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Abstract

A graph is g�universal if it satis�es two conditions� First it must

contain a subdivision of every proper planar graph of degree at most

three as a subgraph� Second� the function g puts a restriction on the

subdivision� In particular� for a planar graph H of degree at most

three� a �xed vertex w� of H� and an arbitrary vertex w of H� the

images of the vertices w� and w in the universal graph are no more

than g�d�w�� w�� apart� We show that a large class of planar graphs

are O�n���universal�
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� Introduction

The purpose of this paper is to exhibit a large family of planar graphs which

have a certain universal property� A proper embedding of a graph in the plane

is a planar embedding so the set of vertices has no accumulation point� By a

planar graph we mean a graph that can be embedded properly in the plane�

We allow loops and multiedges in graphs but require that each vertex has

�nite degree�

A random walk on a graph is a Markov chain where the state space is the

set of graph vertices and the transition probability from vertex v to vertex

w is � if vw is not an edge� and �
deg�v�

if vw is an edge� Intuitively� a random

walk is an in�nite walk that proceeds from vertex to vertex along edges

where each edge from a vertex has the same probability of being traversed� A

random walk can be one of two types� It either has probability � of eventually

returning to the starting vertex� or else the probability is less than �� In the

�rst case� the graph is said to be recurrent� while in the second case� the

graph is called transient� Random walks on recurrent graphs visit the initial

vertex an in�nite number of times with probability �� while random walks on

a transient graph visit the initial vertex only a �nite number of times with

probability �� Of course� �nite graphs are recurrent while in�nite graphs may

be either recurrent or transient�

In ���� the following condition is given which implies that a graph is

transient� Let V be a set of vertices in the graph �� By �V we mean the

set of vertices in V incident with a vertex outside of V � The graph � is said

to satisfy the f 	isoperimetric inequality if j�V j � f
jV j� for every �nite set

of vertices in �� If � satis�es an f 	isoperimetric inequality for some f withP�
n�� f
n�

�� �nite� then � is transient� The special case where f
n� � n
�
�
��

is done in ���� where the condition j�V j � f
jV j� is called an �	isoperimetric

inequality� Also� in ���� it is shown that if � satis�es an �	isoperimetric

inequality with � � �� then � is transient�

The method of proof in ���� is based on a correspondence between tran	

sience and resistance of an electrical network� as presented in ��� In fact� the
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proof of transience in ���� relies on the construction of an embedded subgraph

T of � which is homeomorphic with a full in�nite binary tree B� A �ow is

de�ned on the tree by labeling the edges� The two edges incident with the

root are each labeled �
�
� On any path from the root� each edge is given the

same label as the previous edge if the common vertex has degree two� If the

common vertex has degree � 
a branch vertex�� then the edge is labeled �
�
the

previous edge� The energy of the �ow is the sum of the squares of the labels�

In �� it is shown that if the energy of this �ow is �nite� then the graph is

transient� In particular� let T be homeomorphic with the full in�nite binary

tree B and suppose that an edge from level m to level m�� in B is mapped

to a path of length at most g
m� by the homeomorphism� The energy of

the �ow is bounded above by
P�

m��

�
�
�m

��
�mg
m�� Thus� to show a graph is

transient� it is su�cient to �nd an embedded subtree T homeomorphic with

B satisfying the condition that
P�

m��
g�m�
�m

is �nite�

De�nition � Let g be a function from the natural numbers to the reals� We

say that a graph � is g�universal if� for every connected planar graph H

with maximum degree at most three and every �xed vertex w� in H� there

is a subgraph of � that is homeomorphic with H� Furthermore� if w is a

vertex in H and v�� v are the vertices in � corresponding to w�� w by the

homeomorphism� then d	
v�� v� � g
dH
w�� w���

The full in�nite binary tree can be properly embedded in the plane� so

if
P�

m��
g�m�
�m

is �nite� then any g	universal graph is transient� However�

the full in�nite binary tree is not universal since it doesn�t contain a cycle�

Consequently� transience is not enough to imply universal� Furthermore� the

isoperimetric conditions of ���� are not su�cient to imply universal since the

full in�nite binary tree satis�es the �	isoperimetric condition for � � �
�
�

The de�nition of universal used in this paper is similar to the de�nition of

universal in ��� �� ��� Instead of requiring that every graph of a certain type

be isomorphic with a subgraph or an induced subgraph� we only require that

it be homeomorphic with a subgraph� but add the condition that distance

from a �xed vertex not be changed more than a �xed function g�

�



The purpose of this paper is to show that a certain class of planar graphs

consists of g	universal graphs where g
m� � O
m��� In order to de�ne this

class of graphs� we �rst de�ne a few terms�

A graph � is �	ended if for any �nite set of vertices V of �� � � V has

only one in�nite component� � has bounded degree if there is a number d

such that every vertex has degree at most d� A planar graph has bounded

codegree if there is a number � such that each face is bounded by a polygon

with at most � sides�

We de�ne a disk to be a union of closed faces of a planar graph that is

homeomorphic with the usual disk in the plane� Recall that for a regular

k	gon in the Euclidean plane an interior angle has size 
�� �
k
��� Hence� for

a simple graph� if there are deg
v� � � regular polygons incident to a vertex

v and these polygons have ni edges respectively� where � � i � deg
v�� then

the sum of the angles at v is
Pdeg�v�

i�� 
�� �
ni
��� For convenience we omit the

factor of � and de�ne the excess of a vertex in general as follows� 
Loosely

speaking the excess measures how far the sum of the angles incident to a

vertex deviates from the normal Euclidean sum of ����

The excess of a vertex v in a disk is given by

Ex
v� �

�X
i


��
�

ni
�

�
� � � bv�

where ni is the number of edges bounding the i
th face incident with v and bv is

one if v is incident with the unbounded face and zero otherwise� The number

ni is counted with multiplicity� Furthermore� the same face is counted with

multiplicity in the sum�

It is not di�cult to show that in a disk D�
P

v�D Ex
v� � �� ���� This is

simply Euler�s formula written in terms of excess�

For an in�nite planar graph � the excess of a vertex is treated as if it were

an interior vertex� that is� bv � �� IfD is a disk inside �� then we write ExD
v�

to denote the excess at v using the disk D� In this case� ExD
v� � Ex
v� as

long as v is interior to D� but for vertices on the boundary of D these two

expressions are not the same�
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In Section � we prove the following theorem�

Theorem � Let � be an in�nite ��ended planar graph with bounded degree

and codegree� If there is a number � � � such that every vertex of � has

excess at least �� then � is O
m���universal�

By the comment above concerning transient graphs and g	universal graphs�

Corollary � then follows�

Corollary � Let � be an in�nite ��ended planar graph with bounded degree

and codegree� If there is a number � � � such that every vertex of � has

excess at least �� then � is transient�

In Section � we prove that a certain graph is O
m�	universal� This result

is used in Section � to prove Theorem �� Section � contains an example

that shows it is not su�cient to assume that the average excess is at least

� to imply that a graph is universal� Furthermore� in Section � we give an

alternate proof of Corollary � using the isoperimetric condition of �����

� A universal graph

We �rst de�ne a graph �� Figure � shows the graph and illustrates the

de�nition� We start with the full in�nite binary tree B and label all the

vertices at level h� � through �h � �� going from left to right� We identify a

vertex in B by specifying its level and label� We refer to the vertex to the

right or left of a vertex v as the vertex at the same level as v whose label is

one more or one less respectively than the label of v� where the label is read

modulo �h� We replace each edge of B with a path of length � and refer to

each path as a leg� An h�leg is a leg that replaces a vertex between vetices of

B at level h and level h�� The two internal vertices in an h�leg are referred

to as the upper and the lower vertices� the upper vertex is incident with a

vertex at level h and the lower is incident with a vertex of level h� � in the

original tree� Left and right legs are de�ned in the obvious way� For each left





Figure �� The graph �� Vertices corresponding to the in�nite binary tree

B are represented with hollow dots� while the vertices corresponding to the

subdivisions are represented with solid dots�

leg its lower vertex and the lower vertex of the leg to the right are connected

with an edge and the upper vertex is connected with an edge to the upper

vertex of the leg to the left� When referring to a vertex of � of level h� we

mean a vertex whose level in the original binary tree was at level h� Children

in � mean children in the original full binary tree� Horizontal and vertical

edges in � have the obvious meaning�

It is obvious that the graph � can be properly embedded in the plane�

Figure � gives an explicit embedding� It is also obvious that a subdivision of

any binary tree T can be embedded in � in such a way that left and right

children of a vertex v in T map to left and right children of the image of v

in ��

A horizontal path is a path in � between vertices which are at the same

level in B� Furthermore� the path follows a vertical edge down� a horizontal

edge across� a vertical edge up� a vertical edge down� and so on as indicated

by the two horizontal paths 
highlighted in bold� in Figure �� Note that any
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Figure �� Two horizontal paths in ��

two distinct vertices at the same level have two horizontal paths between

them�

We now show that � is universal� Let H be a properly embedded graph

in the plane with maximum degree at most � and �x w�
� a vertex in H� If w�

�

does not have degree �� then add a vertex to an edge adjacent with w�
� and

call the new vertex w�� Otherwise� let w� � w�
�� This modi�cation changes

distance between vertices by at most �� Let Wm denote those vertices whose

edge distance from w� is exactlym� We call edges between two vertices inWm

horizontal edges while edges from vertices in Wm to Wm�� are vertical edges�

From H remove all the horizontal edges and call the remaining subgraph �H�

Note that for a vertex w in H� dH
w�� w� � d 
H
w�� w��

Now remove selected vertical edges from �H to form a tree T � It is not

di�cult to show by induction on m� that selected vertical edges can be re	

moved so the remaining graph restricted to the vertex setW��W��� � ��Wm

is a tree� This gives a subgraph T of �H such that V 
T � � V 
H�� distance

in T from w� is the same as distance in H� and T is a tree rooted at w�

with maximum degree at most �� Furthermore� the fact that H is embedded
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in the plane gives T the structure of a binary tree� The vertices of Wm are

labeled from the set f�� �� � � � � � �m � �g by labeling each left child twice its

parent and each right child one more than twice its parent� Since H is em	

bedded in the plane� for each vertex of degree three� the planar embedding

determines if a child vertex in T is a right child or a left child� In the case

where a vertex in H has degree �� then its child is arbitrarily assigned to

be a left or right child� An embedding of T into the full in�nite binary tree

B simply sends a vertex with label s and level h to a vertex with label s

and level h� Since a subdivision of the full binary tree sits in �� we have an

embedding � of a subdivision of T in �� Furthermore if w � V 
H�� then

d
�
w�
��� �
w�� � �d
w�

�� w� � ��

In order to produce a subgraph of � that is homeomorphic with H� it

remains to map edges in E
H�� E
T � to paths in �� For two edges e� e� �

E
H��E
T � we write e 	 e� to mean the unique cycle in T � e� encloses the

interior of e� Note that it is impossible for e 	 e� and e� 	 e�

Lemma � The edges of E
H��E
T � can be ordered e�� e�� � � � in such a way

that i 	 j implies that ei 	 ej or else ei and ej are not comparable�

Proof� Let S �� 	 be a subset of the edges of E
H��E
T �� Pick e � S

to be an edge incident with a vertex in Wm for the smallest possible value of

m� The graph T � e has a unique cycle� Since this cycle bounds a compact

face D of the plane and the embedding is proper� there are only a �nite

number of vertices in the closed face D� Therefore� e� 	 e for only a �nite

number of e� � S� For any e� 	 e� if e�� 	 e�� then e�� 	 e� So� there is an

element in S� say g
S� with g
S� 	 �e or else g
S� and �e are not comparable

for all �e � S � fg
S�g�

We de�ne S� � E
H� � E
T � and e� � g
S��� Then we de�ne en and

Sn recursively by Sn � Sn�� � fen��g and en � g
Sn���� Note that the way

g
S� is de�ned by starting with an edge incident with Wm for minimum m

implies that every edge appears in the sequence e�� e�� � � �� Furthermore� the

condition that i 	 j implies ei 	 ej or else ei and ej are not comparable is

clear from the construction�
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We shall assume that the edges of E
H��E
T � are ordered as in Lemma ��

Theorem � There is an embedding � of a subdivision of H in � with the

property that for any vertex w � V 
H�� d
�
w��� �
w�� � �d
w�� w� � ��

Proof� We �rst embed a subdivision of the tree T in � as de�ned above�

We then show by induction that the edges e�� e�� � � � � em can be mapped to

paths in � to complete the embedding to all of H� Note that regardless of

how the edges in E
H��E
T � are mapped to �� the condition on the distance

is not violated since adding more edges to T can not increase distances�

We assume inductively that all the edges e�� � � � � em�� have been mapped

to paths in � by �� We further assume that there is a homeomorphism 
 of

the plane to itself that extends � and each edge ei� for i 	 m� is mapped

by � to a path consisting of vertical edges followed by a horizontal path

and then vertical edges� The base of the induction is obvious since T is

a binary tree� We need to show how to map the edge em to a path� We

do this by �rst considering the image 

em�� Of course 

em� need not be

a path in �� We know from the inductive assumption and the order of

the edges in E
H� � E
T � that 

em� is not in a bounded component of

T � e� � � � � � em��� Consequently� one can deform 

em� into a path � that

�rst follows vertical edges� then follows a horizontal path� and �nally follows

vertical edges� This path cannot intersect �
T � e� � � � � em��� since the

vertical edges in 

em� are following branches of the binary tree that are not

in the image of �
T � e� � � � � em���� We then de�ne �
em� to be �� Since we

are deforming a path in the plane� the homeomorphism 
 can be modi�ed so

that � is the image of em�

� Proof of the main theorem

We now prove that any graph satisfying the conditions of Theorem � is

universal� We assume that � is an in�nite �	ended planar graph with degree
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bounded by d and codegree bounded by �� Furthermore� we assume there is

a number � � � such that every vertex of � has excess at least ��

There are two distance measures for � considered here� We let d
v� u�

denote the usual distance between vertices v and u� while we let d�
v� u�

denote the face distance between v and u� The face distance is the usual

distance between vertices when each face is replaced by a complete graph on

the incident vertices� That is� the face distance is the number of faces one

must traverse in order to go between two vertices�

Fix a vertex v� of � and let Vm denote the set of vertices of � whose face

distance is exactly m from v�� As shown in ���� for each m � � there is a

cycle Cm whose vertices are in Vm with the property that v� is in the �nite

component of � � Cm� Furthermore in ���� it is shown that jV 
Cm�j grows

exponentially with m�

Lemma � For each vertex v in Cm with m � �� there is a face incident with

v that is also incident with a vertex in Cm���

Proof� Since v is in Vm� it is incident with a face containing a vertex w

in Vm��� If w is not in Cm��� then there is a path from v� to w that does not

intersect Cm��� Consequently� there is a path from v� to v � V 
Cm�� But

then� V 
Cm� is in the component of � � Cm�� containing v�� This implies

that v� is in the in�nite component of �� Cm which is a contradiction�

For each vertex of v of Cm we de�ne Ex�
v� to be the excess for the vertex

v on the disk bounded by Cm� That is� Ex
�
v� �

hP
i
��

�
ni
�
i
��� where the

index i labels faces incident to v which are interior to the cycle� The quantity

Ex�
v� �
hP

i
��
�
ni
�
i
��� where in this sum the index i labels faces incident

to v which are exterior to Cm� Note that Ex
�
v��Ex�
v� � Ex
v�� We refer

to Ex�
v� as the inner excess and Ex�
v� as the outer excess�

In ��� it is shown that for planar graphs where every region is a triangle�

if the excess at each vertex is at least �� then the graph is concentric� That

is� all the vertices in Vm are in Cm� A key part of the inductive argument is

that Ex�
v� � � for each vertex in Cm� In our setting� this is certainly not
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the case� However� we wish to establish an upper bound on the excess sum

around consecutive vertices on the cycle Cm� The next few lemmas give the

desired bound�

Lemma 	 On the cycle Cm� for any consecutive set of vertices R�

X
v�R

Ex�
v� 	
�

�
m�

where d is an upper bound on degree and � an upper bound on codegree�

Proof� In the cases where R contains all vertices in Cm or all except

one vertex in Cm� the statement follows from Euler�s formula involving excess

since the excess of each internal vertex is positive� For the remaining cases�

let u and w be the end vertices for R� That is� u and w are vertices not in R�

but incident in Cm with vertices in R� By Lemma � there are paths p and q of

length at most �
�
�m starting at u and w respectively and ending at a common

vertex x on some Ci� � � i 	 m� We furthermore can assume that x is the

only vertex common to the two paths� Let D be the disk bounded by the

cycle consisting of the paths p and q together with the part of Cm induced

by the vertices of R�fu� wg� Each vertex of the paths p and q have excess at

least ��
�
and the sum of the disk excess for D is ��� Let E �

P
v�R Ex

�
v�

and E � �
P

v�int�D� Ex
v� � �� Then E � E � � �
�

�m� �� � ��� Therefore�

E 	 �
�
�m�

In the case that jRj is large� Lemma � can be improved to insure that the

excess sum is negative�

Lemma 
 If R is a set of consecutive vertices on Cm and jRj � �d��m
��

� thenP
v�R Ex

�
v� 	 ���

Proof� As in Lemma � construct paths from end vertices u and w of R

that meet at vertex x and each having length at most �m
�
� Also form the disk

D as in Lemma �� Let R� denote the vertices interior to D which are on the

cycle Cm���
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Each vertex v of R is connected by a face to a vertex in R�� Therefore�

jR�j � jRj
d�
� We de�ne E and E � as in Lemma � and note that E � �

jRj
d�
�� Since

E �
jRj

d�
��

�

�

�m� �� � ��

we have

E 	
�

�
�m�

jRj

d�
�� �

	
�

�
�m�

�d��m

��

�

d�
� �

� ��

Given two vertices v and w in Cm� we let the B
v� w� denote the vertices

encountered in a counterclockwise walk around Cm from v to w� but including

neither v nor w� We refer to the set B
v� w� as the set of vertices between v

and w� Note that the set of vertices between v and w is not the same as the

set of vertices between w and v�

Let v � V 
Cm�� We say that the vertex v links outward to w if there is

a face incident with both v and w� and w � V 
Cm���� A key part of the

proof of Theorem � is to establish how the total excess grows from cycle Cm

to cycle Cm��� Not every vertex of Cm links outward� Lemmas � and �� give

bounds on the excess sum between consecutive vertices that link outward

and the excess sum between the vertices in Cm�� to which they link�

Lemma � Suppose that p� and p� are paths from x � V 
Cm� to x� �

V 
Cm��� and y � V 
Cm� to y� � V 
Cm��� respectively� and there is a face A

whose bounding cycle contains p� and a face B whose bounding cycle contains

p�� Furthermore� assume there are no vertices incident with either A or B

that are in B
y� x� �B
y�� x��� Then

X
v�B�y��x��

Ex�
v� �
X

v�B�y�x�

Ex�
v�� �jB
y� x�j�

��



Proof� We let D be the disk whose boundary consists of the cycle

Cm restricted to the vertices fx� yg � B
y� x�� the path p�� the cycle Cm��

restricted to fx�� y�g �B
y�� x��� and the path p�� Then

�� �
X

v�V �p��

ExD
v� �
X

v�V �p��

ExD
v� �
X

v�B�y�x�

Ex�
v�

�
X

v�B�y��x��

Ex�
v� �
X

v�int�D�

Ex
v��

It is easy to verify that
P

v�V �p�� ExD
v� �
P

v�V �p�� ExD
v� � ��� Also�P
v�int�D� Ex
v� � � since the excess at each vertex of � is positive� Conse	

quently�
P

v�B�y��x�� Ex
�
v� � �

P
v�B�y�x� Ex

�
v�� Since Ex�
v� � Ex�
v� �

Ex
v� � � for every vertex v � B
y� x�� we have

X
v�B�y��x��

Ex�
v� �
X

v�B�y�x�

Ex�
v�� �jB
y� x�j�

Lemma �� If x and y are vertices in Cm incident with faces containing ver�

tices in Cm�� and there is no vertex in B
y� x� incident with a face containing

a vertex of Cm��� then X
v�B�y�x�

Ex�
v� � ��

Proof� We �rst note that by a minor modi�cation of the construction

of Cm given in ���� it is possible to allow only edges in Cm that bound faces

incident with both a vertex in Vm and a vertex in Vm��� As a result� there

are only two possible cases� Either the face incident with x and incident with

a vertex of Cm�� is the same face as the face incident with y and incident

with a vertex in Cm�� or else the two faces intersect in a vertex t on Cm���

See Figures �a and �b respectively�

We �rst consider the case shown in Figure �a where the faces are the same�

Let A be the set of vertices on the boundary of the face R in Figure �a� ThenP
v�A Ex
v� �

P
v�B�y�x� Ex

�
v� � ��� But
P

v�A Ex
v� � ��� as the sum of

��



a)a) b)b)

R

x xy y

t

D D

Figure �� Faces having at most a point in common�

the excess over all the vertices bounding the face R is ��� It follows thatP
v�B�y�x� Ex

�
v� � ��

For the case illustrated in Figure �b� let D be the disk whose boundary

contains x� y and t� then
P

v�D ExD
v� � ��� The vertices x� y� and t

contribute at least�� to the sum� Each vertex in the interior ofD contributes

a positive amount to the sum� and each vertex on the interior of the paths

from x to t and t to y on the boundary of D contribute a positive amount to

the sum� Therefore�
P

v�B�y�x� Ex
�
v� � ��

Corollary �� gives a lower bound on how far around the cycle Cm one

must travel in order to come to a vertex that links outward�

Corollary �� For any vertex v � V 
Cm�� there is a vertex w on Cm such

that

�� w links outward� and

�� the path from v to w on Cm in a clockwise direction has length at most

d�d�
�m
��

e�

Furthermore� in condition �� clockwise can be replaced with counterclockwise�

Proof� From v travel around Cm in a clockwise direction until you �nd

the �rst vertex that links outward� Call this vertex x� From v travel coun	

terclockwise to �nd the �rst vertex y that links outward� Suppose there

are at least d�d�
�m
��

e vertices in B
y� x�� Then
P

v�B�y�x� Ex
�
v� 	 � by
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Lemma �� Since for any v � V 
Cm�� Ex
v� � Ex�
v� � Ex�
v�� we haveP
v�B�y�x� Ex

�
v� � �� This contradicts Lemma ���

We summarize Lemma � and Corollary �� in Corollary ���

Corollary �� There is a  � � such that if R is a set of consecutive vertices

around Cm with jRj � m� then

��
P

v�R Ex
�
v� 	 ��� and

�� among the vertices of R at least one vertex links outward�

Note that  depends on �� d� and �� but does not depend on m�

In order to place a copy of � in �� we need to have some control of how

the total excess changes from Cm to Cm��� We think of the excess sum

between vertices on Cm as a measure of the distance between the vertices�

Consequently� we can form a branch vertex on Cm when the absolute value

of the excess sum between vertices is su�ciently large� Lemma �� gives the

desired bound�

Lemma �� Let x and y be vertices in Cm which link outward to x� and y�

respectively� If
P

v�B�y�x� Ex
�
v� � ��

�
�m� where m � ��

�
� � � � � �� and �

is some positive number� then
P

v�B�y� �x�� Ex
�
v� 	 ��

�
�
m � ����

Proof� By Lemma ��
P

v�B�y��x�� Ex
�
v� �

P
v�B�y�x� Ex

�
v�� �jB
y� x�j�

Since
P

v�B�y�x� Ex
�
v� � ��

�
�m� jB
y� x�j � �m� Consequently�

X
v�B�y� �x��

Ex�
v� � �
�

�
�m� ��m

� ��m
�
�

�
� �

�

� �
�

�
� 
m� �� � �

�

�
� 
m � �� � � �m

�
�

�
� �

�

� �
�

�
� 
m� �� � � �m

�
�

�
� �

�

�
� �

�
�

�

�
��

�



� �
�

�
� 
m� �� � � �m

�
�
�

�
�

�
�

�

�
��

� �
�

�
� 
m� �� � � �

�
��m

�
�

�

�
�

�

	 �
�

�
� 
m� �� � � �

�
�
�m

�
�

�

�

�m

�

�

� �
�

�
� 
m� �� �

Lemma �� is the main technical lemma needed in the proof of Theorem ��

The idea is to �rst embed a copy of a subdivision of the full in�nite binary

tree B in �� In order to do this� the image of each leg of B must be mapped

to a path in �� Lemma �� allows us to map part of two legs emanating

from the same branch vertex into � starting on Cm and ending on Cm���

Furthermore� condition  keeps the excess sum between vertices on the legs

essentially the same on Cm�� as on Cm� After the embedding of a subdivision

of B in � has been established it is routine to extend it to an embedding of

a subdivision of � in ��

For Lemma �� we assume that � 	 �� Since we only assume that the

excess at each vertex is at least �� we can always replace � with a smaller

positive value�

Lemma �� Let  � � max
�
�
�
� �

�
� Suppose that x and y are vertices in Cm

with m � ��
�
�
P

v�B�y�x� Ex
�
v� � ��

�
 �m� x links outward to x�� and y links

outward to y�� Then there are vertices u� w � B
y�� x�� such that

�� both u and w link outward� and

�� on Cm�� starting at x
� and walking clockwise the order in which vertices

are traversed is x�� u� w� y�� and

	� �� 
m � �� 	
P

v�B�u�x�� Ex
�
v� 	 � 
m� ��� and


� �� 
m � �� 	
P

v�B�y� �w� Ex
�
v� 	 � 
m � ��� and

��
P

v�B�w�u� Ex
�
v� � ��

�
 �
m� ���

��



Proof� Let R be the set of vertices between x� and y�� By Lemma ��

the inner excess sum for these vertices is at most ��
�
 �
m� ��
� � ��� Each

vertex has excess at least ��
�
so there must be at least  �
m � ��
� � ��

vertices in R� Since  � � ��
�
we have  �
m � ��
� � �� � �
m� ��� that is�

there are at least �
m� �� vertices in R� By Corollary ��� if we start at x�

and move around Cm�� in a clockwise direction� there must be a �rst vertex

u which links outward and satis�es condition �� Similarly� by starting at y�

and moving around Cm�� counterclockwise� there is a �rst vertex w which

links outwards and satis�es condition ��

Suppose that the order of u and w indicated in condition � is reversed�

Let

r� �
X

v�B�u�w�

Ex�
v�

r� �
X

v�B�u�x��

Ex�
v�

r� �
X

v�B�y��w�

Ex�
v�

r� �
X

v�B�y��x��

Ex�
v��

Then the sum of the excess for the vertices in B
u� w� is given by

r� � r� � r� � r�

� ��
m� �� �
�

�
 �
m � ��
� � ��

� ��
m� �� �
�

�

�

�

m� ����

�

�
 �
m� ��

�
�

�
 �
m � ��

�
�

�
�
m � ���

Note that this contradicts Lemma �� Therefore� the order indicated in

condition � is correct�

It remains to show condition � Let r�� r�� and r� be de�ned as above� but

��



let r� �
P

v�B�w�u� Ex
�
v�� A calculation similar to the previous one gives�

r� � r� � r� � r�

	 �
�

�
 �
m� ��
� � �� � �
m� ��

� �
�

�
 �
m� ���

�

�
 �
m � ���� �
m� ��

� �
�

�
 �
m� ���

�

�

�

�

m� ��� � �
m� ��

� �
�

�
 �
m� ��

Lemma �� There is an embedding � of a subdivision of � in � with the prop�

erty that if w� is the root of � and w is a vertex in � then d
�
w��� �
w�� �

O
d
w�� w�
���

Proof� As shown in ���� the number of vertices in Cm grows exponen	

tially� Consequently� there is an m� �
��
�
such that on Cm��� there is a vertex

v� that links outward to a vertex v� and the number of vertices in Cm��� is

greater than  �
m�� ���� We can partition the vertices in V 
Cm�����fv�g

into  �
m� � �� subsets of consecutive vertices around Cm��� so that each of

the subsets has size at least 
m� � ��� By Corollary ��

X
v�V �Cm�����fv�g

Ex�
v� 	 � �
m� � ��

	 �
�

�
 �
m� � ��

Let �
w�� � v�� We next wish to �nd the image of the legs of � emanating

from the root w�� For the right leg follow Cm� clockwise to a vertex u

that links outward and satis�es ��m� 	
P

v�B�u�v�� Ex
�
v� 	 �m� as in

Lemma ��� Note that Corollary �� implies that if ��m�
� vertices are passed

then the total excess of passed vertices is at most ��m�� Therefore� at most

��m�
� vertices are passed before vertex u is found� Follow the boundary of

��
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Figure �� Embedding a subdivision of B in ��

the face from u to a vertex v�� in Cm���� This path around the boundary has

length at most �
�
� From v�� follow Cm��� clockwise as before until a vertex u

� is

reached that links outward and satis�es ��
m���� 	
P

v�B�u� �v���
Ex�
v� 	

�
m� � ��� As before� at most ��
m� � ��� vertices are passed before

arriving at u�� Continue this process until you reach Cm��k where �k � ��

��

and k � �� The path in � which is the image of the left leg of � is de�ned in

the same way� except the direction is counterclockwise instead of clockwise�

Let v
�k�
� and v

�k�
� be the end vertices of the right and left legs respectively as

indicated in Figure ��

Note that by construction
P

v�B�u�w� Ex
�
v� 	 ��m�� By Lemma ���P

v�B�v�� �v
�

��
Ex�
v� 	 ��
m� � ���� so

P
v�B�u��w�� Ex

�
v� 	 ��
m� � ����

Continuing in this manner we see that for each � � j � k

X
v�B�v

�j�
� �v

�j�
� �

Ex�
v� 	 ��
m� � j��j�

	 ��
m� � j�
 �

�

� �
�

�

m� � j� ��

Note that these inequality implies that the images of the left and right legs

of a subdivision of the in�nite binary tree B intersect only at the vertex v��

We construct left and right legs from v
�k�
� and v

�k�
� using the same proce	

dure as was used to construct left and right legs from v�� Note that Lemma ��

implies that the images of nonintersecting legs in B do not intersect in ��

��



By repeating this process� we construct a subgraph of � homeomorphic with

a full binary tree� The images of the horizontal edges of � are mapped to

paths along the cycles Cr for appropriate values of r�

By summing up the lengths of the pieces of the paths de�ned above� the

length of an s�leg 
from level s to level s� �� is at most

k��X
j��

�
�

�
� ��
m� � sk � j��

	
� O
s���

Therefore�

d
�
w��� �
w�� �
d�w��w�X
s��

O
s��

� O
d
w�� w�
���

We note that Lemma � implies Theorem �� namely that � is O
m��	

universal�

� An example

We now construct a ��ended planar graph � with bounded degree and code	

gree which has average excess positive at each level measured from a speci�ed

�xed vertex� The graph � does not satisfy the conditions of Theorem � be	

cause many of its vertices do not have positive excess� Furthermore� � is

recurrent and not transient� consequently � cannot be universal� This shows

that the condition of Theorem � stating that each vertex has positive excess

cannot be replaced by a condition on the average excess�

The building blocks for graph � are given in Figure � The graph � starts

with the graph on the left of Figure � The �xed vertex v� is labeled as C�

in the �gure� We �rst describe how to complete the inside of the triangle

A�B�C�� We place a copy of the right graph of Figure  which we call the

bow tie graph inside A�B�C� identifying vertices A�� B�� and C� with vertices

��
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Figure � The building blocks of ��

A� B� and C respectively� and identifying edges between the same vertices�

This bow tie creates two more internal triangles� We insert another bow tie

inside A�B�C ��

In the left triangle A�B�C� we insert a bow tie� giving us two triangles�

In each of these triangles we insert a bow tie� giving us four triangles� Into

each of these triangles we insert a bow tie� giving us eight triangles� We

think of these eight triangles as being at level �� At level m � �� we insert

exactly km bow ties and leave sm triangles empty� We always �ll in the

triangles consecutively starting from the left� Note that for triangles which

are left empty the excess at each vertex of the triangle is negative� whereas

if a triangle is �lled with a bow tie the excess at each vertex is positive� The

numbers sm and km are required to satisfy

�

�
�

sm

km
�

�

�
�

It follows that
km � sm

km � sm
�

�

�

which implies that for some � � �� the average excess of all vertices exactly

m away from C� 
using face distance� is at least � for every m�

Furthermore� it follows that

km�� � sm��

km � sm
�

��

�

��



which implies the graph has exponential growth�

It is not hard to check that � is �	ended� To see this� note that

km�� � sm��

km � sm
�

��

�
	 ��

If at some level m� the triangle on the left has all the triangles inside it

�lled in at every level� then the growth of km � sm would have to be O
�n��

But the equation above says the growth is o
�n� as ��
�
	 �� Consequently� at

each level the only triangle containing an in�nite number of �lled in triangles

is the one on the far left�

We note that the way we de�ned � the vertex set of � has a limit point

in the plane� By mapping this limit point to in�nity� we can properly embed

� in the plane�

The graph � has average excess at least � for some positive � in the sense

that if you average the excess of all the vertices at a �xed distance from

C�� you get a number larger than �� We note that � does not satisfy an f 	

isoperimetric condition for any function f that approaches in�nity� since there

are vertex sets V of arbitrarily high but �nite cardinality whose boundary

�V consist of exactly three points� Furthermore� � is recurrent� This can be

seen by using the method of shorting out edges as described in ��� Since �

is recurrent� it is not transient� and therefore� not universal�

We end by giving an alternate proof of Corollary � that uses the isoperi	

metric condition described in the Introduction� instead of Theorem ��

Let � be an in�nite �	ended planar graph with bounded degree and code	

gree� Suppose there is a number � � � such that every vertex of � has excess

at least �� Let V be a set of vertices in �� Let V � be all the vertices that

are on a face incident with a vertex in V � Let V �� be all the vertices of V �

together with all the vertices in �nite components of � � V �� The graph H

induced by V �� is �nite� Furthermore� the union of the closed �nite faces of

H form a disk D since all the holes are �lled in by including vertices in V ���

��



Let A be the vertices on the boundary of the disk and B the vertices inside

the disk� Then V �� � A �B and j�V ��j � jAj
�
� Now�

�� �
X
v�A

ExD
v� �
X
v�B

ExD
v�

� �
�

�
jAj� �jBj

It follows that j�V ��j � c�jV
��j� c� for constants c� and c��

Note that j�V �j � j�V ��j and jV j � jV �j � jV ��j� Also� for each face

bounding cycle included in V � but not in V � less than d� new boundary

vertices are created by including the cycle and �V intersects the cycle� Also�

each vertex on �V � is on at most � face bounding cycles� Therefore�

j�V j

jV j
�

�

d��
j�V �j

jV �j

�
�

d��
j�V ��j

jV ��j

�
�

d��

�
c� �

c�

jV ��j

	

� c�

for some constant c� � �� We let f
n� � c�n and note that

X
n

�
�

f
n�

	�

converges� By the f 	isoperimetric condition� the graph � is transient�
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