes

Θ(r, R) =
∫ π/2

λ(R/r)

2(z − R)√
z2 + (1 − R)z + 1 − R

dλ , (65)

where the function z = z(λ) is given by (61).
Now, z(λ) is a C∞–smooth function of λ, and the quadratic polynomial in

the denominator is strictly positive, and hence the integrand in (65) is a C∞–
smooth function of λ. Thus, the integral (65) may readily be evaluated to high
accuracy by Romberg integration with respect to λ.

In particular, the apse angle is

Θ(R, R) =
∫ π/2

0

2(z − R)√
z2 + (1 − R)z + 1 − R

dλ , (66)

Write the integrand as f(R, λ), where z is given as a function of R and of λ
by (61). Then,

d
dR

Θ(R, R) =
d

dR

∫ π/2

0

f(R, λ) dλ =
∫ π/2

0

∂f

∂R
dλ . (67)
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Holding λ fixed, we get
∂z

∂R
= sin2 λ . (68)

Thus,

∂f

∂R
=

∂

∂R

[
2(1 − R) cos2 λ

(
z2 + (1 − R)z + 1 − R

)−1/2
]

= −2 cos2 λ
(
z2 + (1 − R)z + 1 − R

)−1/2 − (1 − R) cos2 λ ×
×

(
z2 + (1 − R)z + 1 − R

)−3/2(2z sin2 λ + (1 − R) sin2 λ − z − 1
)

= −C
[
2(z2 + (1 − R)(z + 1))

+(1 − R)
(
z(2 sin2 λ − 1) − 1 + (1 − R) sin2 λ

)]
, (69)

where
C = cos2 λ

(
z2 + (1 − R)z + 1 − R

)−3/2 ≥ 0 , (70)

with equality only at λ = 1
2π. Hence, for 0 ≤ λ < 1

2π,

−1
C

∂f

∂R
= 2(z2 + (1 − R)(z + 1))

+(1 − R)
(
z(2 sin2 λ − 1) − 1 + (1 − R) sin2 λ

)
= 2z2 + (1 − R)

(
2z + 2 + 2z sin2 λ − z + (1 − R) sin2 λ − 1

)
= 2z2 + (1 − R)

(
z + 1 + (2z + 1 − R) sin2 λ

)
> 0 ; (71)

and so
∂f

∂R
< 0 (72)

for all λ ∈ [0, 1
2π).

Therefore
d

dR
Θ(R, R) =

∫ π/2

0

∂f

∂R
dλ < 0 , (73)

and hence the apse angle Θ(R, R) is a strictly decreasing function of R, for all
R ∈ (0, 1). As R ↗ 1, then Θ(R, R) ↘ 0.

4.2.1 Bound for Apse Angle

As R ↘ 0 then 1 − R ↗ 1, and it follows from (61) that z(λ) converges to
cos2 λ, uniformly for all λ ∈

(
0, 1

2π
)
. Hence, z2 + (1 − R)z + 1 − R converges

to 1 + cos2 λ + cos4 λ, with relative error converging to 0, uniformly for all
λ ∈

(
0, 1

2π
)
. Therefore, we get the limiting value of the apse angle:

lim
R→0

Θ(R, R) =
∫ π/2

0

2 cos2 λ√
1 + cos2 λ + cos4 λ

dλ

=
∫ π/2

0

2 cos2 λ sin λ√
(1 − cos2 λ)(1 + cos2 λ + cos4 λ)

dλ

=
∫ π/2

0

2 cos2 λ sin λ√
1 − cos6 λ

dλ = −2
3

∫ π/2

0

d
(
cos3 λ

)
√

1 − cos6 λ

=
2
3

∫ 1

0

du√
1 − u2

=
π

3
, (74)
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where u = cos3 λ.
Thus∗, as R ↘ 0, then Θ(R, R) ↗ 1

3π.

Apsidal Locus The curve ϑ = Θ(R, R), which we shall call the apsidal locus,
separates those points C for which the brachistochrone AC is part of the (open)
first half–arch ((27) or (28)) of a complete brachistochrone AB, from those
points C for which the brachistochrone AC includes part of the (open) second
half–arch (29).

Figure 7 shews that the apsidal locus approximates quite closely to a circular
arc with angle 2

3π, spanning the chord OA.
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Figure 7:   Apsidal Locus
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The Apsidal Angle is between 0 and π/3

4.2.2 Sector of Inaccessibility

The apse angle has the least upper bound of 1
3π, and hence every brachis-

tochrone covers angle strictly less than 2
3π. Therefore, for any point C = (ρ, ψ)

with 2
3π ≤ ψ ≤ π, there does not exist any brachistochrone from A to C!

As the apse radius R ↘ 0, the first half-arch of the brachistochrone converges
(non-uniformly) to the radius vector OA (with ϑ = 0) and the second half-arch
converges (non-uniformly) to the radius vector with ϑ = 2

3π. But (for K > 0)

0∗Ron Keam has generalized this analysis, to shew that for inverse n-th power force, with
real n > 1, the limit of the apse angle is π/(n + 1).
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the starting point A is the only point on those bounding radii vectors through
which passes any brachistochrone starting at A.

Rather, a particle sliding on a smooth curve which is close to the radius
vector OA until it gets very close to the centre O, then swerving across to a
path close to the radius vector OC, will reach C after a period slightly more
than κ(ρ), which is defined as the time for a particle to fall from A to O, plus
the time for a particle (starting from rest at radius 1) to fall from C to O. Thus
(cf. (44)),

κ(ρ) = 2t(0) − t(ρ) =
[
π − 1

2 arccos(2ρ − 1) −
√

ρ(1 − ρ
]
/
√

2 . (75)

But, there does not exist any smooth path which does get the particle from
A to C in time κ(ρ). In the sector of the unit circle with 2

3π ≤ ϑ ≤ π, for each
point C on the arc of radius ρ, κ(ρ) is the greatest lower bound for passage
time from A to C. That sector is here called the Sector of Inaccessibility for
brachistochrones from A — it is depicted in Figure 8,
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Figure 8:   Sector of Inaccessibility

O A

Accessible sector

2π/3

On each arc of radius ρ, κ(ρ) is the greatest lower bound of Passage Time

The sector with 0 ≤ ψ < 2
3π is here called the accessible sector.

4.2.3 Pictures of Brachistochrones, for Attractive Inverse Square
Force

Figure 9 shews the complete brachistochrones from A for various values of the
minimum radius R, with ϑ computed for various values of r by Romberg inte-
gration of (65).

Note that the small complete brachistochrones do indeed resemble complete
cycloid arches; and that the angle covered by the complete brachistochrone does
increase towards 2

3π as R ↘ 0 and the first half-arch converges to the radius
vector OA.
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Figure 9:   Brachistochrones, for minimum radius R = 0.1,0.2,...,0.9

One brachistochrone passes through each point in the accessible sector

4.3 Arclength as a Function of Radius

In the integral (56) for s, substitute

x = x(y) = y2 + R, (76)

so that y =
√

x − R and dx = 2y dy, and hence

S(r, R) =
∫ √

1−R

√
r−R

2yx2

y

√
x

[
x2 + Rx + R2

1−R

] dy

=
∫ √

1−R

√
r−R

2x√
x + R + R2

(1−R)x

dy , (77)

where x = y2 + R. In particular, the arclength to the apse is

S(R, R) =
∫ √

1−R

0

2x√
x + R + R2

(1−R)x

dy . (78)

And these transformed integrals are suitable for Romberg integration with
respect to y.
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4.3.1 Graphs of Radius versus Arclength

Figure 10 shews graphs of r versus s, for various values of the minimum radius
R. Each graph is symmetric about the line s = S(R, R).
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Figure 10:   Radius versus Arclength, for minimum radius R = 0.1,0.2,...,0.9
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The dotted line is the limit of the graphs as R ↘ 0, with the first half repre-
senting the radius vector at ϑ = 0, and the second half representing the radius
vector at ϑ = 2

3π.

4.4 Time as a Function of Radius

Substitute
x = x(ζ) = 1

2 (1 + R + (1 − R) cos ζ), (79)

so that as x decreases from 1 to R, ζ increases from 0 to π, and

ζ = ζ(x) = arccos
(

2x − 1 − R

1 − R

)
. (80)

Then, (57) becomes

T (r, R) =
∫ ζ(r)

0

x2√
2

[
x2 + Rx + R2

1−R

] dζ , (81)

where the function x = x(ζ) is given by (79). In particular, the time at the apse
is

T (R, R) =
∫ π

0

x2√
2

[
x2 + Rx + R2

1−R

] dζ . (82)

And these transformed integrals are suitable for Romberg integration with
respect to ζ.
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4.4.1 Graphs of Radius versus Time

Figure 11 shews graphs of r versus t, for various values of the minimum radius
R. Each graph is symmetric about the line t = T (R, R).
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Figure 11:   Radius versus Time, for minimum radius R = 0.1,0.2,...,0.9
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The dotted curve is the limit of the graphs as R ↘ 0, with the first half (cf.
Figure 5) representing free fall down the radius vector at ϑ = 0, and the second
half representing free rise up the radius vector at ϑ = 2

3π.

4.5 Relation between Arclength and Angle

For each value of the minimum radius R, each of ϑ, s and t can be computed
from (55), (56) and (57) as functions of r.

Figure 12 shews graphs of ϑ versus s for various values of R, with the points
on each graph computed for the parameter r.

The dotted line is the limit of the graphs as R ↘ 0, with the first vertical line
representing the radius vector at ϑ = 0, and the second vertical line representing
the radius vector at ϑ = 2

3π. The horizontal line represents the transition from
the first radius vector to the second, with zero arclength involved.

Since angle, arclength (and likewise time), measured from the apse, are each
even functions (58) of r, each of these graphs is symmetric about its midpoint,
corresponding to the apse.
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4.6 Relation between Time and Angle

Figure 13 shews graphs of t versus ϑ for various values of R, with the points on
each graph computed for the parameter r.

The dotted line is the limit of the graphs as R ↘ 0, with the first horizontal
line representing the radius vector at ϑ = 0, and the second horizontal line
representing the radius vector at ϑ = 2

3π. The vertical line represents the
transition from the first radius vector to the second, with zero time involved.

Since both angle and time, measured from the apse, are even functions (58)
of r, each of these graphs is symmetric about its midpoint, corresponding to the
apse.

4.7 Relation between Arclength and Time

Figure 14 shews graphs of s versus t for various values of R, with the points on
each graph computed for the parameter r.

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Limit of graphs as R approaches 0

π/√8 π/√2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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The dotted curve is the limit of the graphs as R ↘ 0, with the first half (cf.
Figure 5) representing free fall down the radius vector at ϑ = 0, and the second
half representing free rise up the radius vector at ϑ = 2

3π.
Since both arclength and time, measured from the apse, are even functions

(58) of r, each of these graphs is symmetric about its midpoint, corresponding
to the apse.
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5 Brachistochrone Through Two Points

In view of (55) and (29), the polar equation of the brachistochrone with mini-
mum radius R is

ϑ =
∫ 1

r

1 − x

x
√

(1 − x)
((

1−R
R3

)
x3 + x − 1

) dx = Θ(r, R) (83)

on the first half-arch; and ϑ = 2Θ(R, R) − Θ(r, R) on the second half-arch.
For R ∈ [0, 1), R3/(1−R) is an increasing function of R; and hence for each

fixed x the integrand in (83) is a monotonically increasing function of R. Hence,
for fixed r ≥ R, Θ(r, R) increases monotonically with R. Therefore, for fixed
r ≥ R, ϑ is an increasing function of R on the first half-arch. But 2Θ(R, R) is
a decreasing function of R, and for fixed r > R, −Θ(r, R) is also a decreasing
function of R; and hence ϑ = 2Θ(R, R) − Θ(r, R) is a decreasing function of R
on the second half-arch.

Consider any point B �= A in the accessible sector with polar coordinates
(ρ, ψ), where 0 ≤ ρ ≤ 1 and 0 ≤ ψ < 2

3π.
Could two brachistochrones, with distinct parameters R1 �= R2, starting

at the same point A, intersect at B? If so, then B could not be on the first
half-arch of both brachistochrones, since ϑ increases monotonically with R on
the first half-arch. Similarly, B could not be on the second half-arch of both
brachistochrones, since ϑ decreases monotonically with R on the second half-
arch. Therefore, B must be on the first half-arch of one brachistochrone and
on the second half-arch of the other brachistochrone. But, for brachistochrones
with startpoint A, the apsidal locus separates those points in the accessible
sector which are on a first half-arch from those which are on a second half-arch.
Therefore, two distinct brachistochrones with startpoint A cannot intersect at
any point other than A,

Thus, through each point B in the accessible sector, there passes 1 and only
1 brachistochrone starting at A.

In order to construct the brachistochrone AB, we need to compute its mini-
mum radius R, which is the parameter for that particular brachistochrone start-
ing from A and passing though B.

Note that 0 < R ≤ ρ ≤ 1.

5.1 Computation of the Parameter R

If 0 < ψ ≤ Θ(ρ, ρ) < 1
3π, then B is on the first half-arch of the brachistochrone.

Accordingly (cf. (27) & (65) ), the angle at B satisfies the equation

ψ = Θ(ρ, R), (84)

for some minimum radius R ≤ ρ.
Otherwise, B is on the second half-arch, and the angle at B satisfies the

equation (29)
ψ = 2Θ(R, R) − Θ(ρ, R). (85)

In particular, this is the case if 1
3π ≤ ψ < 2

3π.
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Thus, the construction of the brachistochrone AB has been reduced to com-
putation of the root R = R of the equation

Υ(R) − ψ = 0. (86)

Here

L(R) def= 1
2 arccos

(
2R
ρ − 1 − R

1 − R

)
,

z = z(λ) def= cos2 λ + R sin2 λ , (87)

and for ψ ≤ Θ(R, R),

Υ(R) def=
∫ π/2

L(R)

2(z − R)√
z2 + (1 − R)z + 1 − R

dλ , (88)

but otherwise

Υ(R) def= 2Θ(R, R) −
∫ π/2

L(R)

2(z − R)√
z2 + (1 − R)z + 1 − R

dλ . (89)

The equation (86) can be readily solved to high accuracy by the secant
method, which requires evaluation of the function Υ and which requires two
initial estimates of the root — e.g. R0 = 0.9ρ, R1 = 0.7ρ. When the pair
of initial estimates are such that the secant method does converge to a root
(Rn → R), then it converges (for a C2 function) with order γ = (

√
5 + 1)/2 =

1.6180340 . Since the convergence is of order γ > 1 (which is faster than linear),
then (Rn −R)/(Rn −Rn−1) → 0 as n → ∞, and so the limit R can reliably be
estimated.

Once R has been computed, then the arclength AB can be computed from
(77), and the minimum passage time from A to B can be computed from (81).

5.2 Examples of Construction of Brachistochrone
Through Two Points

Many examples of brachistochrones through two points have been computed by
a program written in Lightspeed PASCAL, using extended variables which have
roundoff corresponding to 18 or 19 significant decimal figures. Some examples
are presented in Table 1. In each case, the secant method ended with two
successive estimates of R differing by less than 10−16.

Here, ρ and ψ give the polar coordinates of the endpoint B,
R0 and R1 are the initial estimates given for apse radius R,
Steps is the number of steps performed of the secant method,
R is the computed value for R,
s is the arclength of the brachistochrone AB, and
t is the time for the particle to reach the endpoint B.

Table 1
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ρ ψ R0 R1 Steps Brachistochrone AB

0.2 1.2 0.2 0.1 10

⎧⎨⎩ R = 0.184781963328079
s = 0.967544327890300
t = 1.127755808164997

0.5 0.1 0.4 0.2 7

⎧⎨⎩ R = 0.252787093630160
s = 0.505594850833648
t = 0.914164272619962

0.7 1.8 0.6 0.5 7

⎧⎨⎩ R = 0.168913316595188
s = 1.531621194881120
t = 1.481218910277573

0.9 0.4 0.8 0.7 7

⎧⎨⎩ R = 0.838545794202334
s = 0.442680075643429
t = 1.058599268341289

1.0 2.0 0.2 0.1 6

⎧⎨⎩ R = 0.057854464393370
s = 1.947547388961997
t = 2.221060707125763

Note that, for r = r(ϑ), R is a stationary value of r at the apse. Accordingly,
if the endpoint B is very close to the apse on the brachistochrone AB, then any
small error in computing the apse radius R = R inevitably produces a much
larger error ϑ − ψ in matching the angle at B.

6 Brachistochrones For
Repulsive Inverse Square Force

The brachistochrones for repulsive inverse square force display some interesting
complexities [18] associated with the radius r = 3/2 — and also a remarkable
simplification.

Acknowledgments I wish to thank Ron Keam and Don Nield, for stimulating
discussions about this problem.
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