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Abstract� We investigate computable isomorphism
types of groups� Our main result states that for any
n � ��f�g there exists a computably categorical nilpo�
tent of class � group G which being expanded by a �nite
number of constants has exactly n computable isomor�
phism types� This result is based on the similar result
for computable nonassociative rings�

�� Introduction� Basic Notions and Main Results�

From algebraic point of view there is no distinction between isomorphic
algebraic systems� Therefore classi�cation of algebraic systems up to isomor�
phism constitutes one of the main goals of structure theories of these systems�
It can be said that structure theories of algebraic systems study isomorphism
types of these systems� i�e�� classes of isomorphic algebraic systems� The the�
ory of rings is by no means an exception among them� However in e�ective
theories of the same algebraic systems this view on isomorphism types has
to undergo profound changes since isomorphism types and computable iso�
morphism types become di�erent�

Computable algebraic systems such as computable groups� boolean al�
gebras� vector spaces� lattices� have been intensively investigated in recent
years �	
� ��
� Intensive research e�orts have been made in attempts to un�
derstand the e�ective content of a variety of model�theoretic and algebraic
notions� results and constructions� We refer the reader to the recent sur�
veys by Harizanov ��
� Millar ��
 as well as to the classic papers by Frolich
and Shepherdson ��
� Malcev ��
 and Rabin ��
 devoted to these issues� In

	



this paper we consider computable rings and investigate relationship between
isomorphism types and computable isomorphism types of these algebraic sys�
tems�

Let us recall several basic notions from the computability theory ��
�
Throughout the paper � is the set of all natural numbers� A set X � �
is computable if there is a procedure which being applied to any number n
tells us if n � X� A function f �� � � is computable if the set of pairs
X � f�n� f�n�� j n � �g � ��� is computable under the standard Cantor�s
identi�cation of � � � and �� A set X � � is computably enumerable if it is
the range of a computable function f ��� ��

In this paper by a ring R � �R����� �� we understand a nonassocia�
tive ring� i�e� a ring for which the associative law for the multilication is
not assumed� While nonassociative rings are less commonly metthan their
associative counterpart� they do have a number of signi�cant applications�
For instance� apart from Lie rings which are widely used� nonassociative
rings have been also studied in relations to projective geometry ��
 and their
applications to physics �	�
 and genetics �		
�

De�nition ��� A ring R � �R����� �� is computable if the set R is
a computable subset of � and the ring operations � and � are computable
functions from R� into R�

Informally� a computable ring is a ring whose elements can be enumerated
and whose operations can be computed by Turing machines�

De�nition ��� A ring R is said to be computably presentable if its
isomorphism type contains a computable ring� If R� is a computable ring
isomorphic to R� then R� is called a computable presentation of R�

For example� the �eld of rational numbers Q and the ring of integers
ZZ are computably presentable rings� where the standard presentations are
computable presentations�

De�nition ��� An isomorphism f �R� � R� from a computable ringR�

onto a computable ring R� is said to be computable if f itself is a computable
function� In this case we say that R� is computably isomorphic to R��

De�nition ��� The notion of computable isomorphism de�nes an equiv�
alence relation on the class of all computable presentations of a given com�
putably presentable ring R� The classes of the partition corresponding to
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this equivalence relation are called computable isomorphism types of R� The
number of computable isomorphism types of R is called the algorithmic di�
mension of R�

Thus� informally one can say that the number of computable isomorphism
types of a ring is the number of its e�ective presentations which cannot be
e�ectively transformed one into another� Rings of algorithmic dimension 	
are the rings with exactly one computable isomorphism type� Algebraic
structures with exactly one computable isomorphism type are also called
computably categorical� Computably categorical structures have been the
subject of extensive investigations� �	
� ��
� ��
� �	�
� �	�
� �	�
� �	�
� The fol�
lowing simple proposition gives examples of rings of algorithmic dimension 	
or� equivalently� computably categorical rings�

Proposition ��� Any two computable presentations of a �nitely gener�
ated ring R are computably isomorphic�

Sketch of the Proof� Let R� and R� be two computable presentations
of R� Let b�� � � � � bn be generators of R� withm�� � � � � mn and k�� � � � � kn being
the respective images of these generators in the computable presentations R�

and R� under respective isomorphisms� Then the partial mapping mi �� ki
can be extended to a computable isomorphism from R� to R� in the obvious
way�

Goncharov �	�
� �	�
 and independently LaRoche and Remmel �	�
 studied
computably categorical boolean algebras and linearly ordered sets� They
proved the following two theorems�

Theorem ��� A boolean algebra is computably categorical if and only
if the number of its atoms is �nite� Moreover� every boolean algebra� which
is not computably categorical� has in�nitely many computable isomorphism
types�

Theorem ��� A linear ordering is computably categorical if and only
if the number of its successive pairs� that is pairs �a� b� for which a � b
and the interval �a� b
 consists of a and b only� is �nite� Moreover� every
linear ordering� which is not computably categorical� has in�nitely many
computable isomorphism types�

Thus� the algorithmic dimension of any Boolean algebra or linear ordering
is either � or 	� For abelian groups� as Goncharov �	�
� �	�
 showed in the
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theorem that follows� the same result holds� but for groups in general the
situation is more complicated�

Theorem ��� The algorithmic dimension of any abelian group is either
	 or �� For any natural number n there exists a �noncommutative� group of
algorithmic dimension n�

The latter result Goncharov proved by encoding his family into a metabelian
group �	�
� The same approach was applied in �	�
� In this paper we use the
same approach to show that a similar result holds also for rings� Namely� we
prove�

Theorem A For every n � �
S
f�g there exists a �noncommutative and

nonassociative� ring of algorithmic dimension n�

There are basically two reasons why the notion of a computably cate�
gorical structure has attracted a signi�cant attention of researchers in com�
putable algebra and model theory� The �rst reason is that computably cate�
gorical structures are exactly those structures which do not depend on a par�
ticular computable presentation� Thus� from the computable�model�theoretic
point of view there is no distinction between two computable presentations
of a computably categorical structure�

The second reason comes from model theory� The basic model�theoretic
notion� which motivated the study of computably categorical structures� is
the notion of countably categorical model� In classical model theory a theory
T is called �countably� categorical if all �countable� models of T are isomor�
phic� A �countable� structure A is �countably� categorical if its theory Th�A�
is �countably� categorical� The analogous concept for the e�ective model the�
ory deals only with computable structures and isomorphisms� It is the notion
of a computably categorical structure�

Any algebraic structure A can be expanded by a �nite number of con�
stants a�� � � � � an � A� The expanded structure will be denoted �A� a�� � � � � an�
or simply A when ambiguity cannot happen� Algebraically� it means that we
consider n unary operations ui�x� � ai� i � 	� �� � � � � n� on A together and on
equal rights with the existing operations in A� From the computational point
of view we also �x some algorithms which output these constants� From cat�
egorical point of view this is the change of the category as morphisms now
have to respect new operations� For example� we call a mapping f �A� �A�
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from an expanded structure A� � �A�� a�� � � � � an� onto an expanded struc�
ture A� � �A�� b�� � � � � bn� an isomorphism if it is an isomorphism of non�
expanded structures and also f�ai� � bi for i � 	� �� � � � � n�

The notion of expansion by constants has strong connections with clas�
sical categoricity of a structure� For instance� it is an easy consequence of
the classical Ryll�Nardzewski Theorem that� if the theory of an arbitrary
structure A is countably categorical� then so is the theory of any expansion
of A by �nitely many constants� In e�ective model theory computably cat�
egorical structures are analogues of countably categorical ones� Millar �	�

proved that a certain amount of decidability is enough to guarantee that the
property of being computably categorical is preserved under expansions by
�nitely many constants� Without this assumption of partial decidability the
problem� which was known as Ash�Goncharov problem �	�
� remained open
for some time� It was solved negatively in ���
�

Theorem ��� For every natural number n there exists a computably
categorical graph G such that for any c � G� the expanded graph �G� c� has
exactly n computable isomorphism types�

It is the analogous problem for computable rings and computable groups
that we wish to address in this paper� The second and the third theorems
of this paper shows that the same phenomenon can also occur not only for
graphs but also in the class of rings and even in the class of nilpotent groups
of class ��

Theorem B For every natural number n there exists a computably
categorical �noncommutative and nonassociative� ring R such that for some
c � R the expanded ring �R� c� has exactly n types of computable isomor�
phisms�

Theorem� C For every prime p � � and for every n � �
S
f�g there

exists a computably categorical nilpotent group G of class � satisfying xp � 	
such that for some constants a�� a�� a� � G the expanded group �G� a�� a�� a��
is of algorithmic dimension n�

�� Computable Families and Enumerations�

The ring which we need to present to establish Theorem A will be con�
structed by encoding a certain �uniformly� computably enumerable family of
sets of natural numbers into a ring�
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De�nition ��� A family of nonempty sets S is called computably enu�
merable if there exists a mapping f �� � F such that the set of pairs
f�i� x� j x � f�i�g is computably enumerable� We then call f a �computable�
enumeration of S� If f is one�to�one we say that it is a one�to�one enumera�
tion of S�

Technically� it is more convenient to view a computable enumeration of S
as a procedure which produces a ��dimensional array ff i�n� j i� n � �g of
�nite subsets of � according to the following rules�

�i� At stage � it produces empty or one element subset f �����

�ii� At stage k it produces subsets fk���� � � � � f ��k�	�� f ��k� such that
fk���i� � fk�i�� i � 	� � � � � k�	� and such that

card�fk����� � � � � � f ��k�	�� 	 card�fk��� � � � � � f ��k�� � 	�

�iii�
�
i��

f i�n� � f�n��

We de�ne a preordering on the set of all computable enumerations of a
family S that will naturally induce an equivalence relation on this set� The
equivalence classes of this relation will correspond to computable isomor�
phism types of the ring that we will construct�

De�nition ��� Let f and g be two computable enumerations of a family
S� We say that f is reducible to g and denote it as f 	 g� if there is a
computable function ��� � � such that f � g�� If f 	 g and g 	 f then
we say that f and g are equivalent and denote this relation by f 
 g�

The equivalence classes of one�to�one enumerations are the minimal ele�
ments in the induced partial ordering� One�to�one enumerations will be
needed to de�ne a family of sets that will be encoded� Theorem A will
be based on the following theorem of Goncharov �	�
�

Theorem ��� For any n � � there exists a family S of computably
enumerable sets such that S has up to equivalence exactly n one�to�one com�
putable enumerations�

We now present the basic notions involved in the proof of Theorem B�
We need to consider families of k�tuples of sets� We give all de�nitions for
the case k � �� We will indicate later how the case k � � can be handled�
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In what follows we use r and l as the right and left projections from pairs�
that is� l�A�B� � A and r�A�B� � B�

De�nition ��� Let S be a family of pairs �A�B� of nonempty sets� A
family S is called symmetric if �A�B� � S implies that �B�A� � S� A family
S is said to be computably enumerable if there exists a mapping f �� � S
such that the set of triples f�i� x� y� j x � lf�i�� y � rf�i�g is computably
enumerable� We then call f a �computable� enumeration of S� If f is one�to�
one� we say it is a one�to�one enumeration of S�

The notion of reducibility and equivalence between enumerations of a
symmetric family S are exactly the same as for families of computably enu�
merable sets� If f is a one�to�one computable enumeration of a symmetric
family S of pairs of sets then there is another computable enumeration �f
of S which is a natural companion of f � namely� if f�i� � �Ai� Bi�� then
�f�i� � �Bi� Ai��

The notion of algorithmic dimension can be also applied to a family S of
pairs of sets as follows�

De�nition ��� If f is a one�to�one computable enumeration of a sym�
metric family S of pairs of sets� we say that S has algorithmic dimension �
if f and �f are not equivalent but every computable one�to�one enumeration
of S is equivalent to either f or �f �

Such a family was constructed in ���
�

Theorem ��� There exists a computably enumerable symmetric family
of algorithmic dimension ��

This family will be encoded into a ring in order to prove Theorem B�

�� Rings of a Finite Algorithmic Dimension�

	a
 Encoding a set into a �eld� We �rst show how to encode a set
of natural numbers into a ring� in fact� into a �eld� Our reference book in
relation to �eld theory will be ��	
� Let F � ZZp be a �nite �eld of residues
modulo p� In the construction that follows p may be an arbitrary prime
number� To motivate the construction we consider the class of all algebraic
extentions of F which lie in some �xed copy F of algebraic closure of F
�pp�	���	���� If F � K is such an extention� then

�F � K
 � dimFK
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is called the degree of the extention K� The extention K is called �nite if its
degree is �nite� For a tower of �nite extentions

F � K � L

the degrees are multiplicative� i�e� �F � L
 � �F � K
�K � L
 �p� 	����
For any ��� � � � � �n� � � � � F by F ���� � � � � �n� � � �
 we denote the minimal

sub�eld of F containing F and ��� � � � � �n� � � �� Extentions of the form F ��

are called simple� If a simple extention F ��
 is �nite� the element � is said to
be algebraic over F � For such an element � there exist polynomials f�x� �
F �x
 which annihilate it� that is f��� � �� All annihilating polynomials
form an ideal I� in the polynomial ring F �x
� This ideal is generated by a
polynomial called the minimal irreducible polynomial of �� denoted Irr��x��
The degree of the extention F � F ��
 is equal to the degree of the minimal
irreducible polynomial Irr��x�� We will refer to this degree as to the order
of �� The multiplicity of degrees implies that for every element � � K of a
�nite extention K of F the order of � is a divisor of �F � K
�

Constructively� for an element � of order n� F ��
 can be viewed as the
quotient�algebra F �x
�I�� where the coset x � I� corresponds to �� that is
the set of polynomials fg�x� j deg g�x� 	 ng with their usual addition and
usual multiplication truncated modulo Irr��x�� The �eld F ���� � � � � �n
 can
now be inductively de�ned as

F ���� � � � � �n
 � F ���� � � � � �n��
��n


and also

F ���� � � � � �n� � � �
 �
��
n��

F ���� � � � � �n
�

It is essential for our purposes that F has simple �nite extentions of all
possible degrees �Theorem 	�� p�	����

Let M � fm�� m�� � � � � mn� � � �g be a subset of �� If M is empty� then
we assume that the �eld F encodes it� If M is not empty� we will put in
correspondence to M the algebraic extention of F

FM � F ���� ��� � � � � �n� � � �
�

where �i is an algebraic element of order pmi
� the mith prime� We �x these

elements and always use them for our coding purposes or alternatively� from

�



the constructive point of view� we may think that we have �xed their minimal
irreducible polynomials Pi�x� � Irr�i�x��

Lemma ��� The set of prime factors of orders of elements of FM is
exactly the set fpm� � � � � � pmi

� � � �g� The set Si of all elements of order pmi
in

FM consists of ppmi elements and Si � F ��
 for every element � of order pmi
�

Proof� Let a � FM � Then� for some n� the element a belongs to a �nite
extention

Gn � F ���� ��� � � � � �n
� �	�

Since degrees in towers are multiplicative� observing the tower

F � F ��i
 � Gn

we see that the degree of Gn is divisible by pmi
and therefore is divisible by

pm�pm� � � � pmn � As the degree of �i over F ���� ��� � � � � �i��
 is less than or
equal to pmi

the degree of Gn cannot be greater than this product�
Now by considering the tower

F � F �a
 � Gn

we see that the order of a must be a divisor of this product�
Let q � pmi

and � be an element of order q� Then the sub�eld F ��
 has
pq elements� It is isomorphic to the Galois �eld GF�pq� of this order which�
being a sub�eld of F is known to coincide with the set of all roots of the
polynomial xp

q

� x in F � Therefore such sub�eld is unique and F ��
 � F �	

for any two elements of order q�

Lemma ��� The set M is computably enumerable if and only if the �eld
FM is computably presentable�

Proof� Let m�� m�� � � � � mn� � � � be an e�ective enumeration of M � De�ne
the �eld Gn as in �	�� We saw in the proof of the previous lemma that the
dimension of the �eld Gn over F is pm�pm� � � � pmn �

As a vector space Gn has a spanning set consisting of monomials

�k�� �
k�
� � � � �knn � ���

where � 	 ki � pmi
� This spanning set has cardinality pm�pm� � � � pmn � There�

fore this spanning set is a basis� These monomials can be multiplied as usual
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monomials in �i but with powers of �i being multiplied modulo the minimal
irreducible polynomial of �i� Since the union of all such bases is a basis for
FM � this certainly gives a computable presentation of FM �

Let now A be a computable presentation of FM and a�� a�� � � � � an� � � � be
the enumeration of elements of A which arises from this presentation� Take
a � a� � A and consider powers a� a�� � � � until as � an for s � n� Then
an�s � e is the unit element of A� Thus F� � f�� e� �e� � � � � �p� 	�eg will be
the only sub�eld of A isomorphic to F �

Since F is �nite we can now constructively determine the minimal ir�
reducible polynomial of a� as its degree is less than or equal to n�s� We
know that m � M i� there exists an element x � A such that the order of
x over F� is pm� The prime divisors of the degree of this polynomial� say
pm� � � � � � pmk

� will show that there are elements of such orders and give us
the �rst set of elements of M to list� namely m�� � � � � mk� Hence M is a
computably enumerable set� The lemma is proved�

Lemma ��� The �eld FM is computably categorical�

Proof� Let A and B be two computable presentations of FM � Consider
the sub�elds F� and F�� of A and B� respectively� isomorphic to F and
constructed as in the proof of the previous lemma� The only isomorphism
between them can be established by assigning one unit element to another
and multiples of one unit to the corresponding multiples of another� Denote
A� � F�� B� � F� and let 
��A� � B� be the established isomorphism�
Suppose that we established already an isomorphism 
i�Ai � Bi between
sub�elds Ai and Bi such that for an arbitrary prime number q either all
elements of A and B of prime order q belong to Ai and Bi� respectively� or
none of them� This isomorphism can be readily extended to the isomorphism
f�x� �� f�i�x� of polynomial ringsAi�x
 and Bi�x
� which is de�ned as follows�
if f�x� � a�� a�x� � � �� amx

m� then f�i�x� � a�i� � a�i� x� � � �� a�imx
m� Now

we look for the �rst element � in the e�ective enumeration of A which is of
prime order q over A� � F� and which is not in Ai� Then we �nd 	 � B
with exactly the same minimal irreducible polynomial over B� � F� and
construct an isomorphism 
i���Ai��
� Bi�	
 de�ning the mapping 
i�� for
every polynomial f�x� � Ai�x
 of degree less than q by the following formula


i���f���� � f�i�	��

It is easy to check that 
i�� is again an isomorphism �see p�	�	�� We denote
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then Ai�� � Ai��
 and Bi�� � Bi�	
� Since all elements of order q lie in F ��
�
and hence in Ai�� and Bi��� the construction can be e�ectively continued
further� The lemma is proved�

	b
 Encoding a family of sets into an algebra� Let S be a countable
family of countable sets� We will list them in some order which will not be
important later�

S � fM��M�� � � � �Mi� � � �g�

Consider the free product in the variety of all �nonassociative� rings

A�S� � FM� � FM� � � � � � FMn
� � � �

of �elds FMi
such that each �eld encodes the set Mi in the way it was de�

scribed in the previous section� Up to isomorphism this algebra does not
depend on the order in which we listed the sets of our family� In this section
we will use the family of sets S� constructed in �	�
� which up to equiva�
lence has exactly n one�to�one computable enumerations f�� � � � � fn� to con�
struct n computable presentations Af��S�� � � � � Afn�S� of A�S�� such that no
two of them are computably isomorphic but any other computable presen�
tation of A�S� is computably isomorphic to one of the computable algebras
Af��S�� � � � � Afn�S��

We will refer to the �elds FMi
as to components of A�S�� This alge�

bra� as it is the free product of the components� has a basis consisting of
nonassociative products

�a�a� � � � an�q� n � 	� ���

where elements a�� � � � � an are basic monomials ��� and any two neighbouring
monomials ai�� and ai situated in the bracket �ai��ai� belong to di�erent
components� For example� in the product �a��a���a�a���a�a	���� in each pair
a�� a� and a�� a	 the monomials must be from di�erent components� while
a�� a� may be arbitrary�

We will refer to the products ��� as to the basic products� The multipli�
cation table on the basis is as follows� if �a�a� � � � an�p and �b�b� � � � bm�q are
two basic products and max�m�n� � 	 or m � n � 	 and a�� b� belong to
di�erent components� then

�a�a� � � � an�p � �b�b� � � � bm�q � ��a�a� � � � an�p�b�b� � � � bm�q�� ���

		



Ifm � n � 	 and a�� b� belong to the same component� then a�b� �
P�

i�� 	ici�
where ci�s are basis monomials of the component to which both of them
belong� and

�a�� � �b�� �
�X

i��

	i�ci�� ���

Let u � �a�a� � � � an�q be a basic product� We set juj � n� and for an
element a �

P�
i�� 	iui of A�S� we set jaj � maxi juij� It is clear from the

multiplication table ��� and ��� that

ja � bj � jaj� jbj� ���

unless jaj � jbj � 	 and a� b are from the same component� Unfortunately
when the free product is taken in the class of associative rings the equation
��� is no longer valid and that is why we have to consider nonassociative
products�

Let us recall that an element e of a ring R is called an idempotent if
e� � e�

Lemma ��� The �elds FMi
are isomorphically imbedded in A�S�� The

unit elements e�� e�� � � � � en� � � � of the �elds FMi
are the only idempotents of

A�S�� An element a � A�S� belongs to FMi
i� eia � aei � a�

Proof� As it can be seen from the multiplication table� the �eld FMi
is

a subring of A�S� and the unit element ei of it is an idempotent� Suppose
that e� � e and e � �� Then ��� implies that jej � 	� It is also clear that
if e is equal to the sum of basic monomials from di�erent components� then
je�j � � and e� � e� Therefore e belongs to one of the components� But it is
a �eld and has a unique idempotent� namely the unit element of this �eld�

The �eld FMi
is a subring of A�S� and eia � aei � a for all a � FMi

�
Suppose that eia � aei � a� Then the multiplication table of A�S� implies
that a is a linear combination of basic monomials from FMi

and thus is an
element of FMi

� The lemma is proved�

Note� The statement that ei are the only idempotents of this free product
is no longer valid if this product is associative� For example� e � e�e�e� �
e�e� � e� will be also an idempotent�

Now� given a one�to�one computable enumeration f let us construct a
computable presentation Af�S� of A�S�� Let us now denoteMi � f�i�� Since
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f is computable� there exists a procedure which produces a ��dimensional
array fMin � f i�n� j i� n � �g of �nite subsets of � according to the following
rules�

�M	� At stage � it produces an empty or one element subset M���

�M�� At stage k it produces �nite subsets Mk�� � � � �M�k���M�k so that
Mk��i �Mki� for i � 	� � � � � k�	� and such that

card�Mk��� � � � � �M�k��� 	 card�Mk� � � � � �M�k� � 	�

�M��
�
i��

Min � Mn�

Thus using f we can construct an e�ective sequence of computable partial
algebras

A�f� ��� A�f� 	�� � � � � A�f� n�� � � �

such that�

�A	� A�f� i� is a subalgebra of A�f� i � 	��

�A�� A�f� i� is isomorphic to �FMi�
� � � � � FM�i

�
i�� the latter being the
subspace of A�S� spanned by the basic products of degree 	 i depending
only on elements from FM�i

� � � � � FMi�
with the addition and multiplication

inherited from A�S��

�A�� Af�S� �
��
k��

A�f� i� is isomorphic to A�S��

As the sets Mki are �nite the �elds FMki
are �nite�dimensional� hence

�nite� and partial algebras A�f� i� are also �nite�dimensional� and hence also
�nite� It is important to note that at stage i� when we extend A�f� i�	� to
A�f� i� the only one idempotent will be added� namely the unit element ei of
the �eld FMi

� In order to separate stages we start each time enumeration of
additional elements with ei�

Lemma ��� The ring Af �S� is computable for every computable one�
to�one enumeration f of S� One�to�one enumerations f and g are equivalent�
i� Af �S� and Ag�S� are computably isomorphic�

Proof� The computable presentation for A�S� has been constructed
above� It is also straightforward that if two one�to�one enumerations f and
g of S are equivalent� then the algebras Af �S� and Ag�S� are computably
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isomorphic� On the other hand� if the algebras Af�S� and Ag�S� are com�
putably isomorphic� then for every idempotent ei � Af�S� we can e�ectively
compute its image in Ag�S� and compute at which stage it appears in the
construction of Ag�S�� If it were� say the jth stage� then we set ��i� � j�
This gives us a computable function ��� � � such that f � g��

Lemma ��� Let A be a computable presentation of A�S�� Then one can
construct a one�to�one computable enumeration f � f�A� of S such that A
and Af�S� are computably isomorphic�

Proof� Let A � fa�� a�� � � �g be all elements of A listed in a sequence�
We can e�ectively list all idempotents e�� e�� � � � of A which will form a sub�
sequence of this sequence� By Lemma ��� these idempotents are the unit
elements of the components� Let Fi � fei� �ei� � � � � peig be the copy of the
base �eld F which is contained in the component FMi

� An element x belongs
to the component FMi

i� the condition x � xei � eix is satis�ed� Therefore

f�i� � fm j �x �x � xei � eix and x is algebraic of degree pm over Fi�g

enumerates S and f � f�A� is a computable enumeration of S� Moreover
f is one�to�one� Clearly A and Af�S� are computably isomorphic� We will
sketch the construction of this computable isomorphism�

Step �� Compute the number of e� in the sequence� say e� � as� and set
M�� � � if among a�� � � � � as�� there are no elements x such that xe� � e�x �
x which are algebraic over F� of prime degree� If such an element �� say of
prime degree pm� existed� we set M�� � fmg and and put in correspondence

� the sub�eld F���
 � A with the �eld F �M��� � A�S��

Step i� We compute the number of ei� say ei � at� and look for the �rst
element x � fa�� a�� � � � � at��g in the sequence such that x � xej � ejx� for
one of the numbers j � 	� �� � � � � i� and such that x is algebraic of a prime
degree pn over Fj� Then take

Mi� � Mi���� � � � � Mi�jj � Mi�j��j � fng� � � � � M�i�

where M� i � � or fng if j � i� If such x is not found we leave all the sets as
they were� just add an emptyM� i� We can now �nd a partial subalgebra ofA
which will be in a computable correspondence 
i with the partial subalgebra
�FMi�

� � � � � FM�i
�
i�� The lemma is proved�
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Theorem A For every positive integer n there exists a computable ring
of algorithmic dimension n�

Proof� Let S be a family of computable enumerable sets which has up
to equivalence exactly n one�to�one computable enumerations� Such a family
exists due to Theorem ��	� Let f�� � � � � fn be any n mutually non�equivalent
computable one�to�one enumerations of S� We construct the algebra A�S�
as shown in the beginning of this section� By Lemma ��� the computable
presentations Af��S�� � � � � Afn�S� are not computably isomorphic� Let A be
an arbitrary computable presentation of A�S�� Then by Lemma ��� A is
computably isomorphic to a computable algebra Af �S� for some one�to�one
computable enumeration f � f�A�� Since f is equivalent to one of the
enumerations f�� � � � � fn� the algebra Af�S� is computably isomorphic to one
of the algebras Af��S�� � � � � Afn�S�� The theorem is proved�

�� Computably Categorical Rings and Their Expansions
by Constants�

In this section our task will be more di�cult as we will encode a family
S of pairs of sets into a ring� In order to de�ne the algebra A�S� in which
the family S is encoded we have to enumerate S somehow� simply for having
notations necessary for the abstract de�nition of this algebra� This enumera�
tion is not assumed to be computable� As in the section � immediately after
A�S� is de�ned this enumeration will be forgotten and we will consider how
computable enumerations of S lead to computable presentations of A�S��
Suppose that

S � f�M�� N��� �M�� N��� �M�� N��� � � �g�

Let us consider the free product �in the variety of all nonassociative rings�

B�S� � F �x
 � F �y
 � �FM� � FN�� � � � � � �FMk
� FNk

� � � � � �

where F �x
 and F �y
 be two polynomial rings in x and y �we view these
polynomials without constant terms�� and FMk

and FNk
denote the �elds

encoding Mk and Nk as was described in the previous section� Finally we
consider the quotient�algebra

A�S� � B�S��R�
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where R is the ideal ofB�S� generated by all sets xFMi
�FMi

x and yFNi
�FNi

y�
This algebra has also the following description� A basis of A�S� can be chosen
consisting of nonassociative products

�a�a� � � � an�q� n � 	� ���

where a�� � � � � an belong to the standard monomial bases of the polynomial
rings F �x
� F �y
� or else they are basic monomials of �elds FMi

and FNi
�

Referring to the sets

FM� � FN� � � � � � FMi
� FNi

� � � � ���

as to the components we stipulate that any two neighbouring monomials ai��
and ai situated in the bracket �ai��ai� belong to di�erent components and�
in addition� if one of the elements ai��� ai is x then the other cannot belong
to FMi

or� similarly� if one of the elements ai��� ai is y then the other cannot
belong to FNi

�
The multiplication table on the basic products de�ned in ��� is as follows�

if �a�a� � � � an�p and �b�b� � � � bm�q are two basic products and max�m�n� � 	�
then

�a�a� � � � an�p � �b�b� � � � bm�q � ��a�a� � � � an�p�b�b� � � � bm�q�� ���

Ifm � n � 	 and a�� b� belong to the same component� then a�b� �
P�

i�� 	ici�
where ci�s are basis monomials of the component to which both of them
belong� and we de�ne

�a�� � �b�� �
�X

i��

	i�ci�� �	��

If one of the elements a�� b� is equal to x and the other belongs to the com�
ponent FMi

� or else if one of the elements a�� b� is equal to y and the other
belongs to FNi

� then a� � b� � �� Otherwise a� � b� � �a�b���
Let u � �a�a� � � � an�q be a basic product� We set juj � n� and for an

element a �
P�

i�� 	iui of A�S� we set jaj � maxi juij� It is clear from the
multiplication table ��� and ��� that

ja � bj � jaj� jbj� �		�

unless jaj � jbj � 	 and a� b are from the same component or else one of them
is x and the other is from FMi

or one of them is y and the other is from FNi
�
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Lemma ��� 	� The ring A�S� contains isomorphic copies of the compo�
nents ����

�� The subset UM � FM��FM��� � ��FMn�� � � of A�S� can be characterized
as the set of all elements a � A�S� satisfying the condition that xa � ax � ��
The subset UN � FN� �FN� � � � ��FNn

� � � � of A�S� can be characterized as
the set of all elements a � A�S� satisfying the condition that ya � ay � ��

�� The set EM � fe�� � � � en� � � �g of unit elements of �elds FM� � � � � � FMn
� � � �

can be characterized as the set of all idempotents e � A�S� such that
xe � ex � �� The set EN � ff�� � � � fn� � � �g of unit elements of �elds
FN� � � � � � FNn

� � � � can be characterized as the set of all idempotents f � A�S�
such that yf � fy � ��

�� The �elds FMi
and FNi

can be characterized as the set of all elements
a � A�S� satisfying the conditions xa � ax � � and eia � aei � a and
ya � ay � � and fia � afi � a� respectively�

�� Two idempotents e � EM and f � EN are in the same component
�i�e�� identities of FMi

and FNi
for some i� i� ef � fe � ��

Proof� These statements follow directly from the properties of the mul�
tiplication table of A�S��

Lemma ��� Let S � f�Mi� Ni� j i � �g be a symmetric family of pairs
of sets� Then there exists an automorphism � of A�S� such that ��x� � y�

Proof� The family S is symmetric� Therefore together with every com�
ponent FA � FB� with A � B� we will have also a component FB � FA and
these components are isomorphic under the isomorphism ��h�� h�� � �h�� h���
Also every component FA � FA has a natural automorphism de�ned by the
same formula� Conditions ��x� � y and ��y� � x de�ne an automorphism
of F �x
 � F �y
� All of them can be lifted to an isomorphism � of A�S��

Now� given a one�to�one computable enumeration f of S let us con�
struct a computable presentation Af �S� of A�S�� Let us now denote f�i� �
�Mi� Ni�� Since f is computable� there exists a procedure which produces
a ��dimensional array f�Min� Nin� j i� n � �g of pairs of �nite subsets of �
according to the following rules�

�M	� At stage � it produces a pair �M��� N���� where the subsets M�� and
N�� are either both empty or contain one element each�
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�M�� At stage k it produces pairs of subsets �Mk�� Nk��� � � � � �M�k��� N�k����
�M�k� N�k� so that Mk��i �Mki and Nk��i � Nki� i � 	� � � � � k�	� and such
that for every k

card�Mk��� � � � � �Mk��k��� 	 card�Mk� � � � � �Mkk� � 	�

card�Nk��� � � � � �Nk��k��� 	 card�Nk� � � � � �Nkk� � 	�

�M��
�
i��

Min � Mn� and
�
i��

Nin � Nn�

Thus using f we can construct an e�ective sequence of computable partial
algebras

A�f� ��� A�f� 	�� � � � � A�f� n�� � � �

such that�

�A	� A�f� i� is a subalgebra of A�f� i�	��

�A�� A�f� i� is isomorphic to

�F �x
 � F �y
 � �FMi�
� FNi�

� � � � � � �FM�i
� FN�i

��
i� �

the latter being the subspace of A�S� spanned by the basic products of
degree 	 i depending only on elements from F �x
� F �y
� FMi�

� � � � � FM�i
�

FNi�
� � � � � FN�i

� with the addition and the multiplication inherited from A�S��

�A�� Af�S� �
��
k��

A�f� i� is isomorphic to A�S��

As the sets Mki and Nki are �nite the �elds FMki
and FNki

are �nite�
dimensional� hence �nite� and partial algebras A�f� i� are also �nite�dimen�
sional� and hence also �nite� It is important to note that at stage i� when
we extend A�f� i�	� to A�f� i� only three idempotents will be added� namely
the unit element ei of the �eld FMi

� the unit element fi of the �eld FNi
�

and their sum ei�fi� They can be distinguished multiplying by x and y�
For example� ei is the only idempotent out of the three with the property
xei � eix � �� In order to separate stages we start each time enumeration of
additional elements with ei followed by fi and ei�fi�

Lemma ��� 	� The ring Af�S� is computable for every computable
one�to�one enumeration f of S�

�� Let f and g be one�to�one computable enumerations� Then
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�i� The expanded rings �Af�S�� x� and �Ag�S�� x� are computably isomor�
phic� i� f 
 g�

�ii� The expanded rings �Af�S�� x� and �Ag�S�� y� are computably iso�
morphic� i� f 
 �g�

Proof� The computable presentation for A�S� has been constructed
above� The rest of the proof is similar to that of Lemma ����

Lemma ��� Let A be a computable presentation of A�S�� Then one can
construct a one�to�one computable enumeration f � f�A� of S such that A
is computably isomorphic to both Af �S� and A �f �S��

Proof� Firstly� we can list all idempotents a�� a�� � � � � ak� � � � such that
xai � aix � � in order in which they occur in the given enumeration of A�
Secondly� we �nd a pair for each of them listing the idempotents bi such that
ybi � biy � � and aibi � biai � ��

Let Fi � fai� �ai� � � � � paig andGi � fbi� �bi� � � � � pbig be the corresponding
copies of the base �eld F � By Lemma ��	 f�i� � �Mi� Ni�� where

Mi � fm j �z �z � zai � aiz and z is algebraic of degree pm over Fi�g

Ni � fn j �z �z � zbi � biz and z is algebraic of degree pn over Gi�g

enumerates S and f � f�A� is a computable enumeration of S� Moreover f
is one�to�one� Clearly A and Af �S� are computably isomorphic�

If we listed bi �rst and in the order in which they occur in the given
enumeration of A� we would get the enumeration �f � Thus A and A �f�S� are
also computably isomorphic�

Lemma ��� Suppose that S is symmetric and its algorithmic dimension
is �� Then A�S� is computably categorical�

Proof� Let A and B be any two computable presentations of A�S�� Let
us apply Lemma ��� now and construct one�to�one computable enumerations
f� � f�A� and f� � f�B� of S such that A and B are computably isomorphic
to Af��S� and Af��S�� respectively� Since the algorithmic dimension of S is
� we know that either f� is equivalent to f� or f� is equivalent to �f�� By
Lemma ��� A and B are computably isomorphic�

Theorem B �case n � �� There exists a computably categorical ring
R and a constant c � R such that the expanded ring �R� c� has exactly �
computable isomorphism types�
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Proof� Let S be a symmetric family of pairs of sets which algorithmic
dimension is � with a computable enumeration f which is not equivalent to
�f � Then by Lemma ��� the ring A�S� is computably categorical� Let us
show that the expanded ring �A�S�� x� has algorithmic dimension �� The
expanded rings �A�S�� x� and �A�S�� y� are isomorphic by Lemma ��� but
�Af�S�� x� and �Af�S�� y� are not computably isomorphic as� if they were�
enumerations f and �f would be equivalent by Lemma ����

Let now �A� z� be a computable presentation of �A�S�� x�� Then either
fA 
 f or fA 
 �f � Hence by the previous lemmata �A�S�� x� has exactly
two computable isomorphism types� The theorem is proved�

To conclude this section we will brie�y explain the guidelines for con�
structing a computably categorical ring which has exactly k recursive iso�
morphism types� k � �� when expanded by any �nite number of constants�
A natural step is to consider families of k�tuples of computably enumerable
sets and de�ne an appropriate notion of symmetry�

Let X � �X�� � � � � Xk� be a k�tuple of sets� De�ne pX to be equal to
�Xk� X�� � � � � Xk���� Thus p is a map de�ned on the set of all k�tuples of sets�

De�nition ��� A family S of k�tuples of sets is called symmetric if
X � �X�� � � � � Xk� � S implies that pX � �Xk� X�� � � � � Xk��� � S� that is if
S is closed under p� We call the sequence X� pX� p�X � � � �� pk��X the orbit
of X�

It is obvious that pkX � X� We de�ne also p�X � X�
Suppose that S is a symmetric family of k�tuples� Suppose that f is a

one�to�one computable enumeration of S� For each i 	 k � 	� we de�ne the
enumeration fi by setting fi�n� � pif�n� for all n � �� In particular� we see
from this de�nition that f� is f �

De�nition ��� A symmetric family of k�tuples of computably enumer�
able sets has dimension k if there exists a one�to�one computable enumeration
f of S with the following two properties�

	� The enumerations f�� f�� � � � � fk�� are pairwise inequivalent�

�� Each computable one�to�one enumeration of S is equivalent to one of
the enumerations f�� f�� � � �� fk���

In ���
 it is proved that there exists a symmetric family S of k�tuples
of computably enumerable sets whose dimension is k� Using this result and

��



the ideas of the previous section we can encode S into a ring and prove the
following theorem�

Theorem B �general case� For every natural number k there exists a
computably categorical ring R such that for an c � R� the expanded ring
�R� c� has exactly k types of computable isomorphisms�

Sketch of the Proof� Let S be a symmetric family of dimension k�
Suppose that

S � f�M 
i�
� �M


i�
� � � � � �M


i�
k � j i � �g�

The algebra B�S� will be constructed as follows� Let us consider the free
product �in the variety of all nonassociative rings�

B�S� � F �x�
 � � � � � F �xk
 � B
��S� � � � � � Bn�S� � � � � �

where F �xi
 is a polynomial ring in xi �without constant terms�� Bi�S� �

F
M

�i�
�
�� � ��F

M
�i�
k

and F
M

�i�
j

denotes the �elds encodingM

i�
j as was described

in the previous section� Finally we consider the quotient�algebra

A�S� � B�S��R�

where R is the ideal of B�S� generated by all sets xjFM�i�
j

� F
M

�i�
j

xj� for all

i � ��
Due to the symmetry of the family there exists an isomorphism � of A�S�

such that ��xi� � xi�� �addition modulo k��
Let f be a computable enumeration of S which satis�es properties 	� and

�� of De�nition ���� As in Section � we construct a computable presenta�
tion Af �S� of A�S�� In a similar way it can be shown that the ring A�S� is
computably categorical but its extention �A�S�� x�� has algorithmic dimen�
sion k with �Af �S�� x��� � � � � �Af�S�� xk� being k non�equivalent computable
presentations of it�

�� Computably Categorical Groups and Their Expan�
sions by Constants�

In this section we will start with the construction of a nilpotent of class
� group G�R� from an arbitrary nonassociative ring R with a unit element
	 which is due to Malcev ���
� In addition to Malcev�s assumptions we will
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assume that the ring R is computable and we will observe that the group
G�R� also can be considered as a computable group� We will show that
G�R� can be expanded by constants a� and a� so that the computable iso�
morphism types of R are in one�to�one correspondence with the computable
isomorphism types of the expanded group �G�R�� a�� a���

Let R be an arbitrary nonassociative ring of characteristic p � �� In this
case it can be considered as an algebra over a �nite �eld ZZp� We assume
that R has a unit element 	� According to Malcev� the group G�R� is the
set of all triples �a� b� c� of elements a� b� c � R with the multiplication given
by the formula

�a� b� c��x� y� z� � �a� x� b � y� bx� c� z�� �	��

It is easy to check that� so de�ned� this multiplication is associative� no
matter what the ring R were� that the triple e � ��� �� �� is the identity
element for it and that

�a� b� c��� � ��a��b� ba � c�� �	��

When R is associative� this group can be represented as the group of
upper triangular �� � matrices via the isomorphism

�a� b� c� ��

�
B�

	 b c
� 	 a
� � 	

�
CA � a� b� c � R�

in which form G�R� is known as the Heisenberg group�
Clearly� if R is a computable ring� then under the standard enumeration

of triples the group G�R� is a computable group�
From the formula �	�� we see that the centre Z of the groupG�R� consists

of triples ��� �� c�� c � R� and since

�a� b� c��x� y� z��a� b� c����x� y� z��� � ��� �� bx� ya� �	��

we see that the group G�R� is nilpotent of class �� We will put in corre�
spondence � to R the expansion of G�R� by the following two constants�
a� � �	� �� �� and a� � ��� 	� ��� i�e�� we set

��R� � �G�R�� a�� a���
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Lemma ��� If two computable rings R� and R� are computably iso�
morphic� then their corresponding computable expanded groups ��R�� and
��R�� are also computably isomorphic�

Proof� Let 
�R� � R� be a computable isomorphism of rings� Then it
takes the identity 	� of R� to the identity 	� of R�� It is now easy to check
that the mapping

 
��a� b� c�� � �a�� b�� c�� �	��

is a computable isomorphism of the corresponding expanded groups�

Let us now consider the folowing �ve properties for an expanded group
G � �G� a�� a�� introduced in the Malcev�s paper ���
�

�G	� G is nilpotent of class ��

�G�� The subsets

Ci � fx � G j xai � aixg� i � 	� ��

are abelian subgroups of G�

�G�� The intersection of C� and C� is exactly the centre Z of the group
G� i�e�� C� � C� � Z�

�G�� For each pair z�� z� � Z there exists an element h�z�� z�� � G such
that

a�h�z�� z��a
��
� h�z�� z��

�� � z�� a�h�z�� z��a
��
� h�z�� z��

�� � z�� �	��

�G�� There exist isomorphisms fi�Z � Ci of Z into Ci �i � 	� �� such that
for c � a�a�a

��
� a��� the following conditions hold� f��c� � a�� f��c� � a��� �

and
a�f��z�a

��
� f��z�

�� � a�f��z�a
��
� f��z�

�� � z� �	��

Theorem ��� Let R be a computable nonassociative ring of charac�
teristic p � � with a unit element 	� Then G�R� is a computable group
with the properties �G	���G�� satisfying xp � e� The functions h� f�� f� are
computable�

Proof� Most of these facts were proved in ���
� We should only check
that when R is computable� then G�R� is computable also and to show the
computability of the three functions involved� Direct calculations show that
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C� consists of all triples ��� �� � and C� consists of all triples ��� 	� �� and
the centre Z consists of all triples ��� �� �� where �� 	�  � R�

If z� � ��� �� ��� z� � ��� �� ��� then h�z�� z�� � ������� �� is a com�
putable function satisfying �	���

If z � ��� �� �� then f��z� � �� �� �� and f��z� � ����� �� are com�
putable functions satisfying �	���

These functions are clearly computable�

Lemma ��� If G � �G� a�� a�� is a computable expanded group with the
identity xp � e� p prime� satisfying �G	���G��� then�

�a� The function h�z�� z�� is computable �

�b� The condition �G�� is also satis�ed for G with computable isomor�
phisms f� and f��

Proof� �a� is clear� To prove that a computable isomorphism f� in �b�
exists we �rst note that the mapping �� C� � Z given by

�� x �� �a�� x


is a homomorphism of C� onto Z� Indeed�

�a�� xy
 � a�xya
��
� y��x�� � a�xa

��
� a�ya

��
� y��x�� �

a�xa
��
� �a�� y
x

�� � �a�� x
�a�� y
�

since �a�� y
 � Z� Also � is onto because of �G���
As the centre Z is an abelian group with the identity xp � e it can be

considered as a vector space over ZZp via k � z � zk� k � ZZp� Since ZZp is
�nite� the basis fzi j i � �g of Z as a vector space� with z� � �a�� a�
� can
be constructively found as well as the set of elements fci j i � �g of C� such
that c� � a� and ��ci� � zi�

Let z �
P
ki � zi �

Q
zkii � then we de�ne f��z� �

P
ki � ci� Then

a�f��z�a
��
� f��z�

�� � �a�� f��z�
 � ��f��z�� � �
�Y

ckii
�
�
Y

zkii � z�

A computable isomorphism f� can be constructed similarly�

Now we will describe the second part of the construction� namely how�
given the computable expanded group G � �G� a�� a�� with the properties
�G	���G��� we can construct a computable ring ��G� with a unit element�

��



Theorem ��� Let G � �G� a�� a�� be a computable expanded group with
the identity element e and such that the properties �G	���G�� are satis�ed�
Then

�a� The centre Z of this group is a computable set�
�b� Together with the following operations

z� � z� � z�z�� �	��

z� � z� � h�e� z��h�z�� e�h�e� z��
��h�z�� e�

��� �	��

the zero element e and the identity element c � a�a�a
��
� a��� � the centre Z

forms a computable ring ��G� � �Z ����� e� c��
�c� The multiplication �	�� does not depend on the function h�z�� z���

Proof� Since according to �G��

Z � fz � G j za� � a�z and za� � a�zg�

the centre Z is a computable subset of �� The ring addition �	�� is clearly
computable because the group multiplication is computable� The ring mul�
tiplication �	�� is also computable since h is a computable function�

Let h and g be two functions satisfying �	��� Let us denote x� � h�z�� e��
x� � h�e� z�� and y� � g�z�� e�� y� � g�e� z��� We have to prove that

x�x�x
��
� x��� � y�y�y

��
� y��� � ����

According to �	�� we have aiyia
��
i y��i � aixia

��
i x��i � from which it follows

that aix
��
i yi � x��i yiai� i�e�� x

��
i yi � C� � C� � Z� But then ���� follows as it

is equivalent to x�x
��
� �x��� y�� � �x��� y��y�y

��
� � which is true since x��i yi � Z�

We again refer to the Malcev�s paper ���
 for the rest of the proof�

Theorem ��� �a� Let R be a computable ring with a unit element�
Then ����R�� is computably isomorphic to R�

�b� Let G � �G� a�� a�� be a computable expanded group� satisfying xp �
e� with the properties �G	���G��� Then ����G�� is computably isomorphic
to G�

Proof� �a� The mapping ��� �� � ��  could be veri�ed to be a required
isomorphism�

�b� As Lemma ��� shows the condition �G�� is also true with computable
functions f� and f�� Now we have to follow Malcev and we have to verify

��



only the e�ectiveness of his construction� Let us construct the ring R �
��G� � �Z����� e� c� as in part �b� of Theorem ��� and then let us form the
set of triples of elements of Z to construct G�R�� As Malcev showed � and
the condition �G�� is essential for that � the mapping

z � �z�� z�� z�� �� ��z� � f��z��f��z��
��z� ��	�

is an isomorphism of ��R� onto G� Since f� and f� are computable functions
� is also computable�

Lemma ��� Let G � �G� a�� a�� and �G � ��G� �a�� �a�� be two isomorphic
computable expanded groups� satisfying xp � e� and G satis�es the conditions
�G	���G��� Then

�a� �G also satis�es conditions �G	���G���

�b� G and �G are computably isomorphic to ��R� and �� �R� for some
isomorphic computable rings R and �R� The expanded groups G and �G are
computably isomorphic� if and only if the rings R and �R are computably
isomorphic�

Proof� �a� Let 
�G � �G be the given isomorphism� Then 
�Z� � �Z and
�Ci � 
�Ci�� It implies that conditions �G	���G�� hold for �G� To prove �G��
we need to equip �G with an appropriate function �h� In order to do this we
may de�ne

�h�
�z��� 
�z��� � 
�h�z�� z����

As 
 is an isomorphism the condition �G�� for �G is satis�ed�

�b� By Theorem ��� �b� G and �G are computably isomorphic to ��R� and
�� �R� for the computable rings R � ��G� and �R � ���G�� It is clear from
the way �h was introduced that these two rings are isomorphic� Also� if 
 was
computable isomorphism� then R and �R are computably isomorphic� On
the other hand� if R and �R are computably isomorphic then G and �G are
computably isomorphic because by Theorem ��� they computably isomorphic
to ��R� and �� �R�� respectively�

Theorem ��� Let R be a computable ring of characteristic p � � with
identity� Then if SR � fR� j � � Ig is the full set of representatives of the
computable isomorphism types of R� then SG � f��R�� j � � Ig is the full
set of representatives of the computable isomorphism types of G � ��R��

��



Proof� Since G � ��R� satis�es �G	���G�� by Theorem ��	� then by
Lemma ��	 �b� all groups� which are isomorphic to G� are in SG � The rest of
the theorem follows from Lemma ����

Corollary ��� Let R be a computable ring of characteristic p � � with
identity� Then the algorithmic dimension of the expanded group ��R� �
�G�R�� a�� a�� is equal to the algorithmic dimension of R� In particular R is
computably categorical if and only if ��R� is computably categorical�

Theorem ��� Let R be a computable ring of characteristic p � �
with identity and r � R� Let us consider ��R� � �G�R�� a�� a�� and de�ne
a��r� � ��� �� r� � ��R�� Then the algorithmic dimension of the expanded
group

���R�� a��r�� � �G�R�� a�� a�� a��r��

is equal to the algorithmic dimension of the expanded ring �R� r��

Proof� Suppose that �R�� r�� and �R� r� are �computably� isomorphic
and let 
�R � R� be a �computable� isomorphism such that 
�r� � r��
Then the �computable� isomorphism  
 of ��R� onto ��R��� de�ned by �	���
takes a��r� to a��r��� i�e� ���R��� a��r��� and ���R�� a��r�� are �computably�
isomorphic�

Suppose that ���R��� a��r��� and ���R��� a��r��� are �computably� iso�
morphic and

����R��� ��R��

is the corresponding �computable� isomorphism such that ��a��r��� � a��r���
Then this �computable� isomorphism induces a �computable� isomorphism  �
of

 ������R���� ����R���

Due to ���	�� after identifying ����R��� with R� and ����R��� with R�

we will see that  ��r�� � r�� i�e� �R�� r�� and �R�� r�� are �computably�
isomorphic�

Theorem ��� and Theorem B immediately lead to the main Theorem of
this paper�

Theorem C For every prime p � � and for every n � �
S
f�g there

exists a computably categorical nilpotent group G of class � satisfying xp � 	

��



such that for some constants a�� a�� a� � G the expanded group �G� a�� a�� a��
is of algorithmic dimension n�

Proof� Let us consider a ring R and its element r � R which satisfy
Theorem B� Let us construct ��R� � �G�R�� a�� a��� Then according to
Corollary ��	 ��R� and hence G�R� are computably categorical� At the
same time by Theorem ��� ���R�� a�� � �G�R�� a�� a�� a��� where a� � a��r��
is of algorithmic dimension n� The theorem is proved�

��
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