
econometrics

Article

HAR Testing for Spurious Regression in Trend

Peter C. B. Phillips 1,2,3,4,∗, Xiaohu Wang 5 and Yonghui Zhang 6

1 Cowles Foundation for Research in Economics, Yale University, Box 208281, Yale Station,
New Haven, CT 06520, USA

2 Department of Economics, University of Auckland, Auckland CBD, Auckland 1010, New Zealand
3 School of Economics, Singapore Management University, 81 Victoria St, Singapore 188065, Singapore
4 Department of Economics, University of Southampton, Southampton SO14 0DA, UK
5 Department of Economics, The Chinese University of Hong Kong, Hong Kong 999077, China;

xiaohu.wang@cuhk.edu.hk
6 School of Economics, Renmin University of China, Beijing 100872, China; yonghui.zhang@hotmail.com
* Correspondence: peter.phillips@yale.edu

Received: 7 December 2018; Accepted: 28 November 2019; Published: 16 December 2019 ����������
�������

Abstract: The usual t test, the t test based on heteroskedasticity and autocorrelation consistent (HAC)
covariance matrix estimators, and the heteroskedasticity and autocorrelation robust (HAR) test are
three statistics that are widely used in applied econometric work. The use of these significance tests
in trend regression is of particular interest given the potential for spurious relationships in trend
formulations. Following a longstanding tradition in the spurious regression literature, this paper
investigates the asymptotic and finite sample properties of these test statistics in several spurious
regression contexts, including regression of stochastic trends on time polynomials and regressions
among independent random walks. Concordant with existing theory (Phillips 1986, 1998; Sun 2004,
2014b) the usual t test and HAC standardized test fail to control size as the sample size n → ∞ in
these spurious formulations, whereas HAR tests converge to well-defined limit distributions in each
case and therefore have the capacity to be consistent and control size. However, it is shown that when
the number of trend regressors K → ∞, all three statistics, including the HAR test, diverge and fail
to control size as n→ ∞. These findings are relevant to high-dimensional nonstationary time series
regressions where machine learning methods may be employed.

Keywords: HAR inference; Karhunen–Loève representation; spurious regression; t-statistics

JEL Classification: C12; C14; C23

It is meaningless to talk about ‘confirming’ theories when spurious results are so easily obtained.
Hendry (1980)

1. Introduction

In a well-cited contribution that emphasized the importance of diagnostic testing in econometrics,
(Hendry 1980) highlighted how easy it is to mistake spurious relationships as genuine when using
trending data of the type that are so commonly encountered in econometric work, especially in
macroeconomics. Spurious regressions occur when conventional significance tests are so seriously
biased towards rejection of the null hypothesis of no relationship that the alternative of a genuine
relationship is accepted when the variables have no meaningful relationship and may even be
statistically independent. Hendry’s article showcased the potential for nonsense regressions with the
illustration of a regression between UK consumer prices and cumulative rainfall that displayed a high
level of ‘significance’ and passed many—but not all—diagnostic tests.
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Spurious regressions continue to attract considerable attention in econometric work, long after
the exploratory study by (Yule 1926), the simulation experiments of (Granger and Newbold 1974),
and the cautionary warnings made by David Hendry and many other writers since then. The limit
theory of (Durlauf and Phillips 1988; Phillips 1986) provided the first analytic steps forward on
this subject by explaining the phenomena of persistent null hypothesis rejections in spurious
regressions. These two studies helped applied researchers understand the failure of conventional
significance tests by showing that in regressions with independent or even correlated trending
I(1) data the usual regression t- and F-ratio test statistics do not possess limiting distributions
but actually diverge as the sample size n ↑ ∞, leading inevitably to rejections of the null of
no association. Closely related work by (Phillips and Durlauf 1986; Durlauf and Phillips 1988;
Park and Phillips 1988, 1989; Phillips and Hansen 1990; Phillips and Loretan 1991; Phillips 1991)
extended the analytics to cover models of cointegrated and reduced rank error correction systems.
Much of this work was reviewed in a useful form for practitioners by (Banerjee et al. 1993).

The original study by (Phillips 1986) on spurious regression asymptotics formed the basis of a large
subsequent literature that has analyzed spurious regressions among various classes of trend stationary,
long memory, nonstationary, and near-nonstationary time series. A recent article by (Ernst et al. 2017)
provided further analysis by deriving an expression for the standard deviation of the sample correlation
coefficient between two independent standard Brownian motions. While this expression does not
explain the phenomenon of spurious regression between two independent random walks, it does
reveal that the limiting correlation is not centered on the origin and is highly dispersed. This result
complements the original findings in (Phillips 1986) and many subsequent papers that the coefficient
of determination in a spurious regression has a well-defined limit distribution and does not converge
in probability to zero.

In later work, (Phillips 1998) pointed out that spurious regressions typically reflect the fact that
trending data may always be ‘explained’ by a coordinate system of other trending variables—which
includes the example of UK price series being well-explained by cumulative rainfall that was used by
David Hendry (Hendry 1980). In this broad sense of interpretation, there are no spurious regressions
for trending time series, just alternative ‘valid’ representations of the time series trajectories (and those
of its limiting stochastic process, given a suitable normalization) in terms of other stochastic processes
and deterministic functions of time.

The asymptotic theory in (Phillips 1998) utilized the general representation of a stochastic
process in terms of an orthonormal system and provided an extension of the Weierstrass theorem
to include the approximation of continuous functions and stochastic processes by Wiener processes.
That theory was applied to two classic examples of spurious regressions: regression of stochastic
trends on time polynomials, and regressions among independent random walks. Such regressions
were shown to reproduce asymptotically in part (and in whole as the regressor space expanded
with sample size) the underlying valid representations of one trending process in terms of others,
a coordinate system that is entirely analogous to orthonormal or Fourier series representations of a
continuous function in terms of polynomials or other simple classes of functions over some interval.
An important feature of these ‘valid’ trend relationships is that the coefficients in the representations,
like those in the Karhunen–Loève representation of a general stochastic process, are themselves random
variables. Randomness in the representation of time-series trajectories is embodied in these coefficients.
Much subsequent work has utilized these ideas and analytic methods, either in justifying certain
regression representations or in using partial versions of these regression representations to focus on
certain features—such as long run features—of the data (notably: Phillips 2005, 2014; Müller 2007;
Sun 2004, 2014a, 2014b, 2014c; Hwang and Sun 2018; Müller and Watson 2016, 2018).

An important element in the Hendry (Hendry 1980) discussion of econometric practice was its
emphasis on the value of diagnostic testing to ascertain limitations of regressions used in applications.
In any empirical regression equation, the properties of the residuals depend inevitably on the properties
of the data. To build upon a saying of the famous statistician John Tukey, in the regression equation
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y = Xβ + u the empirical investigator chooses the variables y and X (possibly with the aid of an
autometric regression or a machine learning algorithm) and god gives back u. Any misspecification
in the relationship between y and X must therefore be manifest in the properties of u. This is
precisely what occurs in a spurious regression—the residual embodies the consequences of a model’s
fundamental error of specification—as is revealed by the fact that tests for residual serial correlation
such as the Durbin Watson statistic converge in probability to zero in such regressions (Phillips 1986).

Accommodating departures in fitted relationships from conventional assumptions on the
properties of regression errors and thereby some of the effects of misspecification has been a
longstanding goal of econometrics. One of the great advances in econometric research over the last
half-century in response to this goal has been the development of methods of inference that are robust
to some of the properties of the data and, particularly, those of the regression error. Such robustness
can offer protection against specification error in validating inference. This research has led to the
progressive development of heteroskedastic and autocorrelation consistent (HAC) procedures1 and
subsequently to heteroskedastic and autocorrelation robust (HAR) methods2 These methods control
for the effects of serial dependence and heterogeneity in regression errors and they play a key
role in achieving robustness in inference. One area where methods of achieving valid statistical
inference via HAC procedures has proved especially important in practice are regressions that involve
trending variables and cointegration. This goal motivated the early research on optimal semiparametric
approaches to the estimation of cointegrating relationships (Phillips and Hansen 1990) and continues
to play a role in subsequent developments in this field (Phillips 2014; Hwang and Sun 2018).

HAC methods generally have good asymptotic properties but they are susceptible to large
size distortions in practical work. Several alternative methods have been proposed in the recent
literature to improve finite sample performance. Among these, the ‘fixed-b’ lag truncation rule
(Kiefer and Vogelsang 2002a, 2002b, 2005) has attracted considerable interest. The method uses a
truncation lag M for including sample serial covariances that is proportional to the sample size n (i.e.,
M ∼ bn for some fixed b ∈ (0, 1)) and sacrifices consistent variance matrix (and hence standard error)
estimation in the interest of achieving improved performance in statistical testing by mirroring finite
sample characteristics of test statistics in the new asymptotic theory of these tests. The formation of t
ratio and Wald statistics based on HAC estimators without truncation belongs to the more general
class of HAR test statistics. There are known analytic advantages to the fixed b approach, primarily
related to controlling size distortion. In particular, research by (Jansson 2004; Sun et al. 2011; Sun 2014b)
has shown evidence from Edgeworth expansions of enhanced higher-order asymptotic size control in
the use of these tests. Recently, (Lazarus et al. 2018; Müller 2014; Sun 2018) have surveyed work in
this literature and given recommendations for practical implementation.

In studying spurious regression on trend phenomena, (Phillips 1996, 1998) showed that the use of
HAC methods attenuated the misleading divergence rate (under the null hypothesis of no association)
by the extent to which the truncation lag M → ∞. In particular, the divergence rate of the t statistic
in a spurious regression involving independent I (1) variables is Op

(√
n/M

)
rather than Op

(√
n
)
.

Pursuing this philosophy further, (Sun 2004) offered a new solution to deal with inference in spurious
regressions. He argued that the divergence of the usual t-statistic arises from the use of a standard
error estimator that underestimates the true variation of the ordinary least squares (OLS) estimator.
He proposed the use of a fixed-b HAR standard error estimator with a bandwidth proportional to
the sample size (where M∼bn → ∞ at the same rate as n). The resulting t-statistic converges to

1 Heteroskedastic robust standard errors were introduced by (Eicker 1967; Huber 1967; White 1980). HAC estimators were
introduced by (White 1982) and have a long subsequent history of enhancement.

2 Heteroskedastic and autocorrelation robust standard errors were introduced in (Kiefer and Vogelsang 2002a, 2002b) and,
following this lead, (Phillips 2005) used the HAR terminology to characterize a class of robust inferential procedures in an
article concerned with the development of automated mechanisms of valid inference in econometrics. Other important early
contributions concerning HAC covariance matrix estimators without truncation were given by (Kiefer and Vogelsang 2005;
Kiefer et al. 2000; Robinson 1998).
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a non-degenerate limiting distribution which depends on nuisance parameters. These discoveries
revealed that prudent use of HAR techniques in regression testing might widen the range of inference
to include spurious regression.

In the same spirit as (Sun 2004, 2014b), the present contribution analyzes possible advantages in
using HAR test statistics in the context of simple trend regressions such as

xt = at + ut, (1)

where ut is I (1) . For trend assessment in models of this type it is of interest to test the null hypothesis
H0 : a = 0 of the absence of a deterministic trend in (1). This framework is a prototypical example of
much more complex models where deterministic trend, stochastic trends, and trend break components
may all be present, hence methods of asymptotically valid estimation and testing are needed. A recent
general approach to the consistent estimation of such complex models by machine learning filtering
methods is given in (Phillips and Shi 2019).

The present paper considers three types of t test widely used in econometrics: the usual t test, the t
test based on HAC covariance matrix estimators, and the fixed-b HAR test. We apply these t-statistics
to three classic examples of spurious regressions: regression of stochastic trends on time polynomials,
regression of stochastic trends on deterministic time trend and regression among independent random
walks. The asymptotic behavior of these three different t-statistics are investigated. In the regression
of stochastic trends on time polynomials and the regression among independent random walks, it is
shown that the usual t test and HAC based t test are likely to indicate a significant relation with
probability that goes to one as the sample size n goes to infinity. However, provided the number of
regressors (K) is fixed, the HAR t-statistics converge to well-defined distributions free from nuisance
parameters. As a result, when appropriate critical values are drawn from these limiting distributions,
the HAR t-statistics would not diverge and valid inference on the regression coefficients would be
possible, concordant with (Sun 2004).

In contrast to these results and those of (Sun 2004), we find that HAR t-statistics diverge at
rate
√

K as K → ∞. Hence, the characteristics of spurious regression return even with the use of
HAR test statistics in models with an increasing number of regressors. These findings seem relevant
for machine learning and autometric model building methods which accommodate large numbers
of regressors, including those of the p > n variety where model searching often begins with more
regressors than sample observations and penalized methods of estimation are needed to obtain even
preliminary results.

Our results also reveal that the other two t-statistics (the usual t and HAC-based t) diverge at
greater rates when K → ∞ than when K is fixed. In the regression of stochastic trends on deterministic
time trends, we derive the limiting distributions of the statistics under both the null and alternative
hypotheses. The HAR test turns out to be the only test which is consistent and has controllable size.
All the limit theory for these tests receives strong support in simulations. As will become evident,
the appealing asymptotic properties of the HAR test in the fixed number of regressors case are manifest
even in situations where some commonly-used regularity conditions in the construction of HAR tests
are violated.

The rest of the paper is organized as follows. Section 2 examines regressions of stochastic trends on
a complete orthonormal basis in L2 [0, 1] and establishes the limiting distributions of the three different
t-statistics with explicit application to the prototypical case of a spurious linear trend regression.
Section 3 examines the limit behavior of the t-statistics in regressions among independent random
walks. Simulations are reported in Section 4. Section 5 concludes. All proofs are given in the Appendix.
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2. Regression of Stochastic Trend on Time Polynomials

2.1. Model Details and Background

The development in this section concentrates on a simple unit root time series

Xt =
t

∑
s=1

µs, (2)

whose increments µt form a stationary time series with zero mean, finite absolute moments to order
p > 2, and continuous spectral density function fµ (λ). We assume that Xt satisfies the functional
central limit theorem (FCLT)

Xbnrc√
n
⇒ B (r) ≡ BM

(
ω2
)

, with ω2 = 2π fµ (0) , (3)

for which primitive conditions are well known (e.g., Phillips and Solo 1992). The results that follow
are illustrative and apply with suitable modification to more general nonstationary time series, such as
near integrated or long memory series, which upon standardization converge to limiting stochastic
processes with sample paths that are continuous almost surely.

By the Karhunen–Loève (KL) expansion theorem (e.g., Loève 1963, p. 478) into a countable linear
combination of orthogonal functions, the KL representation for the Brownian motion B (r) is

B (r) =
∞

∑
k=1

√
λk ϕk (r) ξk = ω

√
2

∞

∑
k=1

sin [(k− 1/2)πr]
(k− 1/2)π

ξk, (4)

where

λk =
4ω2

(2k− 1)2 π2
, ϕk (r) =

√
2 sin [(k− 1/2)πr]

are eigenvalues and corresponding eigenfunctions of the Brownian motion covariance kernel
ω2 (r ∧ s), and

ξk = λ−1/2
k

∫ 1

0
B (s) ϕk (s) ds

are independently and identically distributed (iid) as N (0, 1). This series representation of B (r)
is convergent almost surely and uniformly in r ∈ [0, 1]. Denoting zk =

√
λkξk as the stochastic

coefficients, the KL representation (4) could be rewritten as

B (r) =
∞

∑
k=1

zk ϕk (r) . (5)

Starting from the KL representation of B (r), (Phillips 1998) studied the asymptotic properties of
regressions of Xt on deterministic regressors of the type

Xt =
K

∑
k=1

b̂k ϕk

(
t
n

)
+ ût, (6)

or, equivalently (with âk = b̂k/
√

n),

Xt√
n
=

K

∑
k=1

âk ϕk

(
t
n

)
+

ût√
n

. (7)
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Least squares estimation gives

α̂K = (â1, . . . , âK)
′ =

(
Φ′KΦK

)−1 Φ′KX/
√

n,

where ΦK = (ϕK1, . . . , ϕKn)
′ with ϕKt = (ϕ1 (t/n) , . . . , ϕK (t/n))′, and X = (X1, . . . , Xn)

′. Let CK ∈
RK be any vector with C′KCK = 1. When K is fixed and n→ ∞, (Phillips 1998) proved that

C′K α̂K ⇒ C′K
∫ 1

0
ϕ̄K (r) B (r) dr ≡ N

(
0, C′KΛKCK

)
,

where ΛK = diag(λ1, . . . , λK) and ϕ̄K (r) = (ϕ1 (r) , . . . , ϕK (r))′. In the expanding regressors case
where K = K (n)→ ∞ and K/n→ 0, it was also shown in (Phillips 1998) that

C′K α̂K ⇒ N
(

0, σ2
c

)
≡ c′Z =

∞

∑
k=1

ckzk,

where c = (ck) ∈ R∞ satisfies c′c = 1, Λ =diag(λ1, λ2, . . .), σ2
c = c′Λc, and Z = (zk)

∞
k=1 are the

random coefficients in the KL representation (5). Therefore, the fitted coefficients in regression (7)
tend to random variables in the limit as n→ ∞ that match those in the KL representation of the limit
process B (·). In other words, least squares regressions reproduce in part (when K is finite) and in
whole (when K → ∞) the underlying orthonormal representations.

2.2. Three t-Statistics

Suppose interest centers on testing whether the regression coefficients are significant or more
generally whether some linear combination C′KβK of the underlying coefficients βK = (b1, . . . , bK)

′ in
the estimated regression (6) is equal to 0, that is

H0 : C′KβK = 0 vs. H1 : C′KβK 6= 0.

Three types of t-statistics are considered. The first is the usual t-ratio defined as

t
C′K βK

=
C′K β̂K[

s2
bC′K

(
Φ′KΦK

)−1 CK

]1/2 (8)

with s2
b = n−1 ∑n

t=1 û2
t = n−1 ∑n

t=1
(
Xt − β̂′K ϕKt

)2
the usual error variance estimate. The second

t-statistic is constructed by using a HAC variance estimator and has the following representation

t
HAC

C′K βK
=

C′K β̂K

ω̂C′K βK

, (9)

where
ω̂2

C′K βK
= C′K

(
Φ′KΦK

)−1
[n ̂lrvarHAC (ût ϕKt)]

(
Φ′KΦK

)−1 CK (10)

with ̂lrvarHAC (ηt) =
M

∑
j=−M

k
(

j
M

)
c (j, η) and c (j, η) =

1
n ∑

1≤t,t+j≤n
ηtη
′
t+j. (11)

Here, ̂lrvarHAC (ηt) is a kernel estimate of the long run variance of its argument, k (·) is a lag
kernel, M is a bandwidth parameter satisfying M/n + 1/M → 0 as n → ∞, and the argument
ηt = ût ϕKt in (10).
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If we choose a fixed b ∈ (0, 1] and set M = bbnc, the condition M/n + 1/M → 0 as n → ∞ is
violated. In that case, the long run variance estimate is a fixed-b estimate and leads to the HAR t-statistic

t
HAR

C′K βK
=

C′K β̂K

ω̌C′K βK

, (12)

where
ω̌2

C′K βK
= C′K

(
Φ′KΦK

)−1
[n ̂lrvarHAR (ût ϕKt)]

(
Φ′KΦK

)−1 CK (13)

with ̂lrvarHAR (ηt) =
(n−1)

∑
j=−(n−1)

kb

(
j
n

)
c (j, η) , c (j, η) =

1
n ∑

1≤t,t+j≤n
ηtη
′
t+j, (14)

kb

(
j
n

)
= k

(
j

nb

)
, and k (·) is a lag kernel function as before.

With minor changes of the proof given in (Phillips 1998), it is easy to deduce that for fixed K,
t

C′K βK
∼ Op

(√
n
)

and t
HAC

C′K βK
∼ Op

(√
n/M

)
as n → ∞, as discussed earlier. Therefore, such tests

indicate statistically significant regression coefficients with probability that goes to one as n → ∞.
These results match what is now standard spurious regression limit theory for inference.

In addition, as we show in Theorem 2 below, the large regressor case where K → ∞ leads
to different results. In this case, both t-statistics t

C′K βK
and t

HAC

C′K βK
have greater rates of divergence

that depend on the expansion rate of K, given by t
C′K βK

= Op

(√
nK
)

and t
HAC

C′K βK
= Op

(√
nK/M

)
.

Thus, with the addition of more regressors the combined effect of the regression coefficients—as well
as that of the individual coefficients—appears more significant and diverges when K → ∞ as n→ ∞.
In consequence, large numbers of regressors effectively worsen the spurious regression problem.

Is there a test which does not always indicate that coefficients β̂K are significant in the ‘spurious’
regression (6)? As the results of (Sun 2004) show, the answer is positive for the case where K is
fixed. In this event, the HAR test is appealing in the sense that t

HAR

C′K βK
∼ Op (1) when n → ∞ and

K is fixed, so that test size is controlled in the limit. Therefore, when appropriate critical values
obtained from the limit distribution of t

HAR

C′K βK
are employed, the coefficients β̂K do not inevitably signal

significance as n → ∞ and the usual misleading test implications of spurious regression do not
manifest. However, in the important case where the regressor space expands and K → ∞, the test
statistic t

HAR

C′K βK
diverges to infinity at rate Op

(√
K
)

and the coefficients β̂K become significant again

even under HAR testing.
These results are collected in the following two theorems.

Theorem 1. For fixed K, as n→ ∞ and M/n + 1/M→ 0, we have
(i)

t
C′K βK√

n
⇒

C′KZK[∫ 1
0 B2

ϕK

]1/2 ;

(ii) √
M
n

t
HAC

C′K βK
⇒

C′KZK{∫ 1
−1 k (s) ds

∫ 1
0 B2

ϕK

(
C′K ϕ̄K

)2
}1/2 ;
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(iii)

t
HAR

C′K βK
⇒

C′KZK{∫ 1
0

∫ 1
0 kb (r− q) BϕK

(r) BϕK
(q)
[
C′K ϕ̄K (r)

] [
C′K ϕ̄K (q)

]
drdq

}1/2

≡
C′KZW

K{∫ 1
0

∫ 1
0 kb (r− q)WϕK

(r)WϕK
(q)
[
C′K ϕ̄K (r)

] [
C′K ϕ̄K (q)

]
drdq

}1/2 ,

where ZK = (zk)
K
k=1 are the random coefficients in orthonormal representation (5), BϕK

(r) = B (r)−
Z′K ϕ̄K (r), ZW

K = ZK/ω =
∫ 1

0 W ϕ̄K, W (·) ≡ BM (1) , ω2 = 2π fµ (0), and WϕK
(r) = BϕK

(r) /ω =

W (r)−
(
ZW

K
)′

ϕ̄K (r).

Remark 1. The fixed-b HAR based t-statistic t
HAR

C′K βK
asymptotically follows a well-defined limit distribution

when the number of regressors K is fixed. The limit distribution is free from nuisance parameters and is easily
computable but depends on the lag kernel as well as the form of the trend regressors, which influence the detrended
standard Brownian motion process WϕK

. The asymptotic critical values, therefore, differ from those of the usual

standard normal limit distribution of a t-statistic. But the specific features of the limit distribution of t
HAR

C′K βK
,

which retain randomness in the denominator of the limiting statistic, help to control size in finite sample testing.

Theorem 2. As n, K → ∞, M/n + 1/M→ 0 and K5/2/n + K3/2/n
1
2−

1
p → 0 , the following results hold:

(i)
t

C′K βK√
nK

=
C′KZK[

K
∫ 1

0 B2
ϕK

]1/2 + op (1) = Op (1) ,

where K
∫ 1

0 B2
ϕK

= ω2/π2 + op (1).
(ii) √

M
nK

t
HAC

C′K βK
=

C′KZK[
K
∫ 1
−1 k (s) ds

∫ 1
0 B2

ϕK

[
C′K ϕ̄K

]2]1/2 + op (1) = Op (1) ,

(iii)

t
HAR

C′K βK√
K

=
C′KZK{

K
∫ 1

0

∫ 1
0 kb (r− q) BϕK

(r) BϕK
(q)C′K ϕ̄K (r)C′K ϕ̄K (q) drdq

}1/2 + op (1) = Op (1) .

Remark 2. Theorem 2 shows that all three t-statistics diverge as n→ ∞ but at different rates, each of which
depends on K. The divergence rate of the fixed-b test statistic t

HAR

C′K βK
= Op

(√
K
)

is the slowest and depends

only on K. These results strengthen the findings in (Phillips 1998) that attempts to deal with serial dependence
in controlling size in significance testing generally fail when enough effort is put into the regression design to
fit the trajectory. This failure now includes HAR testing when K → ∞. All the tests are therefore ultimately
confirmatory of the existence of a ‘relationship’—in the present case a coordinate representation relationship
among different types of trends, at least when a complete representation is attempted by allowing the number of
regressors K to diverge with n. The results of the theorem may be interpreted to mean that when a serious attempt
is made to model a stochastic trend using deterministic functions (either a large number of such regressors or
regressors that are carefully chosen to provide a successful representation and trajectory fit) it will end up being
successful even when a spurious regression robust method such as fixed-b HAR test is used.
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An additional matter concerning the form of these tests may usefully be highlighted. To construct
the HAC and HAR t-statistics, the following condition

Var
(

Φ′KX√
n

)
= Var

(
1√
n

n

∑
t=1

ϕKtXt

)
= Γ0 +

n−1

∑
j=1

(
1− j

n

)(
Γj + Γ′j

)
(15)

with Γj = E
(

ϕKtXtX′t−j ϕ
′
K(t−j)

)
is usually imposed (e.g., Kiefer et al. 2000;

Kiefer and Vogelsang 2002a, 2002b) as in standard approaches to robust covariance matrix estimation.
In other words, the process {ϕKtXt} is typically assumed to be unconditionally stationary or
weakly dependent with uniformly bounded second moments so that series such as (15) converge.
However, this condition is violated in both regressions (6) and (7) as

E
(

ϕKtXtX′t−j ϕ
′
K(t−j)

)
= ϕKtE

(
t

∑
s=1

µs

t−j

∑
τ=1

µτ

)
ϕ′K(t−j)

depends on t. For example, when the components µs are iid
(
0, σ2)with partial sums satisfying (3) then

E
(

ϕKtXtX′t−j ϕ
′
K(t−j)

)
= (t− j) σ2 ϕKt ϕ′K(t−j)

depends on t. Regardless of this violation, HAC and HAR t-statistics may still be constructed in the
traditional way; and the HAR statistic, t

HAR

C′K βK
has nuisance parameter-free asymptotic properties even

though the above unconditional stationarity condition is not satisfied.
The above results apply straightforwardly to the simple case of a spurious linear regression on

trend where the time series is a unit root process generated by

Xt = at + X0
t , t = 1, . . . , n, (16)

with a = 0 and X0
t = ∑t

s=1 µs is the partial sum of a zero mean stationary process {µs}with continuous
spectral density fµ (λ) . The standardized process Xn (r) = n−1/2X0

bnrc satisfies the functional law

Xn (r)⇒ B (r) ≡ BM
(

ω2
)

, ω2 = 2π fµ (0) > 0.

The fitted regression model is

Xt = ât + ût, or equivalently,
Xt√

n
=
(√

nâ
) t

n
+

ût√
n

, (17)

where â = ∑n
t=1 tXt/ ∑n

t=1 t2 is the LS estimate of a, which satisfies (Durlauf and Phillips 1988)

√
n (â− a) =

n−5/2 ∑n
t=1 tX0

t
n−3 ∑n

t=1 t2 ⇒ 3
∫ 1

0
rB (r) dr ≡ N

(
0,

6
5

ω2
)

, (18)

so that â is consistent, including the case where a = 0. However, as is well known, the usual t-statistic
has order Op

(√
n
)

and diverges as n → ∞, indicating a significant relationship between {Xt} and
t in spite of the fact that a = 0. This outcome follows directly from Theorem 1 and the (alternate)
representation for the standard Brownian motion W (r) as

W (r) = rξ0 +
√

2
∞

∑
k=1

sin [kπr]
kπ

ξk with ξk ≡ iid N (0, 1) , (19)
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which implies that

n−1/2X0
bnrc ⇒ B (r) = ω ·W (r) = (ωξ0) r + (ωξk)

√
2

∞

∑
k=1

sin [kπr]
kπ

.

Thus, when a = 0, the scaled LS estimator
√

nâ has a random limit ξa ≡ N
(
0, 6

5 ω2) from (18)
that approximates but does not exactly reproduce the leading random coefficient term (ωξ0) in the
representation (19). Importantly in this case, the deterministic functions in (19) are not orthonormal

and there is dependence in L2 [0, 1] between the functions r and
{(√

2 sin [kπr]
)

/ (kπ)
}∞

k=1
.

This dependence induces an asymptotic inefficiency in the trend coefficient estimate â, since
6
5 ω2 >Var(ωξ0) = ω2.

Next, in testing H0 : a = 0 versus H1 : a 6= 0, the following statistics are considered:

ta =
â
sa

=
â{[

n−1 ∑n
t=1 (ût)

2
]
(∑n

t=1 t2)
−1
}1/2 , (20)

t
HAC

a =
â

ω̂a
=

â{
(∑n

t=1 t2)
−1
[
n ̂lrvarHAC (tût)

]
(∑n

t=1 t2)
−1
}1/2 , (21)

t
HAR

a =
â

ω̌a
=

â{
(∑n

t=1 t2)
−1
[
n ̂lrvarHAR (tût)

]
(∑n

t=1 t2)
−1
}1/2 , (22)

where

̂lrvarHAC (tût) =
M

∑
j=−M

k
(

j
M

)[
1
n ∑

1≤t,t+j≤M
ûtût+jt (t + j)

]
with M/n + 1/M→ 0 as n→ ∞,

̂lrvarHAR (tût) =
(n−1)

∑
j=−(n−1)

kb

(
j
n

)[
1
n ∑

1≤t,t+j≤M
ûtût+jt (t + j)

]
for some fixed b ∈ (0, 1],

k (·) is a kernel function, kb (j/n) = k (j/ (nb)) and ût = Xt − ât for t = 1, . . . , n. The asymptotic
properties of these test statistics follow in the same way as before when n→ ∞ with M/n + 1/M→ 0,
giving the following results.

(i) Under H0 : a = 0,

ta√
n
⇒
√

3
∫ 1

0 rB{∫ 1
0 B2

}1/2 , (23)

√
M
n

t
HAC

a ⇒
∫ 1

0 rB{∫ 1
−1 k (s) ds

∫ 1
0 r2B2

}1/2 , (24)

t
HAR

a ⇒
∫ 1

0 rB{∫ 1
0

∫ 1
0 kb (r− q) B (r) B (q) rqdrdq

}1/2 ≡
∫ 1

0 rW{∫ 1
0

∫ 1
0 kb (r− q)W (r)W (q) rqdrdq

}1/2 ; (25)
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(ii) Under H1 : a 6= 0,

ta

n
⇒ a(

3
∫ 1

0 B2
)1/2 , (26)

√
M

n
t

HAC

a ⇒ a[
9
∫ 1
−1 k (s) ds

∫ 1
0 r2B2

]1/2 , (27)

t
HAR
a√

n
⇒ a[

9
∫ 1

0

∫ 1
0 kb (r− q) B (r) B (q) rqdrdq

]1/2 , (28)

where B (r) := B (r) − 3
(∫ 1

0 sB (s) ds
)

r and B (r) ≡ ωW (r). Thus, under the null hypothesis

both ta = Op
(√

n
)

and t
HAC
a = Op

(√
n/M

)
diverge but t

HAR
a = Op (1) and has a well defined

nuisance parameter free limit distribution that may be used in statistical testing. Under the alternative
hypothesis, all the listed statistics are divergent but at different rates. Only t

HAR
a has effective

discriminatory power, being consistent and having controllable size. These results match those in
(Sun 2004, 2014a) showing that for simple trend misspecifications like that of a finite degree polynomial
trend function in place of a stochastic trend, use of fixed-b HAR testing controls size and leads to a
consistent test.

3. Regressions Among Independent Random Walks

This section extends these ideas to regressions among independent random walks. Let B (·)
be a Brownian motion on the interval [0, 1]. (Phillips 1998) proved that there exist a sequence of
independent standard Brownian motions {Wi}K

i=1 that are independent of B (·), and a sequence of
variables {di}K

i=1 defined on an augmented probability space (Ω,F , P) such that, as K → ∞,

B (r) ∼
∞

∑
i=1

diWi (r) in L2 [0, 1] a.s. (P) . (29)

The random coefficients di are statistically dependent on B (·). Replacing the Wiener processes Wi
by orthogonal functions Vi (r) in L2 [0, 1] using the Gram-Schmidt process

V1 = W1,

V2 = W2 −
(∫ 1

0
W2V1

)(∫ 1

0
V2

1

)−1

V1,

V3 = W3 −
(∫ 1

0
W3V′a

)(∫ 1

0
VaV′a

)−1

Va, V′a = [V1, V2] , etc,

gives the representation

B (r) ∼
∞

∑
i=1

eiVi (r) with ei =

(∫ 1

0
BVi

)(∫ 1

0
V2

i

)−1

. (30)

In the following, we consider the unit root process yt = ∑t
s=1 µs with mean zero stationary

components {µs} with continuous spectral density fµ (λ) and satisfying the functional law

n−1/2ybnrc ⇒ B (r) ≡ BM
(

ω2
)

, ω2 = 2π fµ (0) > 0.
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Let xt = (xkt) =
(

∑t
j=1 µkj

)K

k=1
be K independent standard Gaussian random walks, all of which

are independent of yt. Consider the linear regression yt = b̂′xxt + ût, based on n > K observations of

these series. The large n asymptotic behavior of b̂x is (Phillips 1986) b̂x ⇒
(∫ 1

0 WxW ′x
)−1 (∫ 1

0 WxB
)

,
where Wx is the vector standard Brownian motion weak limit of the standardized partial sum
processes n−1/2xbn·c.

Suppose we orthogonalize the regressors
{

xk· = (xkt)
n
t=1 : k = 1, . . . , K

}
using the

Gram-Schmidt process

z1t = x1t,

z2t = x2t −
(

x′2·x1·
) (

x′1·x1·
)−1 x1t,

z3t = x3t −
(

x′3·Xa
) (

X′aXa
)−1 xat, Xa := [x1·, x2·] :=

[
x′a·
]

, etc.

By standard weak convergence arguments we have

n−1/2z1bn·c ⇒ V1 (·) , n−1/2z2bn·c ⇒ V2 (·) , n−1/2z3bn·c ⇒ V3 (·) , etc.

Now let zt = (zkt)
K
k=1, and consider the regression

yt = b̂′zKzt + ût. (31)

The LS estimator b̂zK = [∑n
t=1 ztz′t]

−1 ∑n
t=1 ztyt has the limit

b̂zK ⇒
(∫ 1

0
V̄KV̄′K

)−1 (∫ 1

0
V̄KB

)
≡ EK := (ek)

K
k=1 ,

where V̄K = (Vk)
K
k=1 is a K× 1 vector. Thus, the empirical regression of yt on zt reproduces the first K

terms in the representation of the limit Brownian motion B in terms of an orthogonalized coordinate
system formed from K independent standard Brownian motions.

Suppose now that we are interested in testing whether a linear combination of bzK equals zero, viz.,

H0 : C′KbzK = 0 vs. H1 : C′KbzK 6= 0

with CK ∈ RK satisfying C′KCK = 1. Again, three types of t-statistics are considered:

tbzK =
C′K b̂zK

sbzK

=
C′K b̂zK{

C′K
[
n−1 ∑n

t=1 (ût)
2
]
(∑n

t=1 ztz′t)
−1 CK

}1/2 , (32)

t
HAC

bzK
=

C′K b̂zK

ω̂bzK

=
C′K b̂zK{

C′K (∑n
t=1 ztz′t)

−1
[
n ̂lrvarHAC (ztût)

]
(∑n

t=1 ztz′t)
−1 CK

}1/2 , (33)

t
HAR

bzK
=

C′K b̂zK

ω̌bzK

=
C′K b̂zK{

C′K (∑n
t=1 ztz′t)

−1
[
n ̂lrvarHAR (ztût)

]
(∑n

t=1 ztz′t)
−1 CK

}1/2 , (34)

where

̂lrvarHAC (ztût) =
M

∑
j=−M

k
(

j
M

)[
1
n ∑

1≤t,t+j≤M
ztûtût+jz′t+j

]
with M/n + 1/M→ 0 as n→ ∞,

̂lrvarHAR (ztût) =
(n−1)

∑
j=−(n−1)

kb

(
j
n

)[
1
n ∑

1≤t,t+j≤M
ztûtût+jz′t+j

]
for some fixed b ∈ (0, 1],
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k (·) is a kernel function, kb

(
j
n

)
= k

(
j

nb

)
, and ût = yt − b̂′zKzt for t = 1, . . . , n.

The following theorem establishes the limiting distributions of these three t-statistics.

Theorem 3. For fixed K, as n→ ∞,
(i)

1√
n

tbzK ⇒
C′KEK{

C′K
(∫ 1

0 V̄KV̄′K
)−1

CK
∫ 1

0 W2
yK

}1/2 ;

(ii) When 1/M + M/n→ 0,√
M
n

t
HAC

bzK
⇒

C′KEK{
C′K
(∫ 1

0 V̄KV̄′K
)−1 (∫ 1

−1 k (s) ds
∫ 1

0 W2
yKV̄KV̄′K

) (∫ 1
0 V̄KV̄′K

)−1
CK

}1/2 ;

(iii)

t
HAR

bzK
⇒

C′KEK{
C′K
(∫ 1

0 V̄KV̄′K
)−1

H
(∫ 1

0 V̄KV̄′K
)−1

CK

}1/2 ;

where WyK (r) = B (r)− E′KV̄K (r) and H =
∫ 1

0

∫ 1
0 kb (r− q) V̄K (r)WyK (r)WyK (q) V̄′K (q) drdq.

Remark 3. As it is shown in Theorem 3, tbzK and t
HAC

bzK
diverge at rate Op

(√
n
)

and Op
(√

n/M
)
, respectively.

Hence, such tests indicate inevitable significance of the regressors when n → ∞ and 1/M + M/n → 0.
However, the HAR based t-statistic t

HAR

bzK
is convergent in distribution, which leads to valid statistical testing when

appropriate critical values from the limit distribution of t
HAR

bzK
are used. Note that B (r) ≡ BM

(
ω2) ≡ ωW (r),

EK = (ek)
K
k=1 with

ek =

(∫ 1

0
BVi

)(∫ 1

0
V2

i

)−1

= ω

(∫ 1

0
WVi

)(∫ 1

0
V2

i

)−1

for k = 1, . . . , ∞,

where W (·) is a standard Brownian motion. Hence, the nuisance parameter ω appearing in the numerator
and dominator of the limiting distribution of t

HAR

bzK
cancels. The limit distribution of t

HAR

bzK
is therefore free of

nuisance parameters.

Remark 4. Even when µs ∼d iid (0, 1), we have

E
(
ytyt−j

)
= E

(
t

∑
s=1

µs

t−j

∑
s=1

µs

)
= t− j.

Thus E
(

ztytyt−jz′t−j

)
= E

(
ytyt−j

)
E
(

ztz′t−j

)
depends on t in a similar way. Therefore, as we discussed

earlier, the usual regularity conditions employed in constructing HAC and HAR t-statistics cannot apply here.

Remark 5. In view of (30) and Theorem 4.3 in (Phillips 1998), WyK (r)→ 0 almost surely and uniformly as

K → ∞. We can expect that the rates of divergence of tbzK and t
HAC

bzK
are greater in the case where K → ∞ than

they are when K is fixed. Moreover, similar to the earlier finding in Theorem 2, the HAR statistic t
HAR

bzK
will

diverge at rate Op

(√
K
)

. Details are omitted to save space. Hence, fitted coefficients of the spurious random
walk regressors would eventually be deemed significant when fixed critical values are employed in testing under
all three t-statistics including t

HAR

bzK
when both K, n→ ∞.
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4. Simulations

This section reports simulations to investigate the performance in finite samples of the different
t-statistics in spurious trend regressions, simple time trend regression, and spurious regression among
stochastic trends.

We first examined spurious regression of a stochastic trend on time polynomials. Consider the
standard Gaussian random walk Xt = ∑t

s=1 µs, where us ∼d iid N (0, 1)3. Orthogonal basis functions
{ϕk (·)}K

k=1 , where ϕk (r) =
√

2 sin [(k− 0.5)πr], were used as regressors and fitted time trend
regressions of the form Xt = ϕ′Kt β̂ + ût were run with ϕKt = [ϕ1

( t
n
)
,...,ϕK

( t
n
)
]′. We focus on the

prototypical null hypothesis H0 : β1 = 0 in what follows. In the construction of the HAC and HAR
t-statistics, a uniform kernel function was employed.

Figure 1 reports the kernel estimates of the probability densities for these t-statistics under
different model scenarios based on 10,000 simulations. The first row of graphs in Figure 1 gives the
results for the different t-statistics as the sample size n increases with fixed K = 1. It is evident that
both the usual t-statistic and HAC t-statistic (with M = bnbc and b = n−3/4) diverge as n increases
and the HAC statistic diverges at a slower rate. In contrast, the HAR t-statistic (b = 0.2) is evidently
convergent to a well-defined probability distribution as the sample size expands. These results clearly
corroborate Theorem 1.

The second row of graphs in Figure 1 presents the estimated densities of the three t-statistics as K
increases for a fixed sample size n = 200. As K increases, all three t-statistics are clearly divergent but at
different rates. For each statistic the increase in dispersion as K increases is evident. The last row reports
the results for the HAR t-statistic with K = 1, 5, 20 and bandwidth coefficient b = 0, 0.1, 0.4, 0.6, 0.8, 1.
As K increases while maintaining the same bandwidth setting, the densities become more progressively
dispersed. For fixed K, it is clear that the quantile is not a monotonic function of b. For K = 1, 5,
when b is close to zero, the limiting distributions become more dispersed. When b is close to one,
the limiting distributions also get dispersed for all three choices of K. As explained in (Sun 2004),
for small or moderate K, when b is close to zero, the behavior of the t-statistic may be better captured
by conventional limit theory without taking into account the persistence of the regression residuals.
But when b is close to unity, we can not expect the standard variance estimate to capture the strong
autocorrelation. If we choose the kernel k (x) = 1 and use the full sample (i.e., setting b = 1),
the long run variance estimate equals zero by construction. We conjecture that for fixed K it may be
possible to find an optimal bandwidth bopt (K) by following an approach similar to the method used
in (Sun et al. 2011) that controls for size and power. From the shape of the densities in the last row of
graphs in Figure 1, we would expect that any such optimal bandwidth bopt (K) will get closer to zero
as K gets larger. Extension of robust testing techniques to machine learning regressions where K may
be very large will likely require very careful bandwidth selection in significance testing that takes the
magnitude of K into account.

Figures 2 and 3 present rejection frequencies of the three t-statistics in spurious trending regression
when conventional critical values from the standard normal distribution at the 5% significance level
are used. These frequencies are calculated based on 10,000 simulations with the sample size n = 200.
A manifest feature in Figures 2 and 3 is that the rejection frequencies increase faster towards one as the
number of regressors K increases. This feature corroborates Theorem 2 and the simulation results in
Figure 1, which reveal the progressive dispersion of the densities of the three t-statistics as K increases,
suggesting that the rejection frequencies are increasing functions of K for each test.

The surface displayed in Figure 3 also reveals the effect of the bandwidth choice on the rejection
frequencies of the HAR test, in which the bandwidth b varies from 0 to 1 at step length 0.025. It is
evident that the rejection frequency of the HAR test is a nonlinear function of b, especially when K

3 Weakly dependent innovations in the form of an AR(1) error process, viz., µs = ρµs−1 + εs, with εs ∼d iid N (0, 1) , were also
considered. The results were similar and so only the iid case is reported here.
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is small. Optimal selection of a bandwidth bopt (K) that controls size and power of the HAR test is
therefore possible. The value of bopt (K) should moderately deviate from zero when K is small and
move towards zero faster as K increases. The findings in Figure 3 support the conjecture about the
optimal bandwidth choice, which was discussed above based on the results in Figure 1.

Next, we consider a simple spurious linear trend regression of Xt on a linear time trend t,
where Xt = ∑t

s=1 µs and us ∼d iid N (0, 1). Figure 4 reports the sampling densities for different
t-statistics based on 10,000 simulations. The first row of graphs presents kernel estimates of densities
of the t-statistics for sample sizes n = 50, 100, 400, 800. Again, the usual t-statistic and HAC statistic
are divergent but at different rates. The HAR statistic is evidently convergent. The second row in
Figure 4 provides results for the HAR statistic with different bandwidth choices. It is clear that the
distributions become more dispersed as b moves close to zero or close to one. In this respect the
findings are similar to those of Figure 1 when K = 1. In Figure 5, the rejection frequencies of the HAR
statistic with various bandwidth values are reported, which are calculated based on 10,000 simulations
with sample size n = 200 and critical values from the standard Normal distribution at 5% significance
level. Rejection frequency again follows a U-shaped function of b. This curve suggests that, for simple
spurious linear trend regression, the value of the optimal bandwidth should be around 0.3.

Last, we consider spurious regressions of a standard Gaussian random walk process {Xt}T
t=1

on independent Gaussian random walks {Zt}T
t=1, where Xt = ∑t

s=1 µs with us ∼d iid N (0, 1) and

Zt = ∑t
s=1 µ

(z)
s with µ

(z)
s ∼d iid N (0, IK) . Figure 6 shows kernel estimates of the probability densities

for these t-statistics under different scenarios based on 10,000 simulations. Figures 7 and 8 report
the simulated rejection frequencies of these t-statistics for various values of K and b. The patterns
exhibited are evidently similar to those in Figures 1–3. The same qualitative observations made for
Figures 1–3 therefore apply to these regressions.
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Figure 1: Densities of different t-statistics in spurious trend regression of a random walk

different t-statistics based on 10,000 simulations. The first row of graphs presents kernel

estimates of densities of the t-statistics for sample sizes n = 50, 100, 400, 800. Again, the

usual t-statistic and HAC statistic are divergent but at different rates. The HAR statistic

is evidently convergent. The second row in Figure 4 provides results for the HAR statistic

with different bandwidth choices. It is clear that the distributions become more dispersed

as b moves close to zero or close to one. In this respect the findings are similar to those of

Figure 1 when K = 1. In Figure 5, the rejection frequencies of the HAR statistic with various

bandwidth values are reported, which are calculated based on 10,000 simulations with sample

size n=200 and critical values from the standard Normal distribution at 5% significance level.

Rejection frequency again follows a U-shaped function of b. This curve suggests that, for

simple spurious linear trend regression, the value of the optimal bandwidth should be around

0.3.

Last, we consider spurious regressions of a standard Gaussian random walk process {Xt}Tt=1
on independent Gaussian random walks {Zt}Tt=1, where Xt =

∑t
s=1 µs with us ∼d iid N (0, 1)

and Zt =
∑t

s=1 µ
(z)
s with µ

(z)
s ∼d iid N (0, IK) . Figure 6 shows kernel estimates of the

probability densities for these t-statistics under different scenarios based on 10,000 simulations.

Figures 7-8 report the simulated rejection frequencies of these t-statistics for various values

of K and b. The patterns exhibited are evidently similar to those in Figures 1-3. The same

qualitative observations made for Figures 1-3 therefore apply to these regressions.
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Figure 1. Densities of different t-statistics in spurious trend regression of a random walk.
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Figure 2: Rejection frequencies of the usual t and HAC t-statistics in spurious trend regression
of a random walk calculated based on 10,000 simulations with sample size n = 200 and the
critical values from the standard Normal distribution at 5% significance level.
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Figure 5: Rejection frequencies of the HAR t-statistic in spurious linear trend regressions
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Figure 7: Rejection frequencies of the usual t and HAC t-statistics in spurious regressions
among random walks calculated based on 10,000 simulations with sample size n = 200 and
critical values from the standard Normal distribution at 5% significance level.
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random walks calculated based on 10,000 simulations with sample size n = 200 and critical values
from the standard Normal distribution at 5% significance level.
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5. Conclusions

Robust inference in trend regression poses many challenges. Not least of these is the critical
difficulty that a trending time series trajectory can be represented in a coordinate system by many
different functions, be they relevant or irrelevant, stochastic or non-stochastic. Valid significance
testing in this context needs to allow for the fact that trend regression formulations inevitably fail to
capture all the subtleties of reality and to a greater or lesser extent, therefore, involve some spurious
components. The practical implications of this message are powerfully stated in the header by David
Hendry that opens this article.

The present work has studied the asymptotic and finite sample performance of simple t statistics
that seek to achieve some degree of robustness to misspecification in such settings. The analysis is
based on three classic examples of spurious regressions, including regression of stochastic trends
on time polynomials, regression of stochastic trends on a simple linear trend, and regression
among independent random walks. Concordant with existing theory, the usual t-statistic and HAC
standardized t-statistic both diverge and imply ‘nonsense relationships’ with probability going to
one as the sample size tends to infinity. Also concordant with existing theory, when the number of
regressors K is fixed, the HAR standardized t-statistics converge to non-degenerate distributions free
from nuisance parameters, thereby controlling size and leading to valid significance tests in these
spurious regressions. These findings reinforce the optimism expressed in earlier work that fixed-b
methods of correction may fix inference problems in spurious regressions.

But when the number of trend regressors K → ∞, the results are different. First, rates of
divergence of the usual t-statistic and HAC t-test are greater by the factor

√
K than when K is fixed.

Second, the fixed-b HAR t-statistic is no longer convergent and instead diverges at the rate
√

K,
leading to spurious inference of significance when K → ∞. Thus, in the case of models with expanding
regressor sets, none of these standard statistics produce valid consistent tests with controllable size.
The failure of the HAR test in this setting is particularly important, given the growing use of machine
learning algorithms in econometric work where large numbers of regressors are a normal feature in
initial specifications. Future research might usefully focus on methods of controlling size and achieving
consistent significant tests in such settings. A further area of research that is relevant in practical work
involves extension of the present results to regressions that involve more general forms of stochastic
trend processes, including higher-order integrated and fractionally integrated processes, as well as
unbalanced regressions. The methods of the present paper should be useful in developing asymptotic
analyses of such potentially spurious regressions.
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Abbreviations

L2 [0, 1] space of square integrable functions on [0, 1].
=⇒ weak convergence.
b·c integer part of.
:= definitional equality.
op(1) tends to zero in probability.
oa.s(1) tends to zero almost surely.
Op(1) bounded in probability.

p−→ converge in probability.
r ∧ s min(r, s).
∼ asymptotic equivalence.
≡ distributional equivalence.
∼d distributed as

Appendix A. Proofs of Theorems in Section 2

Lemma A1. For any r ∈ [0, 1], let BϕK
(r) = B (r)−ZK ϕ̄K (r) = ∑∞

k=K+1
√

λk ϕk (r) ξk be the L2-projection

residual of B on ϕK (r), with ϕk (r) =
√

2 sin [(k− 1/2)πr], λk = ω2/
[
(k− 1/2)2 π2

]
and ξk ≡ iid

N (0, 1). When K → ∞,

(i) BϕK
(r) ∼ Op

(
1/
√

K
)

uniformly in r ∈ [0, 1],

(ii) K
∫ 1

0 B2
ϕK

= ω2/π2 + op (1) with ω2 = 2π fµ (0),

(iii)
∫ 1

0 B2
ϕK

[C′K ϕ̄K]
2 ∼ Op (1/K) ,

(iv)
∫ 1

0

∫ 1
0 kb (r− q) BϕK

(r) BϕK
(q) [C′K ϕ̄K (r)] [C′K ϕ̄K (q)] drdq ∼ Op (1/K) .

Lemma A2. When n→ ∞, K → ∞, 1/M + M/n→ 0, and K5/2/n + K3/2/n
1
2−

1
p → 0,

(i) C′K β̂K/
√

n = C′K α̂K = C′KZK + op (1) ,

(ii) K
(

s2
bC′K (Φ′KΦK)

−1 CK

)
= K

∫ 1
0 B2

ϕK
+ op (1) ,

(iii) K
M

(
ω̂2

C′K βK

)
=
(∫ 1
−1 k (s) ds

)
K
∫ 1

0 B2
ϕK

[C′K ϕ̄K]
2 + op (1) ,

(iv) K
n

(
ω̌2

C′K βK

)
= K

∫ 1
0

∫ 1
0 kb (r− q) BϕK

(r) BϕK
(q) [C′K ϕ̄K (r)] [C′K ϕ̄K (q)] drdq + op (1) ,

where ZK = (zk)
K
k=1 are the random coefficients in the orthonormal representation (5), s2

b, ω̂2
C′K βK

and

ω̌2
C′K βK

are defined as in formulae (8), (10) and (13), respectively.

Proof of Lemma A1. (i) It is easy to see that E[BϕK
(r)] = 0, and

Var
[

BϕK
(r)
]
=

∞

∑
k=K+1

λk ϕ2
k (r) = O

(
∞

∑
k=K+1

λk

)
= O

(
∞

∑
k=K+1

1
k2

)
= O

(∫ ∞

K

1
k2 dk

)
= O

(
1
K

)

uniformly in r. So by the Chebyshev’s inequality, BϕK
(r) = OP

(
1/
√

K
)

uniformly in r.
(ii) See (Phillips 2002), Lemma 3.1.
(iii)–(iv) The proofs of (iii) and (iv) are similar. Hence, only the proof of (iv) is given below.

By noticing that ξk ∼ iid N (0, 1) and for each k = 1, . . . , K the functions ϕk (r) =
√

2 sin [(k− 1/2)πr]
are bounded uniformly in r, we have
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E
[

BϕK
(r) BϕK

(q)
]
= E

[
∞

∑
k,l=K+1

λ1/2
k λ1/2

l ϕk (r) ϕl (q) ξkξl

]
=

∞

∑
k=K+1

λk ϕk (r) ϕk (q)

= O

(
∞

∑
k=K+1

λk

)
= O

(
1
K

)
uniformly in r ∈ [0, 1] and q ∈ [0, 1] .

Therefore,

E
{∫ 1

0

∫ 1

0
kb (r− q) BϕK

(r) BϕK
(q)
[
C′K ϕ̄K (r)

] [
C′K ϕ̄K (q)

]
drdq

}
=
∫ 1

0

∫ 1

0
kb (r− q) E

{
BϕK

(r) BϕK
(q)
} [

C′K ϕ̄K (r)
] [

C′K ϕ̄K (q)
]

drdq

= O
(

1
K

) ∫ 1

0

∫ 1

0

∣∣C′K ϕ̄K (r)
∣∣ ∣∣C′K ϕ̄K (q)

∣∣ drdq

= O
(

1
K

)(∫ 1

0

∣∣C′K ϕ̄K (r)
∣∣ dr

)2

= O
(

1
K

)
,

since kb (r− q) is uniformly bounded and(∫ 1

0

∣∣C′K ϕ̄K (r)
∣∣ dr
)2

≤
∫ 1

0

[
C′K ϕ̄K (r)

]2 dr = C′K

(∫ 1

0
ϕ̄K (r) ϕ̄′K (r) dr

)
CK = C′KCK = 1,

(∫ 1

0

∣∣C′K ϕ̄K (r)
∣∣ dr

)2

≥
(∫ 1

0
C′K ϕ̄K (r) dr

)2

=

(∫ 1

0

K

∑
k=1

ck ϕk (r) dr

)2

=

 K

∑
k=1

ck
−
√

2 cos [(k− 1/2)πr]
(k− 1/2)π

∣∣∣∣∣
1

0

2

=

(
K

∑
k=1

√
2ck

(k− 1/2)π

)2

.

Further

E
[

BϕK
(r) BϕK

(q) BϕK
(s) BϕK

(τ)
]

= E

 ∞

∑
k=K+1

λ2
k ϕk (r) ϕk (q) ϕk (s) ϕk (τ) ξ4

k +
∞

∑
h,k=K+1

h 6=k

λkλh ϕk (r) ϕk (q) ϕh (s) ϕh (τ) ξ2
k ξ2

h



+ E

 ∞

∑
l,k=K+1

l 6=k

λkλl ϕk (r) ϕk (s) ϕl (q) ϕl (τ) ξ2
k ξ2

l +
∞

∑
l,k=K+1

l 6=k

λkλl ϕk (r) ϕk (τ) ϕl (q) ϕl (s) ξ2
k ξ2

l


= 3

∞

∑
k=K+1

λ2
k ϕk (r) ϕk (q) ϕk (s) ϕk (τ) +

∞

∑
h,k=K+1

h 6=k

λkλh ϕk (r) ϕk (q) ϕh (s) ϕh (τ)

+
∞

∑
l,k=K+1

l 6=k

λkλl ϕk (r) ϕk (s) ϕl (q) ϕl (τ) +
∞

∑
l,k=K+1

l 6=k

λkλl ϕk (r) ϕk (τ) ϕl (q) ϕl (s)

=
∞

∑
k=K+1

λk ϕk (r) ϕk (q)
∞

∑
h=K+1

λh ϕh (s) ϕh (τ) +
∞

∑
k=K+1

λk ϕk (r) ϕk (s)
∞

∑
l=K+1

λl ϕl (q) ϕl (τ)

+
∞

∑
k=K+1

λk ϕk (r) ϕk (τ)
∞

∑
l=K+1

λl ϕl (q) ϕl (s)

= 3×O
(

1
K

)
×O

(
1
K

)
= O

(
1

K2

)
uniformly in (r, q, s, τ) ∈ [0, 1]4 .
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Therefore,

E

{(∫ 1

0

∫ 1

0
kb (r− q) BϕK

(r) BϕK
(q)
[
C′K ϕ̄K (r)

] [
C′K ϕ̄K (q)

]
drdq

)2
}

= O
(

1
K2

)
×
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∣∣C′K ϕ̄K (r)
∣∣ ∣∣C′K ϕ̄K (q)

∣∣ ∣∣C′K ϕ̄K (s)
∣∣ ∣∣C′K ϕ̄K (τ)

∣∣ drdqdsdτ

= O
(

1
K2

)
×
(∫ 1

0

∣∣C′K ϕ̄K (r)
∣∣ dr
)4

= O
(

1
K2

)
.

Finally, we get

Var
(∫ 1

0

∫ 1

0
kb (r− q) BϕK

(r) BϕK
(q)
[
C′K ϕ̄K (r)

] [
C′K ϕ̄K (q)

]
drdq

)
= O

(
1

K2

)
.

Proof of Lemma A2. (i) See (Phillips 2002), Lemma 2.2.
(ii) Using the Hungarian strong approximation (e.g., Csörgõ and Horváth 1993), we can construct

an expanded probability space with a Brownian motion B (·) for which

sup
1≤t≤n

|Xt − B (t)| = oa.s

(
n1/p

)
,

or

sup
1≤t≤n

∣∣∣∣ Xt√
n
− B

(
t
n

)∣∣∣∣ = oa.s

(
1

n1/2−1/p

)
.

Applying the matrix norm ‖A‖ = maxi ∑K
j=1
∣∣aij
∣∣, (Phillips 2002) proved that

1
n

n

∑
t=1

ϕKt ϕ′Kt = IK + O
(

K
n

)
,

and

β̂K/
√

n = α̂K = Λ1/2
K ξ̃K + Oa.s

(
K
n
+

1
n1/2−1/p

)
= ZK + Oa.s

(
K
n
+

1
n1/2−1/p

)
,

where ξ̃K = (ξk)
K
k=1 , and ZK = (zk)

K
k=1 are the random coefficients in the orthonormal representation

(5). Therefore, we have

sup
1≤t≤n

∣∣∣∣ ût√
n
− BϕK

(
t
n

)∣∣∣∣ = sup
1≤t≤n

∣∣∣∣( Xt√
n
− α̂′K ϕKt

)
−
(

B
(

t
n

)
− Z′K ϕKt

)∣∣∣∣
≤ sup

1≤t≤n

∣∣∣∣ Xt√
n
− B

(
t
n

)∣∣∣∣+ sup
1≤t≤n

∣∣ϕ′Kt (ZK − α̂K)
∣∣

≤ oa.s

(
1

n1/2−1/p

)
+ sup

1≤t≤n

∥∥ϕ′Kt
∥∥ ‖ZK − α̂K‖

= oa.s

(
1

n1/2−1/p

)
+ Oa.s

(
K
n
+

1
n1/2−1/p

)
sup

1≤t≤n

∥∥ϕ′Kt
∥∥

= Oa.s

(
K2

n
+

K
n1/2−1/p

)
,

as sup1≤t≤n
∥∥ϕ′Kt

∥∥ = sup1≤t≤n
√

2 ∑K
k=1 |sin [(k− 1/2)πt/n]| = O (K). The second inequality comes

from Hölder’s inequality. Hence, when K5/2/n + K3/2/n1/2−1/p → 0, we have
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K
n

s2
b =

K
n

n

∑
t=1

(
ût√

n

)2
=

1
n

n

∑
t=1

(
√

KBϕK

(
t
n

)
+ Oa.s

(
K5/2

n
+

K3/2

n1/2−1/p

))2

=
1
n

n

∑
t=1

(√
KBϕK

(
t
n

)
+ oa.s (1)

)2
=

K
n

n

∑
t=1

(
BϕK

(
t
n

))2
+ oa.s (1)

= K
∫ 1

0
B2

ϕK
(r) dr + op (1) .

It is straightforward to see that when K/n→ 0,

C′K

(
1
n

Φ′KΦK

)−1
CK = C′K

(
IK + O

(
K
n

))
CK = C′KCK + o (1) = 1 + o (1) .

Therefore, when K5/2/n + K3/2/
(

n1/2−1/p
)
→ 0,

K
(

s2
bC′K

(
Φ′KΦK

)−1 CK

)
=

K
n

s2
b

(
C′K

(
1
n

Φ′KΦK

)−1
CK

)
= K

∫ 1

0
B2

ϕK
+ op (1) .

(iii), (iv) The proofs of (iii) and (iv) are similar, so only (iv) is proved here. When K5/2/n +

K3/2/n1/2−1/p → 0,

K
n2 C′K ̂lrvarHAR (ût ϕKt)CK

=
1
n2

n−1

∑
j=−n+1

kb

(
j
n

)
K
n ∑

1≤t,t+j≤n
ûtût+jC′K ϕKt ϕ′Kt+jCK

=
1
n2

n

∑
s,t=1

kb

(
t− s

n

) √
Kût√

n

√
Kûs√

n
C′K ϕKt ϕ′KsCK

=
1
n2

n

∑
s,t=1

kb

(
t− s

n

)(√
KBϕK

(
t
n

)
+ oa.s (1)

)(√
KBϕK

( s
n

)
+ oa.s (1)

)
C′K ϕKt ϕ′KsCK

=
1
n2

n

∑
s,t=1

kb

(
t− s

n

)(√
KBϕK

(
t
n

))(√
KBϕK

( s
n

))
C′K ϕKt ϕ′KsCK + oa.s (1)

= K
∫ 1

0

∫ 1

0
kb (r− q) BϕK

(r) BϕK
(q)
[
C′K ϕ̄K (r)

] [
C′K ϕ̄K (q)

]
drdq + op (1) .

Therefore, when K5/2/n + K3/2/
(

n1/2−1/p
)
→ 0,

K
n

(
ω̌2

C′K βK

)
= C′K

(
1
n

Φ′KΦK

)−1 ( K
n2
̂lrvarHAR (ût ϕKt)

)(
1
n

Φ′KΦK

)−1
CK

= C′K

(
K
n2
̂lrvarHAR (ût ϕKt)

)
CK + oa.s.(1)

= K
∫ 1

0

∫ 1

0
kb (r− q) BϕK

(r) BϕK
(q)
[
C′K ϕ̄K (r)

] [
C′K ϕ̄K (q)

]
drdq + op (1) .

Proof of Theorem 1. (i) and (ii) The proofs are similar to those in (Phillips 1998) and are omitted.
(iii) From (Phillips 1998), when n → ∞ and K is fixed, n−1/2βK = α̂K ⇒ ZK. Let ϕKt =

(ϕ1 (t/n) , . . . , ϕK (t/n))′, we have

ûbn·c√
n

=
1√
n

(
Xbn·c − β̂′K ϕKbn·c

)2
⇒ B (·)− Z′K ϕ̄K (·) := BϕK

(·) .
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The scaled long run variance estimator can be written as

1
n2
̂lrvarHAR (ût ϕKt) =

1
n2

n−1

∑
j=−n+1

kb

(
j
n

)
1
n ∑

1≤t,t+j≤n
ûtût+j ϕKt ϕ′Kt+j

=
1
n2

n

∑
s,t=1

kb

(
t− s

n

)
ût√

n
ûs√

n
ϕKt ϕ′Ks

⇒
∫ 1

0

∫ 1

0
kb (r− q) BϕK

(r) BϕK
(q) ϕ̄K (r) ϕ̄′K (q) drdq.

Noticing that
1
n

Φ′KΦK =
1
n

n

∑
t=1

ϕKt ϕ′Kt →
∫ 1

0
ϕ̄K (r) ϕ̄′K (r) dr = IK,

it follows that

1
n

ω̌2
C′K βK

= C′K

{
1
n

Φ′KΦK

}−1 ( 1
n2
̂lrvarHAR (ût ϕKt)

){
1
n

Φ′KΦK

}−1
CK

⇒ C′K
∫ 1

0

∫ 1

0
kb (r− q) BϕK

(r) BϕK
(q) ϕ̄K (r) ϕ̄′K (q) drdqCK

=
∫ 1

0

∫ 1

0
kb (r− q) BϕK

(r) BϕK
(q)
[
C′K ϕ̄K (r)

] [
C′K ϕ̄K (q)

]
drdq.

Therefore,

t
HAR

C′K βK
=

C′K β̂K

ω̌C′K βK

=
n−1/2C′K β̂K{

n−1ω̌2
C′K βK

}1/2

⇒
C′KZK[∫ 1

0

∫ 1
0 kb (r− q) BϕK

(r) BϕK
(q)
[
C′K ϕ̄K (r)

] [
C′K ϕ̄K (q)

]
drdq

]1/2 .

Let ZW
K = ZK/ω =

∫ 1
0 W ϕ̄K, W (r) = B (r) /ω ≡ BM (1), ω2 = 2π fµ (0), and WϕK

(r) =

BϕK
(r) /ω = W (r)−

(
ZW

K
)′

ϕ̄K (r) . It then follows immediately that

t
HAR

C′K βK
⇒

C′KZW
K[∫ 1

0

∫ 1
0 kb (r− q)WϕK

(r)WϕK
(q)
[
C′K ϕ̄K (r)

] [
C′K ϕ̄K (q)

]
drdq

]1/2 .

Appendix B. Derivations Leading to (23)–(28)

Lemma A3. For the regression model (17) let B (·) ≡ BM
(
ω2) with ω2 = 2π fµ (0) > 0. Irrespective of

whether a is zero or not, when n→ ∞ and 1/M + M/n→ 0, the following results hold:

(i) for r ∈ [0, 1],
ûbnrc√

n
⇒ B (r)− 3

(∫ 1

0
sB (s) ds

)
r := B (r) ;

(ii)

n2 (sa)
2 ⇒ 3

∫ 1

0
B2 ;

(iii)
n2

M
(ω̂a)

2 ⇒ 9
∫ 1

−1
k (s) ds

∫ 1

0
r2B2 ;
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(iv)

n (ω̌a)
2 ⇒ 9

∫ 1

0

∫ 1

0
kb (r− q) B (r) B (q) rqdrdq ;

where sa, ω̂a, ω̌a are defined as in (20)–(22), respectively, ût = Xt − ât for t = 1, · · · , n, k (·) is a kernel
function and kb

(
j
n

)
= k

(
j

nb

)
.

Proof of Lemma A3. (i) Using the functional law and continuous mapping it is straightforward
to obtain

√
n (â− a) =

n−5/2 ∑n
t=1 X0

t
n−3 ∑n

t=1 t2 ⇒
∫ 1

0 sB (s) ds∫ 1
0 s2ds

≡ 3
∫ 1

0
sB (s) ds.

Therefore, for any r ∈ [0, 1],

ûbnrc√
n

=
Xbnrc − â · bnrc

√
n

=
X0
bnrc√

n
−
√

n(â− a)
bnrc

n

⇒ B (r)− 3
(∫ 1

0
sB (s) ds

)
r := B (r) .

(ii) From the expression of sa given in (20), the following is immediate

n2 (sa)
2 = n2

[
1
n

n

∑
t=1

(Xt − ât)2

](
n

∑
t=1

t2

)−1

=

[
1
n

n

∑
t=1

(
ût√

n

)2
](

1
n3

n

∑
t=1

t2

)−1

⇒ 3
∫ 1

0
B2 (s) ds.

(iii) As 1/M + M/N → 0 when n→ ∞, we have for any |j| ≤ M and r ∈ [0, 1]

bnrc+ j
n

= r + O
(

M
n

)
→ r as n→ ∞.

Therefore, from the continuous mapping theorem, it follows that

1
M

1
n3
̂lrvarHAC (tût) =

1
M

M

∑
j=−M

k
(

j
M

)
1
n ∑

1≤t,t+j≤n

ût√
n

ût+j√
n

t
n

t + j
n

⇒
∫ 1

−1
k (s) ds

∫ 1

0
B (r)2 r2dr.

Hence,

n2

M
(ω̂a)

2 =

(
1

n3

n

∑
t=1

t2

)−1 [
1
M

1
n3
̂lrvarHAC (tût)

](
1

n3

n

∑
t=1

t2

)−1

⇒ 9
∫ 1

−1
k (s) ds

∫ 1

0
B (r)2 r2dr.

(iv) For the HAR based test given in (22), we have

̂lrvarHAR (tût) =
n−1

∑
j=−n+1

kb

(
j
n

) 1
n ∑

1≤t,t+j≤n
tûtût+j (t + j)


=

1
n

n

∑
s,t=1

kb

(
t− s

n

)
ûtûsts.
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By continuous mapping

1
n4
̂lrvarHAR (tût) =

1
n2

n

∑
s,t=1

kb

(
t− s

n

)
ûs√

n
ût√

n
s
n

t
n

⇒
∫ 1

0

∫ 1

0
kb (r− q) B (r) B (q) rqdrdq.

Then,

n (ω̌a)
2 =

(
1

n3

n

∑
t=1

t2

)−1 (
1

n4
̂lrvarHAR (tût)

)(
1

n3

n

∑
t=1

t2

)−1

⇒ 9
∫ 1

0

∫ 1

0
kb (r− q) B (r) B (q) rqdrdq.

Proof of (23)–(28). The stated results now follow directly from the above and the fact that
√

nâ ⇒
3
∫ 1

0 sB (s) ds under H0 : a = 0, and â
p−→ a under H1 : a 6= 0.

Appendix C. Proof of the Theorem in Section 3

Proof of Theorem 3. (i): In the regression (31), we already have that n−1/2ybnrc ⇒ B (r), n−1/2zkbn·c ⇒
Vk (·), for k = 1, · · · , K, and b̂zK ⇒ EK := (ek)

K
k=1. Let V̄K = (Vk)

K
k=1 . Based on continuous mapping,

we have

n−2
n

∑
t=1

ztz′t =
1
n

n

∑
t=1

zt√
n

z′t√
n
⇒
∫ 1

0
V̄KV̄′K.

Noticing that

ûbn·c√
n

=
ybn·c√

n
− b̂′zK

zbn·c√
n
⇒ B (·)− E′KV̄K (·) := WyK (·) ,

we obtain

n−2
n

∑
t=1

(ût)
2 =

1
n

n

∑
t=1

(
ût√

n

)2
⇒
∫ 1

0
W2

yK.

Therefore

n
(
sbzK

)2
= C′K

[
n−2

n

∑
t=1

(ût)
2

](
n−2

n

∑
t=1

ztz′t

)−1

CK ⇒ C′K

(∫ 1

0
V̄KV̄′K

)−1

CK

∫ 1

0
W2

yK,

and
1√
n

tbzK =
C′K b̂zK{

n
(
sbzK

)2
}1/2 ⇒

C′KEK{
C′K
(∫ 1

0 V̄KV̄′K
)−1

CK
∫ 1

0 W2
yK

}1/2 .

(ii) As 1/M + M/n→ 0 when n→ ∞, for any |j| ≤ M and r ∈ [0, 1], we have

bnrc+ j
n

= r + O
(

M
n

)
→ r as n→ ∞.

Hence, for any |j| ≤ M,

1
n ∑

1≤t,t+j≤n

zt√
n

ût√
n

ût+j√
n

z′t+j√
n
⇒
∫ 1

0
W2

yKV̄KV̄′K,

and
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1
M

1
n2
̂lrvarHAC (ztût) =

1
M

M

∑
j=−M

k
(

j
M

)[
1
n ∑

1≤t,t+j≤n

zt√
n

ût√
n

ût+j√
n

z′t+j√
n

]

⇒
∫ 1

−1
k (s) ds

∫ 1

0
W2

yKV̄KV̄′K.

Therefore,

n
M
(
ω̂bzK

)2
= C′K

(
n−2

n

∑
t=1

ztz′t

)−1 [
1
M

1
n2
̂lrvarHAC (ztût)

](
n−2

n

∑
t=1

ztz′t

)−1

CK

⇒ C′K

(∫ 1

0
V̄KV̄′K

)−1 [∫ 1

−1
k (s) ds

∫ 1

0
W2

yKV̄KV̄′K

] (∫ 1

0
V̄KV̄′K

)−1

CK,

and √
M
n

t
HAC

bzK
=

C′K b̂zK{
n
M
(
ω̂bzK

)2
}1/2

⇒
C′KEK{

C′K
(∫ 1

0 V̄KV̄′K
)−1 [∫ 1

−1 k (s) ds
∫ 1

0 W2
yKV̄KV̄′K

] (∫ 1
0 V̄KV̄′K

)−1
CK

}1/2 .

(iii) Note that

1
n3
̂lrvarHAR (ztût) =

1
n3

n−1

∑
j=−n+1

kb

(
j
n

)(
1
n ∑

1≤t,t+j≤n
ztûtût+jz′t+j

)

=
1
n4

n

∑
s,t=1

kb

(
t− s

n

)
ztûtûsz′s

=
1
n2

n

∑
s,t=1

kb

(
t− s

n

)
zt√

n
ût√

n
ûs√

n
z′s√

n

⇒
∫ 1

0

∫ 1

0
kb (r− p) V̄K (r)WyK (r)WyK (p) V̄′K (p) drdp := H.

Therefore,

(
ω̌bzK

)2
= C′K

(
n−2

n

∑
t=1

ztz′t

)−1 (
1
n3
̂lrvarHAR (ztût)

)(
n−2

n

∑
t=1

ztz′t

)−1

CK

⇒ C′K

(∫ 1

0
V̄KV̄′K

)−1

H
(∫ 1

0
V̄KV̄′K

)−1

CK,

and

t
HAR

bzK
=

C′K b̂zK{(
ω̂bzK

)2
}1/2 ⇒

C′KEK{
C′K
(∫ 1

0 V̄KV̄′K
)−1

H
(∫ 1

0 V̄KV̄′K
)−1

CK

}1/2 .
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