
Econometric Estimates of Earth’s Transient Climate

Sensitivity∗

Peter C. B. Phillips†, Thomas Leirvik‡, Trude Storelvmo§

March 5, 2019

Abstract

How sensitive is Earth’s climate to a given increase in atmospheric greenhouse gas
(GHG) concentrations? This long-standing question in climate science was recently an-
alyzed by dynamic panel data methods using extensive spatio-temporal data of global
surface temperatures, solar radiation, and GHG concentrations over the last half cen-
tury to 2010 (Storelvmo et al, 2016). Those methods revealed that atmospheric aerosol
effects masked approximately one-third of the continental warming due to increasing
GHG concentrations over this period, thereby implying greater climate sensitivity to
GHGs than previously thought. The present study provides regularity conditions and
asymptotic theory justifying the use of time series cointegration-based methods of es-
timation when there are both stochastic process and deterministic trends in the global
forcing variables, such as GHGs, and station-level trend effects from such sources as
local aerosol pollutants. The asymptotics validate estimation and confidence interval
construction for econometric measures of Earth’s transient climate sensitivity (TCS).
The methods are applied to observational data and to data generated from several
groups of global climate models (GCMs) that are sampled spatio-temporally and ag-
gregated in the same way as the empirical observations for the time period 1964 -
2005. The findings indicate that 7 out of 9 of the GCM reported TCS values lie within
the 95% empirical confidence interval computed econometrically from the GCM out-
put. The analysis shows the potential of econometric methods to provide empirical
estimates and confidence limits for TCS, to calibrate GCM simulation output against
observational data in terms of the implied TCS estimates obtained via the economet-
ric model, and to reveal the respective sensitivity parameters (GHG and non-GHG
related) governing GCM temperature trends.
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1 Introduction

Global warming is one of the defining issues of our time, and currently affects lives, com-
munities and countries worldwide. Its well-established root cause is the steady climb of
atmospheric CO2, which is now at 50% above pre-industrial levels. Understanding exactly
how sensitive Earth’s climate is to CO2 emissions is critically important for efforts to mit-
igate and adapt to future climate change. Despite this, Earth’s climate sensitivity, i.e. the
global mean surface temperature increase for a given atmospheric CO2 increase, remains
an elusive quantity, and arguably has come to represent the “holy grail” of climate science.
The lack of progress on this issue can partly be attributed to the difficulty of measuring the
sensitivity of climate to CO2 from observational data. Such efforts have been hampered by
the fact that aerosol particles, which have a cooling effect on climate, have been increasing
along with CO2, and are therefore “masking” some unknown proportion of CO2-induced
warming to date (e.g., Andreae et al., 2005). Representing the cooling effect of aerosol
particles in global climate models (GCMs) has proven challenging. Novel and alternative
approaches that can assist in meeting this challenge are long overdue.

Realizing that insights from econometrics could be of value in resolving this problem
and following earlier modeling work by Magnus et al. (2011), Storelvmo et al. (2016)
applied dynamic panel data methods to a rich observational data set of climate variables,
and found that ∼1/3 of the CO2 warming of continents to date has likely been masked by
aerosol cooling. If aerosol cooling is underestimated, climate might appear less sensitive to
CO2 than it really is (Kiehl, 2007). By taking aerosol cooling into account the Storelvmo et
al. study supported climate sensitivities at the upper end of the range already published,
for example in the last report from the Intergovernmental Panel on Climate Change (IPCC,
Flato et al., 2013).

The Magnus et al. and Storelvmo et al. studies pioneered in applying dynamic panel
data methods with observational data to the problem of constrained climate sensitivity.
While we are confident that this econometric approach holds promise for climate studies and
is worth pursuing, we acknowledge that in order to arrive at inferences concerning climate
sensitivity using these methods a number of new assumptions and model specification
enhancements are needed to adequately account for features in the observed data. The
reliability of the climate sensitivity estimate depends on the validity of these assumptions
and the suitability of the inferential methodology. Given the complexity of the dynamic
panel generating mechanism and the presence of potentially multiple sources of stochastic
trends together with spatial and temporal dependence, econometric analysis requires a
full development of asymptotic theory of estimation and inference in the presence of such
trends and dependence whilst allowing for variable co-movement that may be governed by
energy balance considerations.

The present paper contributes by addressing some of these issues. Specifically, we build
on our previous study in the following ways: (i) the model in Storelvmo et al. (2016) is ex-
tended by provision of an explicit generating mechanism that accommodates stochastic and
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deterministic nonstationarity in the data; (ii) asymptotic theory is developed for estimation
and inference in the context of this expanded model using time series cointegration-based
methods with an explicit focus on climate sensitivity and its associated confidence inter-
val; and (iii) the refined methodology is applied to both the observational data and the
numerical data simulated by three groups of leading GCMs for the time period 1964 -
2005. The developments in (ii) are novel in econometrics because they allow treatment of
nonstationarity with cointegrated regressors at both the individual station level data and
the global aggregate level. The application in (iii) innovates by analyzing GCM simulated
data by econometric methods and by carefully matching GCM simulated data at times
and spatial locations for which observational data are available. This matching helps to
assess the fidelity of the method because the calculated climate sensitivity manifested in
the GCMs (as opposed to the real climate system) can be compared to reported values
available in the latest IPCC report (Flato et al., 2013). In addition to these contributions,
provision of this new econometric analysis of GCM output against observed data enables us
to identify potential GCM model shortcomings which may not be so apparent in standard
GCM validation exercises.

Section 2 provides an introduction to the spatial econometric framework for modeling
key climate variables observable over time at specific station locations. Extensions to the
model are made to accommodate stochastic driver variables that include both global forcing
variables and station-specific aerosol pollution trends. Regularity conditions are provided
and cross section aggregation effects are discussed. Some econometric implications of the
expanded model are explored in Section 3, including the cointegrating structures that arise
from energy balance/imbalance considerations at the individual station and global levels.
Asymptotic theory for the time series estimation of the global relationship is developed
which leads to global climate sensitivity estimation and an asymptotically valid confidence
interval for this composite parameter. Section 4 reports an empirical application of this
methodology to observational data related to that employed previously in Storelvmo et
al. (2016) and to matching simulation output data from three groups of GCM models.
Section 5 provides an overview of the model set up, the aggregation process leading to the
fitted time series model, and computations involved in estimating the transient climate
sensitivity parameter and a confidence interval for this parameter. This section is intended
to provide a roadmap of the implementation for readers with less interest in the econometric
methodology and asymptotic theory. These readers may find it easier to read the paper
by omitting Section 3. Summary conclusions are given in Section 6. Relevant technical
material, proofs of results, additional tables, and some further discussion are provided in
Appendices A and B.
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2 A Climate Econometric Model

The econometric model used in Storelvmo et al (2016) relates local temperature (Ti) at
time t + 1 to local temperature and surface radiation (Ri), as well as global factors (λt,
see below), all at time t. The base model was developed and used in Magnus et al. (2011)
and has the following two equations

Ti,t+1 = αi + β1Ti,t + β2Ri,t + λt + uit+1, i = 1, ..., N and t = 1, ..., n, (1)

where the αi are station-level effects, β1 and β2 are parameters, and the time specific effect

λt = γ0 + γ1T̄t + γ2R̄t + γ3 ln(CO2,t), (2)

depends on the spatial aggregate variables1
(
T̄t, R̄t

)
=
(
N−1

∑N
i=1 Tit, N

−1
∑N

i=1Rit

)
and

the logarithm2 of the CO2 equivalent series, ln(CO2,t).
Equation (2) may be interpreted as an energy balancing relationship that captures the

global linkage between temperature, radiation and greenhouse gas atmospheric influences.
The balance or imbalance in these global elements is assumed to be one of the drivers
impacting local temperature (Ti) in the subsequent time period via the time specific effect
λt in equation (1). The dynamic panel regression equation (1) therefore characterizes the
dynamic adjustment mechanism of station level temperature Tit+1 as an autoregression on
past temperature Tit, radiation Rit, and the time specific global energy effects embodied
in λt. When λt is nonstationary, these effects are imported as time specific trends to
the local temperature series Ti,t+1, a mechanism that carries the effects of untempered
rising aggregate CO2 levels through to local temperature. This formulation accords with
empirical climate science research by Hansen et al. (2005; 2011) which discusses how the
climate system is increasingly out of equilibrium. In effect, energy entering and leaving the
climate system is unequal at present and the differential has been growing over time. In
equation (1) the impact of this energy differential or imbalance is transported to station
level temperature via the time specific effect λt.

2.1 Model Extensions and Assumptions

In what follows we extend this model to accommodate stochastic forcing variables at both
the station-specific and global levels. Neither Magnus et al (2011) nor Storelvmo et al.

1The aggregate variables
(
T̄t, R̄t

)
are strictly speaking arrays that also depend on N . However, under

ergodicity (or weaker conditions involving uniform integrability) over the spatial index i these spatial
aggregates will converge to population aggregate variables that are measurable with respect to the invariant

event algebra at time t, so that
(
T̄t, R̄t

)
→a.s. (Tt, Rt) = limN→∞

(
N−1∑N

i=1EtTit, EtRit

)
where Et

denotes expectation conditional on the invariant sigma algebra at time t.
2Use of a logarithmic transformation of CO2 in the energy balance relation (2) is based on technical

considerations associated with the way in which atmospheric concentrations of CO2 impart climate forcing
– see Huang and Bani Shahabadi (2014) for a recent analysis and justification.
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(2016) provided a complete model capturing the linkages of the station level data to the
energy balance relationship in a way that accommodates potential stochastic nonstation-
arity in the variables and additional forcing variables at both station and global levels. In
what follows, we develop the model so that the linkages are explicit, clarifying the stochas-
tic orders of the various components at the station level and the aggregate level to broadly
match the characteristics of the observed data. The model may be developed further, for
instance to allow for time varying individual effects or idiosyncratic loading effects of the
global factors embodied in λt. For instance, in place of (1) we may have

Ti,t+1 = αi + β1Ti,t + β2Ri,t + φiλt + uit+1, i = 1, ..., N and t = 1, ..., n, (3)

where the φi are factor loading coefficients. This extension allows for the impact of the
global drivers in λt to vary spatially over i with weights φi. Such spatial dependence may
be important empirically. For instance, the global forcing variables may influence local
temperature dynamics in regions of different latitudes in different ways. The time series
methods that we use in the present paper are unaffected by this generalization of the model
because the climate sensitivity parameter of interest is a global, not a local, parameter and
the methods are applied to spatially aggregated data, as will become apparent later. Global
averages of the φi then have only scale effects on the parameters {γi : i = 0, 1, 2, 3} in (2)
and these parameters are then interpreted as embodying these scale effects.

The model (1) and (2) can be used to measure transient climate sensitivity for land
(TCSL) to CO2 emissions, which is the main focus of the present work. TCSL is defined
as the change in global mean land surface air temperature after a doubling of CO2 (at the
time of doubling) and in the context of the above model has the following analytic form
(Magnus et al., 2011; and Storelvmo et al., 2016) which is derived in Appendix A

TCSL =
γ3

1− β1 − γ1
× ln(2). (4)

One way to calculate TCSL is for the full model (1) and (2) to be estimated with observed
data using dynamic panel regression methods. Under certain conditions a valid confidence
interval for the resulting estimate of TCSL can then be obtained using the asymptotic
theory for the parameter estimate of TCSL that is implied by the joint limit theory of the
estimates of the components (β1, γ1, γ3) of the model as (N,n) → ∞. That approach was
used in Storelvmo et al (2016) without any formal development of the limit theory and
has the (apparent) advantage that it reveals the explicit dependence on the parameters of
the full panel regression model (1) and (2). However, standard conditions for the validity
of dynamic panel regression methods are stringent when applied in this context as they
require temporal and spatial independence of the innovations ui,t+1 to avoid bias and
inconsistency and to ensure correct standard error and confidence interval calculations. In
addition to these limitations, standard methods of panel inference do not presently allow for
the complex mix of stochastically and deterministically trending variables and co-moving
time series that are manifest in the data.
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The present paper does not address these complications that arise in the application
of dynamic panel methods. Instead, in what follows we introduce a direct time series
approach to the estimation of TCSL using data on the global variables

(
T̄t, R̄t, ln(CO2,t)

)
.

This approach has the advantage of accommodating the temporal and spatial dependence
issues that affect dynamic panel estimation by utilizing cointegration-based methods that
can more easily than disaggregated analysis deal with these complications as well as more
directly address potential co-moving trending behavior in the data. The approach also
allows for factor model extensions such as (3) of (1).

First, we complete the specification of the system and impose conditions on the param-
eters and stochastic elements that match the characteristics of the available data on the
variables (Tit, Rit, CO2t). The framework is expanded by adding the following mechanisms
for the generation of local radiation effects and global CO2

Rit = R0
it + δ′riUgt + Pit, (5)

ln(CO2,t) = δc0 + δc1t+ δ′cUgt + uct, (6)

Ugt =
t∑

s=1

ugs. (7)

In (5) local radiation Rit is assumed to have a component R0
it that embodies stationary

fluctuations about some mean level E
(
R0
it

)
, Ugt is an mg- vector of latent global forcing

variables that are stochastically nonstationary, driven by global shocks ugt, and δri is an
idioscyncratic vector factor loading parameter vector that captures any station level effects
arising from the common global shocks embodied in Ugt. Not all the components of Ugt can
be expected to influence Rit. But just as CO2 levels in the atmosphere have been rising,
so have other gases that are precursors to atmospheric aerosol particles (e.g. sulphur
dioxide from anthropogenic sources) that in turn negatively influence downwelling solar
radiation reaching the Earth’s surface. The term Pit complements these components and
represents any local idiosyncratic trend effects (such as those caused by station specific
aerosol pollution trends) that may be present in Rit which differ in source and character
from the components of the global common shock Ugt. Both Ugt and Pit can be considered
latent variables within Rit and, consequently, Tit+1 in (1).

The generating process (6) for the logarithm of the CO2 equivalent series ln(CO2,t) is
in trend components form comprising a stochastic (unit root) trend with a deterministic
drift and a stationary shock uct. The linear drift term δc1t captures the steady annual
accumulation of atmospheric greenhouse gases (currently measured around 36 gigatonnes3).
The stochastic trend component δ′cUgt involves a factor loading vector δc that captures the
global impact on ln (CO2) of the accumulated shocks from various greenhouse gas and
other sources that are embodied in the latent variable Ugt. Importantly, some elements of
δc may be zero and the corresponding components of Ugt do not then figure in determining

3National Oceanic & Atmospheric Laboratory (NOAA): (www.esrl.noaa.gov).
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Figure 1: Station-averaged temperature (oCelsius; green solid), Global land temperature
(oCelsius; green dotted), Downward surface radiation (Watts per m2; red dashed), and
logarithms of CO2 (Pg: metric gigatons; blue solid) 1964-2005

ln (CO2). This specification allows flexibility so that the determinants in δ′cUgt may differ
entirely or possibly partly overlap with those that appear in δ′riUgt and determine Rit.

The formulation in (6) is compatible with the observed data on ln (CO2t) over the
historical period 1964-2005, as is apparent from the plot of the time series shown in Figure
1 and the tests reported in Storelvmo et al (2016). Similarly, the random wandering
character of the observed aggregate time series R̄t shown in Figure 1 and the tests in
Storelvmo et al (2016) are compatible with the formulation (5). Figure 1 also graphs
the surface-averaged (over stations) land temperature series T̄t, which closely follows the
stochastic drift in ln (CO2t) with subperiod volatility that mirrors the wandering character
of R̄t, particularly over the latter half of the sample period. The time paths of the global
variables (T̄t, R̄t, CO2t) shown in Figure 1 provide visual evidence of linkages in these
nonstationary variables, corroborating the evidence for cointegration in these aggregate
time series that was found in Storelvmo et al (2016).

Figure 1 includes two curves for global land temperature, both measured on the same
(extreme) right hand scale. The solid green curve shows station-averaged surface tem-
perature observations over the land stations used in the present study. The dotted green
curve shows the global land temperature time series calculated from data obtained on the
NOAA website4. The proximity of the two curves indicates that the number of stations
and the spatial coverage of these stations are sufficient for the station-averaged quantities
to provide a good representation of the general land temperature time series reported in

4NOAA: https://www.ncdc.noaa.gov/cag/global/time-series.
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NOAA5.
Table B1 in Appendix B provides residual based tests for cointegration among the

aggregate variables (T̄t, R̄t, CO2t). These results are strongly confirmatory of a long run
linkage among these three variables taken together but show no direct linkage between the
two component variables (R̄t, CO2t) or between (T̄t, CO2t). This confirms the role that R̄t
and CO2t play jointly in the long run determination of T̄t.

To develop an asymptotic theory for estimation of the key parameter TCS we make
the following high level assumptions about the aggregration processes leading to the global
variables (T̄t, R̄t, CO2t) and the component Ugt of latent global forcing variables. These
conditions will be valid under a wide range of primitive conditions that allow for weak
temporal dependence, some cross section dependence, and cross section heterogeneity in
the various innovation sequences driving both station-level and global shocks.

Assumption A

(i) R̄0
t := N−1

∑N
i=1R

0
it →a.s. R

0, N−1/2
∑N

i=1

(
R0
it −R0

)
= Op (1) ,

δ̄r := N−1
∑N

i=1 δri →a.s. δr, N−1/2
∑N

i=1 (δri − δr) = Op (1) ,

and the uit satisfy (nN)−1/2
∑n

t=1

∑N
i=1 uit = Op (1) .

(ii) Pit = P 0
it +

∑t
k=1 u

P
ik =: P 0

it + UPit , P̄ 0
t = N−1

∑N
i=1 P

0
it →a.s. P

0,

N−1/2
∑N

i=1

(
P 0
it − P 0

)
= Op (1) for all t, and the partial sums UPit satisfy the invari-

ance principle n−1/2UPit ⇒ UPi (r) ≡ BM
(
σ2
iP

)
, a sequence of independent scalar

Brownian motions with variance σ2
iP > 0.

(iii) Partial sums Ugt =
∑t

k=1 ugk of ugt satisfy the invariance principle n−1/2Ugbnrc ⇒
Ug (r) ≡ BM (Σg) , a vector Brownian motion with covariance matrix Σg > 0; and
the shocks uct have partial sums Uct =

∑t
k=1 uck which satisfy the invariance principle

n−1/2Ucbnrc ⇒ Uc (r) ≡ BM
(
σ2
c

)
, with σ2

c > 0.

(iv) |β1| < 1, |β1 + γ1| < 1, and T0 = Op (1) .

(v) n
N → 0 as n,N →∞.

The first part of Assumption A(i) is a strong law for global averages of the stationary
component R0

it of local downwelling radiation and a strong law for global averages of the
idiosyncratic loadings δri. These hold under standard moment and cross-section depen-
dence conditions. The second part of A(i) is satisfied under related conditions that ensure
the operation of a central limit theorem (CLT) for these cross section averages of R0

it and

5The time series graphed as the dotted curve in Figure 1 is obtained from the global land temperature
time series in NOAA which is recorded in annual increments. To normalize this incremental series with the
station-averaged temperature series graphed as the solid green curve in Figure 1, the station averaged time
series observation for 1964 is added to the incremental time series for global land temperature from NOAA.
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δri. The final part of A(i) holds if the equation errors uit in (1) satisfy a joint central limit
theorem of the form (nN)−1/2

∑n
t=1

∑N
i=1 uit ⇒ N (0, σ2

u), jointly as (n,N)→∞, for some
σ2
u > 0, which will be so under general primitive conditions on moments and cross section

and time series dependence (e.g., Phillips and Solo, 1992; and Phillips and Moon, 1999).
Assumption A(ii) decomposes Pit into two components. The stationary part P 0

it satisfies
a cross-section strong law and CLT; the nonstationary part

∑t
k=1 u

P
ik is a partial sum

process that satisfies an invariance principle upon suitable normalization. This assumption
also holds under standard primitive conditions on the component shocks of the system.
A(iii) places a similar invariance principle requirement on the partial sum processes Ugt
and Uct. This specification accords with a body of empirical evidence supporting unit
autoregressive roots in observed climate data (Storelvmo et al, 2016; Kaufmann et al,
2006a, 2006b, 2011, 2013) and the limit theory in the following section is developed under
these conditions.

Some relaxation of the unit root condition is possible. But, as in standard cointegrating
regression, pivotal inference in the case of near integrated or mildly integrated regressors
(Phillips and Magdalinos, 2007) is challenging. One successful approach that leads to
standard inferental methods relies on the use of endogenous (so-called IVX) instrumental
variables (Phillips and Magdalinos, 2009; Kostakis et al, 2015). This method may be used
in the present context to achieve greater generality but the limit theory for such regressions
needs to be developed to accommodate co-movement in the regressors and a mixture of
trending mechanisms, a task that is not undertaken here and is left for future research.

A(iv) imposes a system-wide transient adjustment condition on the parameters β1 and
γ1 and a stable initial condition T0 = Op (1) for global temperature. A(v) is a simple rate
condition requiring the number of stations N to dominate the time series sample size n
asymptotically. This condition simplifies the limit theory and appears acceptable in the
present context where the actual sample sizes are N = 1484, n = 42.

A final matter of importance is that the time series for ln(CO2,t) shows clear evidence
of a deterministic drift upwards over the entire sample period, as is evident in Figure
1. That drift is manifestly associated with the long run behavior of global temperature
T̄t. It also affects the asymptotic theory and convergence rates of the various parameter
estimates, particularly in view of the presence of both stochastic and deterministic trends
in the component processes.

2.2 Implications of Aggregation

The panel regression equation (1) implies that station level temperature adjusts to past
temperature, local radiation Ri,t, station level idiosyncratic effects αi, global influences
imported via λt, and the panel system errors uit+1. Upon station averaging of (5), we have

R̄t = R̄0
t + δ̄′rUgt + P̄t,
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with R̄0
t = N−1

∑N
i=1R

0
it, P̄t = N−1

∑N
i=1 Pit and δ̄r = N−1

∑N
i=1 δri. Under A(i) and

A(ii) and using the fact that Ugt = Op
(√
t
)

in view of A(iii), the global radiation effect is
measured asymptotically as N →∞ by

R̄t = R0 + δ′rUgt + Pt +Op

(√
n

N

)
=: Rt +Op

(√
n

N

)
, (8)

which evidently imports the nonstationarity of the partial sum process Ugt but with a (pos-
sibly small) average coefficient effect, measured by the parameter δr. To justify (8), note
that the local idiosyncratic trend component Pit has the stochastic trend representation
Pit = P 0

it + UPit . The partial sum component UPit =
∑t

k=1 u
P
ik is assumed in A(ii) to satisfy

a functional law. But at the global level these station specific trends are subject to cross
section averaging, so that

P̄t = P̄t
0

+N−1
N∑
i=1

UPit = P̄t
0

+
t∑

k=1

(
N−1

N∑
i=1

uPik

)
= P̄ 0

t +

√
n√
N
× 1√

N

N∑
i=1

(
1√
n

t∑
k=1

uPik

)

= P 0 +Op

(√
n

N

)
→p P

0,

provided n/N → 0 as N →∞, which is assumed in A(v).
Thus, when n/N → 0 station-specific stochastic trends such as aerosol pollution average

out through global averaging to some mean global level P 0
t . In effect, global averaging of

the local pollution trends Pit to some mean level implies that some areas may be cleaning
up while others are deteriorating over time, leading to a net average effect that is negligible
or constant.6 If there is any general global trend in pollution (say) then it can be considered
part of one of the components of the global effect Ugt. Thus, any common aerosol pollution
trends that may be present in local radiation are assumed to be absorbed in the latent
common global shock Ugt and manifest via the individual factor loading δri. Unlike the
local trend effects in P̄t that average out asymptotically, common trends that are embodied
in Ugt do have persistent effects in the model.

It follows that the extended model (5) for local radiation impacts global radiation effects
in a form that can be represented under the above assumptions as

Rt = δr0 + δ′rUgt +Op

(√
n

N

)
, where δr0 = R0 + P0. (9)

Under A(vi) (9) implies that Rt = δr0 + δ′rUgt + op (1) . These conditions mean that global
downwelling radiation is modeled as a unit root stochastic trend driven by the common

6Assumption A(ii) may be weakened to allow for stationarity in P 0
it across section only, so that P̄ 0

t →p P
0
t

with P 0
t = Op(1). In this case, the results obtained below continue to apply with some modification in the

derivations because P 0
t is absorbed by a weakly dependent equation error in the aggregate relation and any

trend in pollution is carried via the global trend effect δ′rUgt in (8).
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global stochastic trend Ugt with average loading factor δr, and initial conditions determined
by a linear combination of mean local radiation (R0) and aerosol pollution (P 0). The
stochastic trend limit representation (9) of global downwelling radiation accords well with
the observed time series aggregate shown in Figure 1.

3 Econometric Implications

3.1 Global Cointegrating Linkage

Aggregating (1) over stations gives

T̄t+1 = ᾱ+ β1T̄t + β2R̄t + λt +
1

N

N∑
i=1

uit+1 = ᾱ+ β1 + β2R̄t + λt + ū·t+1, (10)

where ᾱ = N−1
∑N

i=1 αi and ū·t+1 = N−1
∑N

i=1 uit+1. Following standard practice for
identification purposes, it is convenient to set ᾱ = 0. Substituting (2) then gives the global
relationship

T̄t+1 = γ0 + (β1 + γ1) T̄t + (β2 + γ2) R̄t + γ3 ln(CO2,t) + ū·t+1. (11)

Setting θ1 = β1 + γ1 and θ2 = β2 + γ2, write (11) as

T̄t+1 = γ0 + θ1T̄t + θ2R̄t + γ3 ln(CO2,t) + ū·t+1,

Using the fact that |θ1| < 1 under A(v), (11) may be solved to give a stochastic trend
representation of T̄t and to deliver a long run cointegrating relationship among the global
variables

(
T̄t, R̄t, ln(CO2,t)

)
. With some manipulations the results for the common trend

expressions can be obtained and are detailed in the following result.

Theorem 1 (Common trend drivers) Under Assumption A, Wt =
(
T̄t, R̄t, ln(CO2,t)

)′
is a vector of stochastically and deterministically trending time series driven by Ugt of the
form Wt = δw0 + δw1t + ∆wUgt + u+

wt where u+
wt = (uTt, 0, uct)

′ + op (1) is asymptotically
stationary. Specifically

Wt =

 T̄t
R̄t

ln(CO2,t)

 =

 δT0 + δT1t+ δ′TUgt + u+
Tt

δr0 + δ′rUgt +Op
(√

n
N

)
δc0 + δc1t+ δ′cUgt + uct

 =: δw0 + δw1t+DwUgt + u+
wt, (12)
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where

δT1 =
γ3δc1
1− θ1

, δT =
θ2δr + γ3δc

1− θ1
, (13)

uTt = γ3

∞∑
j=0

θj1uct−1−j −
θ1

1− θ1

∞∑
k=0

θk1 [θ2δr + γ3δc]
′ ugt−1−k − δ′Tugt, (14)

u+
Tt = uTt +Op

(
1√
N

+

√
n

N
+ t |θ1|t

)
, (15)

with D′w = [δT , δr, δc] , δw0 = [δT0, δr0, δc0]′ , δw1 = [δT1, 0, δc1]′ , u+
wt = uwt+Op

(
1√
N

+
√

n
N + t |θ1|t

)
and uwt = [uTt, 0, uct]

′ .

Remarks

1. Since δT = θ2δr+γ3δc
1−θ1 , it is apparent from (12) that T̄t is cointegrated with

(
R̄t, ln(CO2,t)

)
.

In particular, we have

(1− θ1) T̄t = γ3δc1t+ [θ2δr + γ3δc]
′ Ugt + δT0 (1− θ1) + u+

Tt (1− θ1)

= θ2

(
δr0 + δ′rUgt

)
+ γ3

(
δc0 + δc1t+ δ′cUgt

)
+ {δT0 (1− θ1)− θ2δr0 − γ3δc0}+ u+

Tt (1− θ1)

= θ2R̄t + γ3 ln(CO2,t) + µ+ ζt, (16)

with µ = δT0 (1− θ1)− θ2δr0 − γ3δc0 and ζt = uTt (1− θ1)− γ3uct + op (1) . We may
write this global cointegrating relation as

T̄t =
θ2

1− θ1
R̄t +

γ3

1− θ1
ln(CO2,t) +

µ

1− θ1
+

1

1− θ1
ζt. (17)

Importantly for applied work on climate sensitivity, the coefficient of ln(CO2,t) in
this relationship gives the transient climate sensitivity parameter

TCS =
γ3

1− θ1
× ln(2) =

γ3

1− β1 − γ1
× ln(2) (18)

upon scaling by ln(2).

2. The cointegrating relation (17) involves deterministic and stochastic cointegration.
The linear drift in global temperature T̄t moves with the linear drift in ln(CO2,t),
giving deterministic drift co-movement between these two variables. The stochastic
trends in ln(CO2,t) and R̄t co-move with the stochastic trend in T̄t, producing stochas-
tic cointegration among these three variabes. Equation (17) therefore describes how
the trends that are inherent in greenhouse gases and downwelling radiation impact
global temperature in the long run. It is this relationship rather than equation (2)
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that captures the cointegrating linkage among the global variables. Assuming radi-
ation is constant, the formula (18) for climate sensitivity to CO2 is an immediate
consequence of this long run relationship among the global variables. Estimation of
the TCS parameter is then most conveniently performed by direct estimation of (17).

3. This framework and Theorem 1 therefore support a single long run cointegrating
relationship among the global variables

(
T̄t, R̄t, ln(CO2,t)

)
. This relationship is given

by (17) so that
(1− β1) T̄t − β2R̄t − λt 'a I (0) ,

where 'a I (0) signifies asymptotically integrated of order zero. As noted, the time
specific effect λt carries both a deterministic trend and stochastic trend. The dynamic
panel regression equation (1) then describes transient adjustments of station-specific
temperature Tit+1 about a long run trend driven by global components in the time
specific effect λt and idioscyncratic trends that may be present in local radiation Rit.

4. Define the cointegrating vector

b′γ =
[
θ1 − 1 θ2 γ3

]
(19)

for which b′γδw1 = 0 and b′γDw = 0, so that the 3×mg matrix Dw has rank 2. Let bw
be an orthonormal matrix complement of bγ , and write the 3×mg matrix Dw in (12)
in the outer product form Dw = bwa

′ for some 3 × 2 matrix bw and 2 ×mg matrix
a′. Then,

Wt = δw0 + δw1t+ bwa
′Ugt + u+

wt, (20)

and
b′γWt = b′γδw0 + b′γu

+
wt 'a I (0)

from which it follows that Wt has a two-dimensional forcing variable Uwt = a′Ugt
formed from the components of Ugt. Each of the time series in the vector Wt =(
T̄t, R̄t, ln(CO2,t)

)
is therefore influenced by the composite effects of Uwt and we may

write Wt in simplified form as

Wt = δw + δw1t+ bwUwt + u+
wt. (21)

3.2 Estimation and Asymptotic Theory

The goal of the present paper is to estimate the transient climate sensitivity parameter
TCS. This may be achieved most simply by estimating the cointegrating relation (17) and
scaling the coefficient of ln(CO2,t) by ln (2) . In addition to simplicity, this approach has
the advantage that it allows for general assumptions concerning the cross section and time
series dependence properties of the station level data and innovations. The latter is helpful
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since dynamic panel GMM regression techniques rely for consistent estimation on much
stronger assumptions such as serial independence of the equation errors in (1).7

Asymptotically efficient estimates of the coefficients in (17) can be obtained under quite
general assumptions on the errors ζt by a variety of methods such as fully modified least
squares (FM-OLS: Phillips and Hansen, 1990), dynamic least squares (DOLS: Saikonnen,
1991; Phillips and Loretan, 1991; Stock and Watson, 1993), or trend instrumental variable
regression (TIV: Phillips, 2014).

It is convenient to write the cointegrating regression equation (17) in the form

T̄t = d0 + d1R̄t + d2 ln(CO2,t) + ζd,t =: d0 + d′xt + ζd,t, (22)

d0 =
µ

1− θ1
, d1 =

θ2

1− θ1
, d2 =

γ3

1− θ1
, ζdt =

1

1− θ1
ζt.

The regressor xt =
(
R̄t, ln(CO2,t)

)′
in (22) has common trend representation given in (12),

which it is convenient to write in the subset form

xt =

[
δr0 + δ′rUgt +Op

(√
n
N

)
δc0 + δc1t+ δ′cUgt + uct

]
=: δx0 + δx1t+DxUgt + uxt,

with δ′x0 = (δr0, δc0) , δ′x1 = (0, δc1) , Dx = [δr, δc]
′ , and uxt =

(
Op
(√

n
N

)
, uct

)′
.

The asymptotic theory for the regression fitting of (22) needs to take into account the
form of the common trend drivers of the two regressors in xt, the presence of a linear trend
in ln(CO2,t), the absence of cointegration between the two regressors, and the presence of
an intercept in the regression. The linear trend in the regressor xt is specific to the com-
ponent regressor ln(CO2,t) and therefore dominates the asymptotic theory of estimates of
the regression coefficient d2, leading to a convergence rate of n3/2 for both least squares
and efficient estimates of this coefficient. However, as shown in Park and Phillips (1988)
the presence of a deterministic drift in the regressors complicates multivariate regression
asymptotics with unit root regressors (as distinct from regressions with a single regres-
sor) because of the presence of full rank (non-cointegrated) stochastic trends in xt. This
complication means that the limit theory is mixed normal (MN ) and involves projec-
tion residuals of the dominating (continuous time) linear trend on the (limiting) stochastic
trend components of xt as well as the constant intercept in (22). The result in Theorem
2 below gives the required limit theory for the FM-OLS estimates of the slope coefficients
in (22). Other asymptotically efficient estimators such as DOLS and TIV have the same
limit distribution.

The FM-OLS estimator of the slope coefficient vector d in (22) takes the usual form

d̂+ =
(
X̃ ′X̃

)−1 (
X̃ ′̂̃y+

t − n∆̂+
xζ

)
. (23)

7On the other hand, when those additional assumptions are valid, panel cross section averaging has the
advantage that it can raise the rate of convergence of the coefficient estimates by a factor of

√
N .
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In (23) we use the tilde affix to denote demeaned variables. Thus, X̃ is the n× 2 moment

matrix of demeaned observations x̃t = xt−x̄, and ̂̃y+
t is the vector of observations of the en-

dogeneity corrected demeaned observations of the endogenous variable. More specifically,̂̃y+
t = ỹt − Ω̂ζxΩ̂−1

xx ∆̃xt, where
(

Ω̂ζx, Ω̂xx

)
are consistent estimators of the long run co-

variance matrices (Ωζx,Ωxx) =
(∑∞

h=−∞ E
(
ζd0u

′
ghDx

)
,
∑∞

h=−∞DxE
(
ug0u

′
gh

)
D′x

)
. The

quantity n∆̂+
xζ in (23) is a second-order bias correction term, where ∆̂+

xζ := ∆̂x0−∆̂xxΩ̂−1
xx Ω̂xζ ,

and
(

∆̂x0, ∆̂xx

)
are consistent estimates of the one-sided long run covariance matrices

(∆x0,∆xx) =

( ∞∑
h=0

DxE (ug,0ζd,h) ,
∞∑
h=0

DxE
(
ug,0u

′
g,h

)
D′x

)
.

These consistent estimates are obtained in the usual manner by lag kernel methods applied
to sample covariances of the residuals, including those obtained from a first stage consistent
cointegrating regression on (22) by least squares. Readers are referred to Phillips and
Hansen (1990) and Phillips (1995) for details.

Theorem 2 (FM-OLS Limit theory) Under Assumption A, we have:

(i) n
(
d̂+

1 − d1

)
 
(∫ 1

0 ŨR (p)2 dp
)−1 {∫ 1

0 ŨR (p) dBζd·x

}
=dMN

(
0, ω2

ζd·x

(∫ 1
0 ŨR (p)2 dp

)−1
)
,

(ii) n3/2
(
d̂+

2 − d2

)
 
(
δ2
c1

∫ 1
0 r̃x (p)2 dp

)−1 {
δc1
∫ 1

0 r̃x (p) dBζd·x

}
=dMN

(
0, ω2

ζd·x

(
δ2
c1

∫ 1
0 r̃x (p)2 dp

)−1
)
,

where  signifies weak convergence, =d denotes equivalence in distribution,

ŨR (p) = ŨR (p)−
(∫ 1

0
ŨR (s) r̃ (s) ds

)(∫ 1

0
r̃2 (s) ds

)−1

r̃ (p) ,

r̃x (p) = r̃ (p)−
∫ 1

0
sŨR (s) ds

(∫ 1

0
ŨR (s)2 ds

)−1

ŨR (p) ,

r̃ (p) = p−
∫ 1

0
sds, ŨR (p) = UR (p)−

∫ 1

0
UR (s) ds, UR (p) = δ′rUg (p) ,

and Bζd·x (r) is Brownian motion with variance ω2
ζd·x where

ω2
ζ·x = ω2

ζ − ΩζxΩ−1
xxΩxζ , ω

2
ζd·x =

ω2
ζ·x

(1− θ1)2 , ω
2
ζ =

∞∑
h=−∞

E (ζ0ζh) . (24)
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Remarks

5. Long run covariance matrices (24) rather than variances appear in the limit formulae
(i) and (ii) and are associated with the Brownian motion Bζd·x. These covariance
matrices are needed, even under iid conditions on the shocks (uct, ugt) in Assump-
tion A, because the constituent error processes ζt = uTt (1− θ1) − γ3uct + op (1)
and ζdt = 1

1−θ1 ζt that enter the cointegrating regression (22) depend on the full
history of the shocks (uct, ugt) rather than contemporaneous shocks. In partic-
ular, ζt depends on uTt, as well as uct, and by definition (14) we have uTt =
γ3
∑∞

j=0 θ
j
1uct−1−j− θ1

1−θ1
∑∞

k=0 θ
k
1 [θ2δr + γ3δc]

′ ugt−1−k−δ′Tugt. In view of the simple
autoregressive linear process form of uTt, it is clear that Theorem 2 continues to hold
after suitable adjustment in the long run variance formulae when the component
shocks (uct, ugt) are themselves temporally dependent linear processes under weak
summability and moment conditions on the components. The conditional long run
variance ω2

ζd·x in (24) takes account of the regressor endogeneity and corresponds to
standard limit theory for efficient cointegrating regressions (Phillips, 1991).

6. The time series n3/2 rate of convergence in (ii) is the consequence of two special
circumstances in the model: (a) the presence of the linear trend in the generating
mechanism (6) of ln (CO2t) ; and (b) the fact that the pertinent coefficient of interest
is d2, which is the coefficient of ln (CO2t) in the cointegrating regression (22), whereas
the other regressor R̄t in the equation does not have a linear trend by virtue of the
generating mechanism (5). Thus, the direction of the linear trend in the model is
specific to that of the regressor ln (CO2t) .

7. Asymptotic standard errors for the components of the FM-OLS estimate d̂+ =(
d̂+

1 , d̂
+
2

)′
are obtained in the standard way using the square roots of the diago-

nal elements of the matrix ω̂2
ζd·x

(
X̃ ′X̃

)−1
in spite of asymptotic singularity in the

moment matrix. The long run conditional variance ω2
ζd·x is estimated in the usual

manner by ω̂2
ζd·x by using residuals from the fitted FM-OLS regression. As shown

in the proof of Theorem 2, these elements provide consistent estimates of the limit
variances in (i) and (ii). In particular, from (56) in the proof we have

(
X̃ ′X̃

)−1
=

 (
X̃ ′rQcX̃r

)−1
−
(
X̃ ′rX̃r

)−1
X̃ ′rX̃c

(
X̃ ′cQrX̃c

)−1

−
(
X̃ ′cQrX̃c

)−1
X̃ ′cX̃r

(
X̃ ′rX̃r

)−1 (
X̃ ′cQrX̃c

)−1

 ,

which employs the projection matrix notation Qa = I − X̃a

(
X̃ ′aX̃a

)−1
X̃ ′a for a ∈

{r, c} . Then, from (57) and (58) in the proof we deduce that

n2
(
X̃ ′rQcX̃r

)−1
 

(∫ 1

0
ŨR (r)2 dr

)−1

, and n3
(
X̃ ′cQrX̃c

)−1
 

(
δ2
c1

∫ 1

0
r̃x (p)2 dp

)−1

,
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as required for consistent estimation of the variances by standard regression formulae.
Accordingly, asymptotic 100 (1− α) % confidence regions for d1 and d2 are given by

d̂+
1 ± za

{
ω̂2
ζd·x

(
X̃ ′rQcX̃r

)−1
}1/2

, d̂+
2 ± za

{
ω̂2
ζd·x

(
X̃ ′cQrX̃c

)−1
}1/2

(25)

where za is the 100 (1− α/2) % percentile of the standard normal distribution.

8. The corresponding estimate of the TCS parameter is T̂CS = d̂+
2 ln(2) and an asymp-

totic 100 (1− α) % confidence region for TCS is then

T̂CS ± za ln(2)

{
ω̂2
ζd·x

(
X̃ ′cQrX̃c

)−1
}1/2

. (26)

9. The limit theory (i) and (ii) holds as both n→∞ and N →∞ under the condition
A(v). With this condition it follows from Theorem 1 that the cross section averages(
T̄t, R̄t

)
take the following form

T̄t = δT0 + δT1t+ δ′TUgt + uTt +Op
(
t |θ1|t

)
=: Tt +Op

(
t |θ1|t

)
,

R̄t = δr0 + δ′rUgt +Op

(√
n

N

)
=: Rt +Op

(√
n

N

)
,

and the asymptotic properties of the cointegrating regression are therefore determined
by the relationship

TAt = d0 + d1R
A
t + d2 ln(CO2,t) + ζd,t +Op

(√
n

N
+ t |θ1|t

)
(27)

among the (full) global time series aggregates (Tt, Rt, ln(CO2,t)) . The error in (27)
can be neglected asymptotically as N → ∞ because n

N → 0 by A(v) and the cross

moments of the time trend t and stochastic trend Ugt with the O
(
t |θ1|t

)
error are

all negligible asymptotically since the sum
∑n

t=1 t
k |θ1|t = O (1) for all k ≥ 1 when

|θ1| < 1 and, consequently,
∑n

t=1 tUgt |θ1|t = Op (1) as n→∞, which makes the cross
moment components negligible in asymptotic moment calculations. The cointegrating
equation Tt = d0 + d1Rt + d2 ln(CO2,t) + ζd,t may therefore be interpreted as a full
cross section limiting average relationship linking these global aggregate time series8.

Table B2 reports results from the estimation of (22) by the three time series methods
FM-OLS, DOLS and OLS as well as the panel within group (WG) regression method.

8Under spatial ergodicity as N → ∞, the quantities (Tt, Rt) may be interpreted as limiting conditional
expectations given the invariant sigma algebra at time t and the relationship Tt = d0+d1Rt+d2 ln(CO2,t)+
ζd,t describes how these limiting global aggregates cointegrate with ln(CO2,t).
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FM-OLS is computed using an automated lag length selector (with AR prefiltering and
recoloring) to determine the number of lags used in the calculation of the long run variance
ω̂2
ζd·x. DOLS(m,m) is run with m ∈ {1, 2, 3} lags and leads in the regression. As is apparent

from Table B2, the TCS parameter estimates by the different methods are similar, ranging
from T̂CS = 3.1637 and 2.9175 for DOLS(3) and DOLS(1) to T̂CS = 2.8020 for FM-OLS,

and T̂CS = 2.7012 for WG estimation. From standard asymptotic theory (Phillips and
Durlauf, 1986), OLS is known to suffer from second order bias because of endogeneity
and serial correlation and the present results indicate that the OLS bias is in the upwards
direction, since the OLS estimate exceeds that of the FM-OLS estimate, which is known
to be asymptotically unbiased and efficient (Phillips and Hansen, 1990). As might be
expected DOLS(1,1) produces an estimate that is closest to OLS. The FM-OLS estimated
standard errors are uniformly smaller than those of DOLS and the latter increase with
the number of leads and lags included in the DOLS regression, which is explained by
increasing multicollinearity in the DOLS regression as the number of lead and lag differences
included in the DOLS regression rises. The 95% confidence interval (2.360, 3.243) for TCS
from FM-OLS regression is the shortest interval, consonant with the fact that FM-OLS is
asymptotically efficient. The corresponding intervals for the DOLS regressions are much
wider in view of the higher standard errors.

An alternative estimation approach is to use dynamic panel regression methods to es-
timate both (1) and (2). This was the approach used in Storelvmo et al. (2016). Various
methods are available, including within-group (WG) least squares estimation, difference
GMM (diff-GMM; Arellano and Bond, 1991) and system GMM (sys-GMM; Blundell and
Bond, 1998) with various choices of instruments in the GMM regressions. Sys-GMM meth-
ods were used by Magnus et al. (2011) and Storelvmo et al. (2016) on the grounds that
this method is considered preferable in cases where the panel autoregressive coefficient β1

is close to unity9 because such cases typically lead to the use of weak instruments in diff-
GMM, thereby reducing efficiency. However, as might be expected from the global coverage
of the station locations in the present application, there is considerable heterogeneity in
the fixed effects αi of the dynamic panel regression (1). This feature is known to produce
sys-GMM estimates of the coefficients in dynamic panel regression that are substantially
biased and can even be inconsistent (Hayakawa, 2007, 2015).

The properties of these panel regression methods, including asymptotic theory, are
analyzed in other ongoing work and are not needed for the present study. We mention
here that simulations based on data generated from (1) and (2) and using the actual data
for Rit and ln (CO2t) as inputs showed that sys-GMM produced estimates of β1 that were
heavily biased upwards (by almost 700%), whereas WG and diff-GMM delivered far better
performance with little bias. Recent work (Phillips, 2018) has shown that these dynamic
panel regression methods do provide robust estimates of the TCS parameter, even though

9Magnus et al. (2011) and Storelvmo et al. (2016) obtained estimates (0.9063 and 0.9212, respectively)
of β1 that were both in the vicinity of unity.
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the individual parameter estimates (such as β1) of the dynamic panel regression and energy
balance relationship (such as γ1) differ considerably with each other. For comparison
purposes we therefore report here in Table 2B the WG estimate, 2.7012, of the transient
climate sensitivity parameter which is comparable to the FM-OLS estimate but with a
wider confidence interval.

4 Inference on Earth’s Climate Sensitivity

This section of the paper reports applications of the above methods to the study of Earth’s
transient climate sensitivity. These applications use two sources of information: (i) spatio-
temporal empirical observations; and (ii) climate model simulation data computed using
the same spatio-temporal coordinates with outputs from several leading climate models.
The data sources are described below. Some summary statistics of the main features of
the data are provided before reporting the results of the econometric analysis.

4.1 Observational Data

We use three observational data sets, each of which records time series at multiple surface
stations for one of the three aforementioned variables in equations (1) and (2): temperature,
surface radiation and equivalent CO2. Due to data availability to ensure a balanced panel
we limit the study to the 42-year time period from 1964 to 2005. In the following we
briefly describe each of the data sets, and refer readers to Storelvmo et al. (2016) and the
references therein for further details on the observational data.

4.1.1 Solar radiation data

Surface measurements of monthly mean incoming (i.e. downward) solar radiation (mea-
sured in watts per meter squared) are available from the Global Energy Budget Archive
(GEBA, Gilgen and Ohmura, 1999) for more than 2,500 surface stations worldwide. The
stations are unevenly distributed over Earth’s land surface (see Figure 1 of Storelvmo et
al., 2016), and are often not continuous in time. For the present study we only included
stations that passed our data quality control and that met our time series length require-
ments, leaving us with 1484 land-based stations. Since the time increment in equations
(1) and (2) is one year, we created annual means based on the monthly mean GEBA data
for each station, and only included stations in which data for 24 consecutive months were
available at least once during the time span 1964-2005. Any data gaps in the remaining
months were filled using a machine learning approach (‘random forests, see e.g. Breiman,
2001), which is described in more detail in Storelvmo et al. (2018). The missing values
are spread unevenly over time, and often only one month is missing for a given year. The
infilling of missing values allowed us to increase the number of GEBA stations included in
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the study by approximately 200 compared to Storelvmo et al. (2016).We thus obtained a
matrix of 1484x42 annual mean surface radiation observations.

4.1.2 Temperature data

Our surface temperature observations are obtained from the Climate Research Unit (CRU,
Harris et al. 2014), available for download from the British Atmospheric Data Center
(BADC, https://badc.nerc.ac.uk). Specifically, we use their gridded surface air temper-
ature data set (version 4.00), available at a spatial resolution of 0.5◦. Each of the 1484
stations for which adequate radiation data existed were then assigned corresponding tem-
perature time series taken from the 0.5◦ × 0.5◦ grid in which they were located, creating
another 1484× 42 data matrix.

4.1.3 GHG data

Global and annual mean GHG concentrations are available from the National Oceanic and
Atmospheric Administration (NOAA) Annual Greenhouse Gas Index (AGGI,
http://www.esrl.noaa.gov/gmd/aggi) data set (Hofmann et al, 2006). The AGGI data set
provides time series of equivalent CO2 concentrations in the atmosphere, which is calcu-
lated by taking the climate forcing associated with changes in all non-CO2 GHGs (mainly
methane and nitrous oxide) and converting them into equivalent changes in atmospheric
CO2 (in other words, the CO2 increase required to produce the same forcing). Carbon
dioxide, nitrous oxide and methane all have long atmospheric lifetimes (from tens to hun-
dreds of years) and are therefore considered well-mixed, meaning that their atmospheric
concentrations show little spatial variability. All surface stations are therefore assigned the
same 42-yr equivalent global CO2 time series.

4.2 Climate Model Data

We use data from nine of the GCMs that participated in the Coupled Model Intercom-
parison Project - Phase 5 (CMIP5, Taylor et al., 2012), see Table 1 for the models and
their salient features. We use data from their historical simulations, run from 1850 to 2005,
forced with changing GHG and aerosol concentrations (Lamarque et al., 2010). While some
of the models produced only one historical simulation, others produced ensembles of simu-
lations. The ensemble members differ only in their initializations, which are selected from
different times in a steady-state pre-industrial simulation by the same model. While the
different ensemble members are forced with the same data, their different initial conditions
yield slightly different climate trajectories, each considered to be equally likely outcomes.

Generally, each model’s realism is judged based on the extent to which the observed
climate trajectory lies within the ensemble envelope of trajectories. The purpose of running
ensemble simulations is to allow for an assessment of the statistical significance of any
apparent differences between different models or between model paths and observations.
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Table 1: Overview of salient GCM features: horizontal atmospheric model resolution (Res-
olution), global transient climate sensitivity (TCSG) and ratio of warming over ocean to

that over land, derived from the CMIP5 historical simulations (
∆TO,hist

∆TL,hist
).

Short Name Long name (Country) Resolution TCSG
∆TO,hist

∆TL,hist

BCC BCC-CSM1.1 (China) ∼2.8×2.8◦ 1.7K 0.56
BNU BNU-ESM (China) ∼2.8×2.8◦ 2.6K 0.74
CNRM CNRM-CM5 (France) ∼1×1◦ 2.1K 0.88
CSIRO CSIRO-Mk3.6.0 (Australia) ∼1.9×1.9◦ 1.8K 0.86
GFDL-2M GFDL-ESM2M (USA) ∼2.5×2◦ 1.3K 0.56
GFDL-2G GFDL-ESM2G (USA) ∼2.5×2◦ 1.1K 0.71
HadGEM2 HadGEM2-ES (UK) ∼1.9×1.3◦ 2.5K 1.03
INM INM-CM4 (Russia) ∼2×1.5◦ 1.3K 0.61
MPI MPI-ESM-MR (Germany) ∼1.9×1.9◦ 2.0K 0.64

The CMIP5 data archive contains output from a total of more than 30 different GCMs. For
the present analysis we have selected nine of these and grouped them into three categories
(High-TCS, Medium-TCS and Low-TCS) according to their model-reported TCSG values
(see Flato et al., 2013).10

4.3 Econometric Analysis of Observational and Climate Model Data

A primary empirical motivation for the present study was to determine whether economet-
ric analysis applied to panel observations as in Magnus et al. (2011) and Storelvmo et al.
(2016) could successfully determine TCSG estimates corresponding to those reported for
the GCMs. The empirical exercise applies the same analysis to the GCM data with GCM
simulation output being included only where observational data (as used in the observa-
tional study) is available. One measure of success in this exercise is the extent to which
the TCSG emerging from the econometric analysis agrees with the reported value for the
GCM in question – more specifically the extent to which the GCM reported TCSG values
lie within the 95% confidence interval calculated from observational data as implied by
Theorem 2 and indicated in (26) of Remark 8. Furthermore, differences between observed
and modeled sensitivities to radiation and equivalent CO2, as measured by differences in
the estimates of TCSL and the parameters of equations (1) and (2), can reveal possible

10The model-reported TCSG values were calculated numerically by running a GCM simulation in which
atmospheric CO2 was increased by 1% per year until doubling was reached (after 70 years). The TCSG

was then calculated as the global mean temperature difference between the last and the first decade of
simulation.
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Table 2: Mean, standard deviation, minimum and maximum for the annual change in
station-averaged temperature (upper table) and downwelling solar radiation at the surface
(lower table) from observations and for GCMs with high reported TCSG (Group A).

Temperature (K)
Mean St.dev. Min. Max.

Observations 0.021 0.239 -0.471 0.535
HadGEM2 r1 0.019 0.151 -0.224 0.308
HadGEM2 r2 0.010 0.190 -0.366 0.381
HadGEM2 r3 0.017 0.133 -0.309 0.356
HadGEM2 r4 0.015 0.162 -0.286 0.364
BNU 0.023 0.306 -0.780 0.636
CNRM 0.018 0.159 -0.372 0.495

Radiation (Wm−2)
Mean St.dev. Min. Max.

Observations -0.059 1.147 -2.595 2.394
HadGEM2 r1 -0.028 1.071 -1.983 2.459
HadGEM2 r2 0.001 1.273 -2.919 2.784
HadGEM2 r3 0.018 1.394 -3.609 3.553
HadGEM2 r4 -0.017 1.086 -3.567 2.281
BNU -0.010 1.528 -3.034 2.950
CNRM -0.023 1.027 -2.067 2.392

GCM model shortcomings with respect to policy-important parameters that may not be
so readily evident with standard procedures or simple graphical comparisons.

Tables 2, 3 and 4 report summary statistics for mean annual changes in temperature
and radiation for the three TCS categories (high, medium and low groupings). The mean
annual change in observed temperature is 0.021◦C, with an estimated standard deviation
of 0.239◦C. The observed mean change in temperature (0.021) is similar to the mean
change in the GCM simulations in most cases, which ranges from 0.009 (INM) to 0.023
(GFDL 2G). The standard deviations for the GCM simulations are broadly consistent
with the observed standard deviation, ranging from 0.126 (CSIRO r1) to 0.306 (BNU).
These descriptive figures indicate that the GCMs fit observed global average temperature
reasonably well although some GCMs tend above and others below observed temperature.
This finding is corroborated by the curves shown in Figure 2, which trace the simulated
and observed evolution in temperatures for the time period 1964 - 2005.

The mean annual change in the observed downward solar radiation is −0.059, with a
standard deviation of 1.147. As the radiation time series in Figure 3 shows, there is a
negative drift in radiation until the early nineties, when the drift shifts to become positive
with mild fluctuations. This observed pattern impacts the sample mean, as the annual
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Table 3: Mean, standard deviation, minimum and maximum for the annual change in
station-averaged temperature (upper table) and downwelling solar radiation at the surface
(lower table) from observations and for GCMs with medium reported TCSG (Group B).

Temperature (K)
Mean St.dev. Min. Max.

Observations 0.021 0.239 -0.471 0.535
CSIRO r1 0.011 0.137 -0.265 0.231
CSIRO r2 0.016 0.126 -0.217 0.349
CSIRO r3 0.014 0.127 -0.237 0.292
CSIRO r4 0.015 0.135 -0.357 0.302
MPI 0.025 0.151 -0.334 0.282
BCC r1 0.020 0.173 -0.546 0.323
BCC r2 0.025 0.191 -0.630 0.321
BCC r3 0.019 0.203 -0.513 0.453

Radiation (Wm−2)
Mean St.dev. Min. Max.

Observations -0.059 1.147 -2.595 2.394
CSIRO r1 0.012 0.855 -2.447 1.879
CSIRO r2 0.011 0.959 -2.267 2.112
CSIRO r3 -0.015 1.534 -2.715 3.759
CSIRO r4 0.012 1.233 -2.841 3.940
MPI -0.039 1.265 -2.479 2.038
BCC r1 0.042 1.108 -2.575 2.250
BCC r2 0.047 1.398 -2.121 4.704
BCC r3 0.027 1.405 -2.830 4.986
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Table 4: Mean, standard deviation, minimum and maximum for the annual change in
station-averaged temperature (upper table) and downwelling solar radiation at the surface
(lower table) from observations and for GCMs with low reported TCSG (Group C).

Temperature (K)
Mean St.dev. Min. Max.

Observations 0.021 0.239 -0.471 0.535
GFDL 2G 0.038 0.234 -0.737 0.405
GFDL 2M 0.018 0.164 -0.326 0.406
INM 0.009 0.119 -0.261 0.217

Radiation (Wm−2)
Mean St.dev. Min. Max.

Observations -0.059 1.147 -2.595 2.394
GFDL 2G -0.035 1.271 -3.522 2.509
GFDL 2M 0.014 1.491 -4.079 2.987
INM -0.019 1.035 -2.345 2.573

change moves from being mostly negative each year to mostly positive each year. The
effects even out upon averaging, but because the period of the negative trend is longer and
more persistent than the period of positive trend, the overall mean is negative.

For the GCM simulated radiation data, about half of the models actually produce a
positive mean annual change, and none of the models produce a negative trend of the
magnitude seen in the observations. MPI comes closest, with a mean annual change of
-0.039Wm−2 per year. This apparent shortcoming in the GCM simulations in reproducing
the observed pattern of radiation trend is confirmed by Figure 2, which shows that the
GCMs generally show little or no radiation trend for the time period in question. The
observed overall negative radiation trend, which has been attributed to changes in atmo-
spheric aerosol loading, was found in Storelvmo et al. (2016) to have caused a cooling
that “masked” ∼1/3 of the GHG warming for the time period in question. The lack of
radiation trend found in the subset of GCMs considered here, and more generally for the
entire CMIP5 archive in Storelvmo et al. (2018), therefore suggests that these models may
be underestimating the aerosol cooling effect. Without this bias, the GCMs would require
a higher sensitivity to equivalent CO2 in order to maintain a temperature trend in their
simulations consistent with observations. This finding appears important for the global
climate modeling community and will be examined further in a more extensive investiga-
tion of all simulations in the CMIP5 archive and eventually also in CMIP6 (Eyring et al.,
2016) in our future research.

We next turn to the estimated TCSL parameter. The TCSL parameter is a nonlinear
function of the panel system and energy balance parameters that is obtained as a cointe-
grating autoregressive solution of the system, as shown in Section 3. The TCSL parameter
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Table 5: Parameter estimates, standard errors, and 95% confidence intervals of Transient
Climate Sensitivity for land (TCSL) using observational and GCM simulation data (Group
A) by FM-OLS regression, and estimated and reported TCSG.

TCSL Parameter: γ3
1−β1−γ1 × ln(2)

Estimate St. Error 95% Confidence Interval Estimated (reported) TCSG

Observ. 2.8021 0.2254 (2.360,3.244) 2.05

BNU r1 2.7618 0.3011 (2.171,3.352) 2.25 (2.6)

CNRM r1 1.6361 0.3242 (1.001,2.272) 1.51 (2.1)

HadGEM2 r1 2.5308 0.4398 (1.668,3.392) 2.58 (2.5)

HadGEM2 r2 1.6232 0.3739 (0.890,2.356) 1.65 (2.5)

HadGEM2 r3 1.5239 0.1952 (1.141,1.906) 1.55 (2.5)

HadGEM2 r4 1.0874 0.4837 (0.139,2.035) 1.11 (2.5)

Table 6: Parameter estimates, standard errors, and 95% confidence intervals of Transient
Climate Sensitivity (TCS) using observational and GCM simulation data (Group B) by
FM-OLS regression, and estimated and reported TCSG.

TCSL Parameter: γ3
1−β1−γ1 × ln(2)

Estimate St. Error 95% Confidence Interval Estimated (reported) TCSG

Observ. 2.8021 0.2254 (2.360,3.244) 2.05

BCC r1 1.9200 0.2771 (1.376,2.463) 1.32 (1.7)

BCC r2 1.9823 0.1900 (1.609,2.354) 1.37 (1.7)

BCC r3 1.8932 0.4065 (1.096,2.690) 1.30 (1.7)

CSIRO r1 1.4328 0.3066 (0.831,2.033) 1.30 (1.8)

CSIRO r2 1.3619 0.3551 (0.665,2.057) 1.23 (1.8)

CSIRO r3 2.2217 0.2559 (1.720,2.723) 2.01 (1.8)

CSIRO r4 1.5137 0.2256 (1.072,1.956) 1.37 (1.8)

MPI r1 2.1539 0.4777 (1.216,3.089) 1.61 (2.0)
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Table 7: Parameter estimates, standard errors, and 95% confidence intervals of Transient
Climate Sensitivity for land (TCSL) using observational and GCM simulation data (Group
C) by FM-OLS regression, and estimated and reported TCSG.

TCSL Parameter: γ3
1−β1−γ1 × ln(2)

Estimate St. Error 95% Confidence Interval Estimated (reported) TCSG

Observ. 2.8021 0.2254 (2.360,3.244) 2.05

GFDL2G 2.7110 0.6325 (1.471,3.950) 2.16 (1.1)

GFDL2M 1.8461 0.3465 (1.166,2.525) 1.28 (1.3)

INM r1 0.5792 0.3377 (-0.082,1.241) 0.58 (1.3)

is ln(2) times the linear coefficient of the ln(CO2t) regressor in this cointegrating equation.
The linear and stochastic trends in ln(CO2t) ensure a strong signal from this regressor that
reduces the standard error of the TCSL estimate and narrows the confidence intervals for
both the observational data and the GCM output data, as implied by Theorem 2(ii) and
the form of (26).

Tables 5-7 report the empirical findings for FM-OLS estimates of the TCSL parameter
obtained from the observational data, the observational TCSG values and the observational
and reported TCSG values from GCM simulations that fall in the High-TCS, Medium-TCS
and Low-TCS categories, respectively. Note that because we only have data over land,
we convert to a global estimate (TCSG) by following the procedure of Storelvmo et al.
(2016), but here use an observed ratio of ocean to land warming of 0.62 (see Appendix
C for details). This ratio is an average based on four observational data sets of land and
ocean warming over the past century, as reported in Hartmann et al. (2013). Using this
ratio yields an observationally estimated TCSG value of 2.05K with a corresponding 95%
confidence interval (1.73, 2.37). This estimated TCSG value is remarkably similar to the
2.0K estimate of Storelvmo et al. (2016), despite the many revisions to the estimation
framework described above, in addition to changes in the length and station-width of
the data record and the use of machine learning to fill gaps in the observations. The
observational estimate is also consistent with the most sensitive models among the latest
generation of GCMs (Flato et al., 2013) and falls well within, but in the upper end of, the
range of TCSG estimates compiled in a recent comprehensive review of all published TCSG
estimates available (Knutti et al., 2017). Similar conversions are necessary to estimate
TCSG values for the GCMs. The ratio of land to ocean warming for each of the models
is based on their respective historical simulations for the time period 1900 to 2000. The
resulting values are listed in Table 1. Both for the observations and the GCMs, there
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is uncertainty associated with the ratio of ocean to land warming, which we take into
account by adding a generous error of +/- 0.05 to the ratio (see Appendix C for the exact
procedure). In Figure 4 we show TCSG estimates for the observations and all nine GCMs
(and their respective ensemble members when relevant), along with the reported TCSG
estimates from the GCMs. Also shown for the observational estimates are error bars that
here represent the 95% confidence interval and the added uncertainty due to the ratio of
ocean to land warming.

For 7 out of 9 GCMs the reported TCS values lie within the estimated error bars, which
is encouraging. The two models for which there is disagreement between the reported and
estimated TCS values are HadGEM2 and INM. The estimated TCS value is in excellent
agreement with the reported value (2.6 vs. 2.5K) for one of the HadGEM2 ensemble mem-
bers (r1). Accounting for the uncertainty in the land/ocean warming ratio, which widens
the confidence interval slightly, the estimated TCS for HadGEM2 r2 is also just inside the
uncertainty bounds. But the reported TCS values are outside of the confidence intervals
for the other two ensemble members (r3 and r4). This is a puzzling result. Different
ensemble members should differ only in their internal variability as a consequence of their
slightly different initial conditions, but otherwise should be expected to have similar long-
term trends. As evident from Table 2 and Figures 2 and 3, the station-averaged annual
mean changes and trends appear different for the four HadGEM2 ensemble members. Per-
haps not surprisingly, r1 with a strong positive temperature trend and a relatively strong
negative radiation trend, yields a high estimated TCS value in the econometric analysis.
In contrast, the other three HadGEM2 ensemble members yield much too weak station-
averaged temperature trends, and little or no radiation trend. It is not surprising that
simulation data with this combination of temperature and radiation trends are interpreted
econometrically as being generated by a model with low TCS. It is possible that the lim-
ited number of stations and the relatively short observational time period available for this
study causes ensemble members from the same model to appear more different than when
seen through a global-mean and longer-term lens. Testing how sensitive the estimated TCS
values are to additional data in both time and space will be an interesting extension to this
study. Finally, although the estimated TCSG value for INM is the lowest of all, consistent
with its reported TCS value being the lowest one, the estimated confidence interval does
not include the reported value. It is generally noteworthy that the estimated values are
lower than the reported ones in 15 of the 17 analysed simulations. This outcome could be
the result of the method by which the reported estimate is computed. Specifically, there is
now considerable evidence that climate feedbacks are state dependent (e.g., Armour, 2017),
and that the TCS inferred from historical simulations may consistently be lower than that
evaluated from a simulation that is run to a state with doubled atmospheric CO2. It is
therefore possible that the observational TCS estimate reported here is a conservative one,
but this warrants more detailed study.
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5 Overview of Methods and Computation

In contrast to Storelvmo et al (2016), which employed dynamic panel methods to estimate
the parameters of the spatial model (1), this paper uses a time series approach to estimation
and confidence interval construction for the transient climate sensitivity parameter TCS.
By its nature TCS is a global climate parameter. The analysis in Section 2 shows how
TCS arises as one of the coefficients in an aggregate balancing relationship by solving the
dynamic equation (1) for local temperature and then spatially aggregating. The resulting
global equation relates the three key variables of the study

(
T̄t, R̄t, ln(CO2,t)

)
in the linear

relation
T̄t = d0 + d1R̄t + d2 ln(CO2,t) + ζd,t =: d0 + d′xt + ζd,t, (28)

from which the TCS parameter is obtained by a simple scaling of the coefficient d2 as
TCS = d2 × ln(2).

Equation (28) defines a global long run relationship among the observable aggregate
variables, linking temperature T̄t to downwelling radiation R̄t and CO2,t, subject to an
unobserved disturbance ζd,t. The relationship characterizes the aggregate impact of CO2,t

with its deterministic and stochastic trend properties on global temperature T̄t, while
controlling for the effects of downwelling radiation R̄t. With this formulation based on an
underlying model that respects spatial behavior and trend characteristics in the data, the
time series approach attempts to accommodate the main factors involved in determining
the transient effects (at the time of doubling) of CO2,t on temperature.

Practical implementation involves the use of data – either empirical observation or
GCM simulation data – to estimate equation (28) by regression. Simple least squares
methods may be used. But due to the trending nature of the data, the joint dependence of
temperature and the explanatory variables, and serial dependence in both the data and the
equation errors, some modifications to least squares are needed to achieve good asymptotic
properties (as n → ∞) that validate simple confidence interval construction for estimates
of TCS. The method used in the asymptotic development here to validate inference is fully
modified least squares (FM-OLS) but another method that is commonly used in applied
econometric work is dynamic OLS (DOLS). These two methods make simple adjustments
to least squares by means of corrections for potential bias and serial correlation. Both
methods are available in standard software packages and matrix programming language
routines11; and both methods are used in the reported empirical application.

As shown in Section 3.2, when equation (28) is estimated by FM-OLS or DOLS, the

resulting estimate of TCS is T̂CS = d̂+
2 × ln(2), where d̂+

2 is the estimate of the regression

coefficient d̂2. An asymptotically valid 95% confidence interval for TCS may then be

11The R package ‘cointReg’ has routines for both FM-OLS and DOLS, as well as other methods. See
https://cran.r-project.org/web/packages/cointReg/.
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constructed as follows

T̂CS ± 1.96× ln(2)

{
ω̂2
ζd·x

(
X̃ ′cQrX̃c

)−1
}1/2

. (29)

In this expression, the estimated variance (within the braces in (29)) relies on two quanti-
ties. The first, ω̂ζd·x, is an estimate of the conditional variance of the equation error ζd,t in
(28) which takes into account long run effects over time (notably the serial dependence in
ζd,t) and the joint dependence (endogeneity) of the regressors

(
R̄t, CO2,t

)
with ζd,t. The

second quantity, X̃ ′cQrX̃c, is the sample second moment of the regressor ln(CO2,t) adjusted
for the presence of the intercept and the regressor R̄t in the fitted equation. These quanti-
ties are now standard expressions and extend the usual formula for the estimated variance
of a least squares regression coefficient by taking account of the special features present
in this application: the nonstationarity in the data, the endogeneity of the regressors, and
the serial dependence in the errors.

Figure 5 provides a visual roadmap of the sequence of operations involved in the transi-
tion from the dynamic panel model through the aggregation process to the fitted regression
equation and the computation of the TCS estimate and the 95% confidence interval. The
implementation is the same for both the observed data and the simulated GCM data.

6 Conclusion

The research reported here had three goals: (i) construction of an econometric framework
and inferential tools for studying Earth’s climate sensitivity to atmospheric greenhouse
gases, allowing for empirically acknowledged local aerosol pollution and global forcing vari-
ables that embody stochastic trends; (ii) development of asymptotic theory required to
validate the use of these econometric tools in practical work on climate; and (iii) applica-
tion of this modeling and inferential machinery to both observational and global climate
model simulated data. The empirical findings reveal that nine leading global climate mod-
els (some with multiple ensemble members) generally do reproduce actual temperature
trajectories over nearly half a century to 2005, when averaged across the approximately
1400 surface stations considered in this study. Our analysis further revealed that even
though simulated station-averaged temperature trends are broadly consistent with obser-
vations, the negative trend in incoming solar radiation over the same stations and time
period was manifestly underestimated in the GCM simulation data. The analysis supports
the notion that this could be explained by an underestimation of aerosol cooling in the
GCMs, which would allow the GCMs to reproduce the observed temperature record with
an incorrect TCS.

The present application provides an observational-data-based confidence interval for
Earth’s transient climate sensitivity to greenhouse gas emissions, and a best observational
TCS estimate of 2.05K using aggregate time series methodology. The same method was
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applied to GCM output from the CMIP5 archive, and for some models produced estimates
that lie at the margin or outside of the 95% confidence interval for TCS, pointing to some
potential misspecifications in these models. The fact that the TCS values reported for the
GCMs generally lie within the 95% TCS confidence interval estimated based on the model
output instills confidence in the ability of the econometric framework to correctly diagnose
TCS, though a few notable exceptions will require follow-up research. A more extensive
investigation of this matter will be undertaken in a subsequent study that extends this
analysis to the full archive of climate models and provides estimates of the full system
parameters as well as TCS.

In modeling climate data, theory restrictions that incorporate global energy forces play
a key role in empirical modeling. As shown in the present study, the balancing forces
among trending data affect the asymptotic theory of estimation and rates of convergence,
but standard methods of inference may still be validated under regularity conditions that
allow for weak temporal dependence and cross section dependence in the model innova-
tions. Extensions of the results given here are possible to more general multivariate panels
or temporal-spatial systems that involve transient responses to nonstationary data in con-
junction with cointegrating relations that prevail among spatial aggregates and station-level
variables. The asymptotic results indicate that, with appropriate methods and regularity
conditions, inference from spatially aggregated climate data is possible that allows for sig-
nal degeneracies, trend effects, and co-movement in the data at both the transient and
aggregate levels.
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Figure 2: Station-averaged temperature change (in Kelvin) for observations and GCMs.
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Figure 3: Station-averaged radiation change (in Wm−2) for observations and GCMs.
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7 Appendix A

7.1 The TCS Formula

The long-run equilibrium temperature is assumed to be such that in global equilibrium
T̄t = T̄t−1. Aggregating the transient relation (1) and using the energy balance equation
(2) gives

T̄t+1 = ᾱ+ β1 + β2R̄t + λt + op (1)

= ᾱ+ β1 + β2R̄t + γ0 + γ1 + γ2Rt + γ3 ln(CO2,t) + op (1) , (30)

since N−1
∑N

i=1 uit+1 →p 0 under Assumption A(i). Solving (30) leads to the equilibrium
solution

T̄t =
(β2 + γ2) R̄t + γ3 ln(CO2,t) + ᾱ+ γ0

1− β1 − γ1
+ op (1) ,

and taking differentials gives, up to an op (1) error,

dT̄ =
β2 + γ2

1− β1 − γ1
dR̄+

γ3d ln(CO2)

1− β1 − γ1
, (31)

which measures a shift in global steady state temperatures, corresponding to equation (9)
in Magnus et al. (2011).

Transient climate sensitivity, TCS, is defined as the expected global temperature after
a doubling of CO2, and is therefore computed using (31) by

TCS =
β2 + γ2

1− β1 − γ1
∆R̄+

γ3∆ ln(CO2)

1− β1 − γ1

where ∆ ln(CO2) = lnCO2,t+k − lnCO2,t = ln
CO2,t+k

CO2,t
, and ∆R̄ = R̄t+k − R̄t. Year t + k

is when a doubling of CO2 happens. If radiation is held constant, then ∆R̄ = 0, and
∆ ln(CO2) = ln

CO2,t+k

CO2,t
= ln

2×CO2,t

CO2,t
= ln 2, so that

TCS =
γ3

1− β1 − γ1
× ln(2), (32)

giving (4).
In a similar way spatial aggregation of model (3) leads to

T̄t+1 = ᾱ+ β1 + β2R̄t + φ̄ {γ0 + γ1 + γ2Rt + γ3 ln(CO2,t)}+ op (1) ,

where φ̄ = N−1
∑N

i=1 φi. Then

TCS =
γ̄3

1− β1 − γ̄1
× ln(2), (33)

where γ̄i = φ̄γi for {i = 0, 1, 2, 3}.
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7.2 Proof of Theorem 1

Setting θ1 = β1 + γ1 and θ2 = β2 + γ2, write the aggregate relation (11) as

T̄t+1 = γ0 + θ1 + θ2R̄t + γ3 ln(CO2,t) + ū·t+1. (34)

The stochastic trend representations of R̄t and ln(CO2,t) follow directly from (9) and (6),
giving [

R̄t
ln(CO2,t)

]
=

[
δr0 + δ′rUgt +Op

(√
n
N

)
δc0 + δc1t+ δ′cUgt + uct

]
, Ugt =

t∑
s=1

ugs. (35)

To establish the stated representation, we proceed as follows. Solving (34) for T̄t+1 in terms
of the past history of the inputs

(
R̄t, ln(CO2,t)

)
leads to the representation

T̄t+1 = γ0

t∑
j=0

θj1 + θ2

t∑
j=0

θj1R̄t−j + γ3

t∑
j=0

θj1 ln(CO2,t−j) + θt+1
1 T0 +

t∑
j=0

θj1ū·t+1

=
γ0

1− θ1
+ θ2

t∑
j=0

θj1R̄t−j + γ3

t∑
j=0

θj1 ln(CO2,t−j) +Op

(
1√
N

+ |θ1|t
)
, (36)

since γ0
∑t

j=0 θ
j
1 = γ0

1−θ1 − γ0
θt+1
1

1−θ1 , T 0 = Op (1) , and

E

 t∑
j=0

θj1ū·t+1

2

=
σ2
u

N2

N∑
i=1

t∑
j=0

θ2
1 =

σ2
u

N

1− θ2(t+1)
1

1− θ2
1

= O

(
1

N

)
.

Next substitute the stochastic trend representations of Rt and ln(CO2,t) from (35) into
(36), giving

T̄t+1 =
γ0

1− θ1
+ θ2

t∑
j=0

θj1

{
δr0 + δ′rUgt−j +Op

(√
n

N

)}

+γ3

t∑
j=0

θj1
{
δc0 + δc1t+ δ′cUgt−j + uct−j

}
+Op

(
1√
N

+ |θ1|t
)

=
γ0 + θ2δr0 + γ3δc0

1− θ1
+

t∑
j=0

θj1 [θ2δr + γ3δc]
′ Ugt−j + γ3δc1

t∑
j=0

θj1 (t− j)

+γ3

t∑
j=0

θj1uct−j +Op

(
1√
N

+

√
n

N
+ |θ1|t

)
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=
γ0 + θ2δr0 + γ3δc0 − θ1

1−θ1
1− θ1

+
γ3δc1
1− θ1

t+
[θ2δr + γ3δc]

′ Ugt
1− θ1

+ uTt

+Op

(
1√
N

+

√
n

N
+ t |θ1|t

)
, (37)

where uTt is defined below in (48). The final line (37) is now demonstrated in several steps.
Observe first that

t∑
j=0

θj1 (t− j) = t
1− θt+1

1

1− θ1
−

t∑
j=0

θj1j =
t

1− θ1
+
θt+1

1 (1− θ1t)

(1− θ1)2 − θ1

(1− θ1)2

=
t

1− θ1
− θ1

(1− θ1)2 +O
(
t |θ1|t

)
,

and

t∑
j=0

θj1Ugt−j =

t∑
j=0

θj1

t−j∑
s=1

ugs =

t∑
s=1

ugs

t−s∑
j=0

θj1 =

t∑
s=1

ugs
1− θt−s+1

1

1− θ1

=
1

1− θ1

t∑
s=1

ugs −
θ1

1− θ1

t∑
s=1

ugsθ
t−s
1 =

1

1− θ1

t∑
s=1

ugs −
θ1

1− θ1

t−1∑
k=0

ugt−kθ
k
1

=
1

1− θ1

t∑
s=1

ugs −
θ1

1− θ1

∞∑
k=0

ugt−kθ
k
1 +Op

(
|θ1|t

)
, (38)

since
∑∞

k=t θ
k+1
1 ugt−k = θt+1

1

∑∞
j=0 θ

j
1u−j = Op

(
|θ1|t

)
. Next, observe that

t∑
j=0

θj1Ugt−j =

t∑
j=0

θj1

t−j∑
s=1

ugs =

t∑
s=1

ugs

t−s∑
j=0

θj1 =

t∑
s=1

ugs
1− θt−s+1

1

1− θ1

=
1

1− θ1

t∑
s=1

ugs −
1

1− θ1

t∑
s=1

ugsθ
t−s+1
1

=
1

1− θ1

t∑
s=1

ugs −
θ1

1− θ1

t−1∑
k=0

ugt−kθ
k
1

=
1

1− θ1
Ugt −

θ1

1− θ1

∞∑
k=0

ugt−kθ
k
1 +Op

(
|θ1|t

)
, (39)

since
t−1∑
k=t

ugt−kθ
k+1
1 = θt+1

1

∞∑
j=0

u−jθ
j
1 = Op

(
|θ1|t

)
. (40)
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It follows that

t∑
j=0

θj1 [θ2δr + γ3δc]
′ Ugt−j =

[θ2δr + γ3δc]
′ Ugt

1− θ1
+ vt +Op

(
|θ1|t

)
,

where

vt = − θ1

1− θ1

∞∑
k=0

θk1 [θ2δr + γ3δc]
′ ugt−k, (41)

thereby demonstrating that

T̄t+1 =
γ0 + θ2δr0 + γ3δc0 − θ1

1−θ1
1− θ1

+
γ3

1− θ1
t+

[θ2δr + γ3δc]
′ Ugt

1− θ1
+ vt

+γ3

t∑
j=0

θjuct−j +Op

(
1√
N

+

√
n

N
+ t |θ1|t

)
= δ#

T0 + δT1t+ δ′TUgt + u#
Tt, (42)

with

δ#
T0 =

γ0 + θ2δr0 + γ3δc0 − θ1
1−θ1

1− θ1
,

δT1 =
γ3δc1
1− θ1

, δT =
θ2δr + γ3δc

1− θ1
, (43)

u#
Tt = vt + γ3

∞∑
j=0

θjuct−j +Op

(
1√
N

+

√
n

N
+ t |θ1|t

)
,

so that u#
Tt is asymptotically stationary. This establishes the equation (37) above. Then

T̄t = δ#
T0 + δT1 (t− 1) + δ′TUgt−1 + u#

Tt−1 = δ#
T0 + δT1t+ δ′TUgt + u#

Tt−1 −
(
δT1 + δ′Tugt

)
= δT0 + δT1t+ δ′TUgt + u+

Tt,

where

δT0 = δ#
T0 − δT1 =

γ0 + θ2δr0 + γ3δc0 − θ1
1−θ1

1− θ1
− δT1, (44)

and

u+
Tt = u#

Tt−1− δ
′
Tugt = vt−1 + γ3

∞∑
j=0

θj1uct−1−j − δ′Tugt +Op

(
1√
N

+

√
n

N
+ t |θ1|t

)
. (45)

Hence
T̄t = δT0 + δT1t+ δ′TUgt + u+

Tt, (46)
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with

u+
Tt = uTt +Op

(
1√
N

+

√
n

N
+ t |θ1|t

)
, (47)

where

uTt = vt−1 + γ3

∞∑
j=0

θj1uct−1−j − δ′Tugt (48)

is stationary and u+
Tt is asymptotically stationary, giving the stated result for T̄t. Combining

(46) with (35) we have the stated system for Wt. �

7.3 Proof of Theorem 2

The proof follows standard lines of derivation for FM-OLS asymptotics with possible de-
generacies in the signal matrix of the regressors (Phillips, 1995). The present derivation
deals with the additional complexity of a deterministic trend in one of the regressors as
well as stochastic trends and intercepts in the equation and the effects of cross section
aggregration. It is convenient to write the model (22) in the form

yt = d0 + d′xt + ζd,t, (49)

and note that by definition of xt

xt =

[
δr0 + δ′rUgt +Op

(√
n
N

)
δc0 + δc1t+ δ′cUgt + uct

]
=: δx0 + δx1t+DxUgt + uxt. (50)

with δ′x0 = (δr0, δc0) , δ′x1 = (0, δc1) , Dx = [δr, δc]
′ , and uxt =

(
Op
(√

n
N

)
, uct

)′
. Then,

denoting demeaned observations using a tilde superscript and first differencing by the
(unaffixed) operator ∆, we have

x̃t = δx1t̃+DxŨgt + ũxt, ∆̃xt = Dxũgt + ∆̃uxt (51)

The FM-OLS estimator of the coefficient vector d in (22) has the form

d̂+ =
(
X̃ ′X̃

)−1 (
X̃ ′̂̃y+

t − n∆̂+
xζ

)
(52)

where X̃ is the n×2 matrix of demeaned observations X̃t = Xt− X̄ and ̂̃y+
t is the vector of

observations of the endogeneity corrected demeaned observations of the endogenous vari-

able, i.e., ̂̃y+
t = ỹt−Ω̂ζxΩ̂−1

xx ∆̃xt, where
(

Ω̂ζx, Ω̂xx

)
are consistent estimators of the long run

covariance matrices (Ωζx,Ωxx) =
(∑∞

h=−∞ E
(
ζd0u

′
ghDx

)
,
∑∞

h=−∞DxE
(
ug0u

′
gh

)
D′x

)
.Note

that even in the simple case of iid error components as in Assumptions A(i) and A(iv), these
long run covariance matrices are needed because the error process ζt = uTt (1− θ1)−γ3uct+
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op (1) , and hence ζdt = 1
1−θ1 ζt, depend on the full history of the shocks (uct, ugt) since, by

definition in (14), uTt = γ3
∑∞

j=0 θ
j
1uct−1−j − θ1

1−θ1
∑∞

k=0 θ
k
1 [θ2δr + γ3δc]

′ ugt−1−k − δ′Tugt.
The serial correlation correction in (52) depends on ∆̂+

xζ := ∆̂x0 − ∆̂xxΩ̂−1
xx Ω̂xζ , where(

∆̂x0, ∆̂xx

)
are consistent estimates of the one-sided long run covariance matrices

(∆x0,∆xx) =

( ∞∑
h=0

DxE (ug,0ζd,h) ,

∞∑
h=0

DxE
(
ug,0u

′
g,h

)
D′x

)
.

These consistent estimates are obtained in the usual manner by lag kernel methods applied
to sample covariances of the residuals from a first stage consistent cointegrating regression
on (49) by least squares.

As in the usual analysis of FM-OLS regression (Phillips and Hansen, 1990; Phillips,
1995), we construct the following augmented regression equation from (49)

yt = d0 + d′xt + Ωζx,Ω
−1
xx∆xt + ζd·x,t, with ζd·x,t = ζd,t − Ωζx,Ω

−1
xx∆xt, (53)

∆xt = δx1 +Dxugt + ∆uxt.

Upon demeaning (53) and setting Eζx = ΩζxΩ−1
xx we have

ỹt = d′x̃t + Eζx∆̃xt + ζ̃d·x,t

and we define the endogeneity corrected ỹt as ỹ+
t = ỹt −Eζx∆̃xt so that ỹ+

t = d′x̃t + ζ̃d·x,t.
Substituting consistent estimates of the long run matrices giveŝ̃y+

t = ỹt − Êζx∆̃xt = ỹ+
t −

(
Êζx − Eζx

)
∆̃xt,

which we write in observation matrix form as ̂̃y+ = ỹ+− ∆̃X
(
Êζx − Eζx

)′
= X̃d+ ζ̃d·x,t−

∆̃X
(
Êζx − Eζx

)′
. It follows that

d̂+ =
(
X̃ ′X̃

)−1 (
X̃ ′̂̃y+ − n∆̂+

xζ

)
=
(
X̃ ′X̃

)−1
(
X̃ ′ỹ+ − n∆̂+

xζ − ∆̃X
(
Êζx − Eζx

)′)
= d+

(
X̃ ′X̃

)−1
{
X̃ ′ζ̃d·x − n∆̂+

xζ − X̃
′∆̃X

(
Êζx − Eζx

)′}
= d+

(
X̃ ′X̃

)−1
{
X̃ ′ζ̃d·x − n∆+

xζ + n
(

∆+
xζ − ∆̂+

xζ

)
− X̃ ′∆̃X

(
Êζx − Eζx

)′}
. (54)

The signal moment matrix X̃ ′X̃ has more complex asymptotics than usual in view of
the presence of both a linear trend and stochastic trend in x̃t, as evident in the definition
(50) and (51). Using Dx = [δr, δc]

′ in its partitioned form we have

x̃t =

[
δ′rŨgt + ũxt

δc1t̃+ δ′cŨgt + ũxt

]
=:

[
x̃rt
x̃ct

]
, (55)
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which separates the directions of (dominant) stochastic and deterministic trends and shows
that these correspond exactly to those in x̃t because R̄t does not have a deterministic
trend and δ′x1 = (0, δc1). Denote Ũg (r) = Ug (r) −

∫ 1
0 Ug (s) ds, UR (r) = δ′rUg (r) , and

ŨR (r) = δ′rŨg (r) . Using the partitioned notation of (55) in observation matrix form and

projection matrix notation Qa = I− X̃a

(
X̃ ′aX̃a

)−1
X̃ ′a for a = {r, c} , we have by standard

manipulations with moment matrices of deterministic and stochastic trends (Phillips, 1988;
Park and Phillips, 1988, 1989) that

n2
(
X̃ ′X̃

)−1
= n2

(
X̃ ′rX̃r X̃ ′rX̃c

X̃ ′cX̃r X̃ ′cX̃c

)−1

= n2

 (
X̃ ′rQcX̃r

)−1
−
(
X̃ ′rX̃r

)−1
X̃ ′rX̃c

(
X̃ ′cQrX̃c

)−1

−
(
X̃ ′cQrX̃c

)−1
X̃ ′cX̃r

(
X̃ ′rX̃r

)−1 (
X̃ ′cQrX̃c

)−1

(56)

=


(
X̃′rQcX̃r

n2

)−1
− 1
n1/2

(
X̃′rX̃r

n2

)−1
X̃′rX̃c

n5/2

(
X̃′cQrX̃c

n3

)−1

− 1
n1/2

(
X̃′rQcX̃r

n3

)−1
X̃′cX̃r

n5/2

(
X̃′rX̃r

n2

)−1
n2

n3

(
X̃′cQrX̃c

n3

)−1


⇒

(
δ′r
∫ 1

0 Ũg (r) Ũg (r)′ drδr 0

0 0

)
=

( ∫ 1
0 ŨR (r)2 dr 0

0 0

)
. (57)

Here, Ũg (r) = Ũg (r) −
(∫ 1

0 Ũg (s) r̃ (s) ds
)(∫ 1

0 r̃ (s)2 ds
)
r̃ (r) is the L2 [0, 1] projection

residual of the functon Ũg (r) on the space spanned by r̃ (p) = p−
∫ 1

0 sds. Note also that

n−3X̃ ′X̃ →p

(
0 0

0 δ2
c1

∫ 1
0 r̃

2dr

)
=

(
0 0

0
δ2c1
12

)
,

and

n−3X̃ ′cQrX̃c =
1

n3

(
X̃ ′cX̃c

n3

)
−

(
X̃ ′cX̃r

n5/2

)(
X̃ ′rX̃r

n2

)−1(
X̃ ′rX̃c

n5/2

)
 δ2

c1

∫ 1

0
r̃x (p)2 dp, (58)

where r̃x (p) = p̃−
(∫ 1

0 sŨR (s) ds
)(∫ 1

0 ŨR (s)2 ds
)−1

ŨR (p) is the L2 [0, 1] projection resid-

ual of the functon p̃ on the space spanned by the function ŨR (s) .
Next note that

(0, 1)
(
X̃ ′X̃

)−1
= (0, 1)

 (
X̃ ′rQcX̃r

)−1
−
(
X̃ ′rX̃r

)−1
X̃ ′rX̃c

(
X̃ ′cQrX̃c

)−1

−
(
X̃ ′cQrX̃c

)−1
X̃ ′cX̃r

(
X̃ ′rX̃r

)−1 (
X̃ ′cQrX̃c

)−1


=

(
−
(
X̃ ′cQrX̃c

)−1
X̃ ′cX̃r

(
X̃ ′rX̃r

)−1
,
(
X̃ ′cQrX̃c

)−1
)
.
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The scaled and centred estimator of the coefficient d2 of ln (CO2t) in the cointegrating
regression is

n3/2
(
d̂+

2 − d2

)
= n3/2 (0, 1)

(
d̂+ − d

)
= n3/2

[
−
(
X̃ ′cQrX̃c

)−1
X̃ ′cX̃r

(
X̃ ′rX̃r

)−1
,
(
X̃ ′cQrX̃c

)−1
]

×

 X̃ ′r ζ̃d.x − n∆+
xrζ

+ n
(

∆+
xrζ
− ∆̂+

xrζ

)
− X̃ ′r∆̃X

(
Êζx − Eζx

)′
X̃ ′cζ̃d.x − n∆+

xcζ
+ n

(
∆+
xcζ
− ∆̂+

xcζ

)
− X̃ ′c∆̃X

(
Êζx − Eζx

)′


=

−(X̃ ′cQrX̃c

n3

)−1(
X̃ ′cX̃r

n5/2

)(
X̃ ′rX̃r

n2

)−1

,

(
X̃ ′cQrX̃c

n3

)−1


×


1
n

{
X̃ ′r ζ̃d.x − n∆+

xrζ
+ n

(
∆+
xrζ
− ∆̂+

xrζ

)
− X̃ ′r∆̃X

(
Êζx − Eζx

)′}
1

n3/2

{
X̃ ′cζ̃d.x − n∆+

xcζ
+ n

(
∆+
xcζ
− ∆̂+

xcζ

)
− X̃ ′c∆̃X

(
Êζx − Eζx

)′}


 

[
−
(∫ 1

0
r̃x (p)2 dp

)−1(∫ 1

0
r̃ (p) ŨR (p) dp

)(∫ 1

0
ŨR (p)2 dp

)−1

,

(∫ 1

0
r̃x (p)2 dp

)−1
]

×

[ ∫ 1
0 ŨR (p) dBζ·x (p)∫ 1
0 r̃ (p) dBζ·x (p)

]

=

(∫ 1

0
r̃x (p)2 dp

)−1(∫ 1

0
r̃ (p) dBζ·x

)
−
(∫ 1

0
r̃x (p)2 dp

)−1(∫ 1

0
r̃ (p) ŨR (p)′ dp

)
×
(∫ 1

0
ŨR (p)2 dp

)−1 ∫ 1

0
ŨR (p) dBζ·x (p)

=

(∫ 1

0
r̃x (p)2 dp

)−1{∫ 1

0
r̃x (p) dBζ·x

}
, with r̃x (p) = r̃ (p)−

(∫ 1

0
r̃ŨR

)(∫ 1

0
Ũ2
R

)−1

ŨR (p)

= d MN
(

0, ω2
ζd·x

(∫ 1

0
r̃X (p)2 dp

))
,

giving the result as stated. In the above derivation the stochastic integral representation
follows from standard limit theory on weak convergence to stochastic integrals (Phillips,
1988; Ibragimov and Phillips, 2008).
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For coefficient d1, we obtain in a similar manner

n
(
d̂+

1 − d1

)
= n (1, 0)

(
d̂+ − d

)
= n

[(
X̃ ′rQcX̃r

)−1
,−
(
X̃ ′rX̃r

)−1
X̃ ′rX̃c

(
X̃ ′cQrX̃c

)−1
]

×

 X̃ ′r ζ̃d.x − n∆+
xrζ

+ n
(

∆+
xrζ
− ∆̂+

xrζ

)
− X̃ ′r∆̃X

(
Êζx − Eζx

)′
X̃ ′cζ̃d.x − n∆+

xcζ
+ n

(
∆+
xcζ
− ∆̂+

xcζ

)
− X̃ ′c∆̃X

(
Êζx − Eζx

)′


=

(X̃ ′rQcX̃r

n2

)−1

,−

(
X̃ ′rX̃r

n2

)−1(
X̃ ′rX̃c

n5/2

)(
X̃ ′cQrX̃c

n3

)−1


×


1
n

{
X̃ ′r ζ̃d.x − n∆+

xrζ
+ n

(
∆+
xrζ
− ∆̂+

xrζ

)
− X̃ ′r∆̃X

(
Êζx − Eζx

)′}
1

n3/2

{
X̃ ′cζ̃d.x − n∆+

xcζ
+ n

(
∆+
xcζ
− ∆̂+

xcζ

)
− X̃ ′c∆̃X

(
Êζx − Eζx

)′}


 

[(∫ 1

0
ŨR (r)2 dp

)−1

,−
(∫ 1

0
ŨR (p)2 dp

)−1(∫ 1

0
ŨR (p) r̃ (p) dp

)(∫ 1

0
r̃ (p)2 dp

)−1
]

×

[ ∫ 1
0 ŨR (p) dBζ·x (p)∫ 1
0 r̃ (p) dBζ·x (p)

]

=

(∫ 1

0
ŨR (p)2 dp

)−1{∫ 1

0
ŨR (p) dBζ·x

}
, with ŨR (p) = ŨR (p)−

(∫ 1

0
ŨRr̃

)(∫ 1

0
r̃2

)−1

r̃ (p)

= d MN

(
0, ω2

ζd.x

(∫ 1

0
ŨR (p)2 dp

)−1
)
,

as stated. �
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8 Appendix B: Additional Tables

Table B1: Residual Based Tests for Cointegration

Statistic 10% Critical Value 1% Critical Value

Variables Rt and ln(CO2,t)
C ADF -0.2279 -3.0890 -4.0245

Variables T̄t and ln(CO2,t)
C ADF -2.4897 -3.0890 -4.0245

Variables T̄t, Rt and ln(CO2,t)
C ADF -5.0238∗∗∗ -3.5292 -4.4969

Notes: Phillips and Ouliaris (1990) residual based augmented
Dickey-Fuller (C ADF) tests.

Table B2: Estimates of Transient Climate Sensitivity (TCS): Observational Data

TCS Parameter γ3
1−β1−γ1 × ln (2) from Cointegrating Regression Equation (17)

Estimation Method TCS St.Error 95% Confidence Interval

OLS 2.8738 0.2422 (2.398, 3.348)
FM-OLS 2.8020 0.2253 (2.360, 3.243 )
D-OLS(1,1) 2.9175 0.3587 (1.903, 3.932)
D-OLS(2,2) 2.5525 0.5507 (0.995, 4.109)
D-OLS(3,3) 3.1637 0.7506 (1.041, 5.286)
WG 2.7012 0.5666 (1.931, 3.471)

Notes: D-OLS(m,m): m leads and m lags in the DOLS regression
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9 Appendix C

The empirical estimate of Transient Climate Sensitivity derived in this paper is based on
land station observations (and hence land areas) only, for which we use the notation TCSL.
For comparison with previous papers it is of interest to obtain a global estimate, denoted
here as TCSG. To convert from TCSL to TCSG we use the conventional transformation:

TCSG = TCSL ·
AL · wL +AO · wO

wL

= TCSL ·
(
AL +AO ·

wO
wL

)
(59)

= TCSL ·Wtrans

Earth’s land area fraction (AL) and ocean area fraction (AO) are about 0.29 and 0.71,
respectively. These fractions do not change over time or between observations, or among
GCMs. The warming over land and ocean, wL and wO, do vary slightly over time and can
vary quite substantially across GCMs. But the ratio wO

wL
is relatively similar across time

and between observations and GCMs.
For the conversions in this paper we used observational land and ocean warming factors

(in K) of wL = 1.005, and wO = 0.62. The resulting factor used to convert from TCSL to
TCSG is

Wtrans = AL +AO ·
wO
wL

= 0.728

and the observed ratio of warming over ocean to warming over land is :

WOL =
wO
wL

= 0.617 (60)

For GCMs we use the WOL values reported in Table 1, and calculate the corresponding
Wtrans values. There is some uncertainty associated with the ratio in equation (60) in both
observations and GCMs. The observational ratio will depend somewhat on the time period
used to calculate it, and also which observational data sets are considered. For GCMs the
measure will differ slightly among ensemble members of the same model and also manifest
some time period dependence. We accounted for this uncertainty by adding an uncertainty
bound of ±0.05 to WOL. If the ratio decreases by 0.05, the Wtrans factor changes to

W−trans = AL +AO ·
wO
wL
· (1− 0.05) = 0.706;

and if it increases by 0.05, the Wtrans factor changes to

W+
trans = AL +AO ·

wO
wL
· (1 + 0.05) = 0.750.

To obtain a confidence interval for TCSG we simply multiply the bounds of the confi-
dence interval (CI) for TCSL by Wtrans. To account for the uncertainty in WOL we instead
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multiply the lower bound of the CI by W−trans and the upper bound by W+
trans. This ad-

justment leads to a slightly wider uncertainty range than the 95% confidence interval for
TCSG based on the transformation factor Wtrans alone.
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