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1. INTRODUCTION

The recent paper by K.Kazarjan, I.Spitkovski and F.Soria [1] is devoted to
boundary Riemann problem in the weighted L, spaces with singular weights, but
as a consequence contains a number of statements related to the Toeplitz oper-
ators in the Hardy space Hi in the unit disk. The corresponding result from
[1] (Theorem 2) on Fredholmity of a pair of subspaces gives a nice generalization
of the situation considered much earlier in the Helson-Sarason Theorem [2]. But
the first statement from [1] (Theorem 1), which actually connects the dimension
of the kernel of the corresponding Toeplitz operator with the number of so-called
”zeroes” of the weight function on the unit circle is not true and the main pur-
pose of the present paper is to clarify this point and to construct the counterex-
ample to the statement of the above mentioned Theorem 1 from [1]. In what
follows we denote as usual by D the unit disk, by T the unit circle. Let also
P={p(z) =Y 1_, arz®,m,n € Z,m < n,z € T} be the linear space of all trigono-
metric polynomials on T and P_ = {p(z) € P,n < 0}, P+ = {p(z) € P,m > 0}.
Let us first recall that the famous Helson-Szeg6 and Hunt-Muckenhoupt- Whee-
den theorems [3, 4]describe those positive weights w € L;(T) for which the angle
between Closy, (w,1yP— and Closy,(,,1)P+ is nonzero. Namely, such an angle is
nonzero if and only if the weight w satisfies the Muckenhoupt condition. We de-
note in what follows Closr, (w 1)P+ = HfU,Jr, Closp,(wr)P- = Hfu,_ and call these
spaces the weighted Hardy spaces of analytic and antianalytic functions respec-
tively.

In the paper ”Past and Future” [2] Helson and Sarason have obtained the further
result which turned out to be very essential for the Fredholm theory of Toeplitz
operators. This theorem asserts that the angle in Lo(w,T) between the closures
of P_ and 2VP,,N € N is nonzero if and only if w = |P,(z)|>wys, where P,
is a polynomial of degree at most N with all its zeroes lying on T and wj; is the
Muckenhoupt (or Helson-Szeg6) weight. We should remind the reader that by Szeg6
theorem for all such weights w logw € L;(T) and consequently w = |h|2, where h
is an outer function from H?.
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In terms of this outer function h the weighted Hardy spaces are related to the
ordinary Hardy spaces (with respect to Lebesgue measure dy) in a very simple way,
namely H2 | = H3 /h,H2 = H? /h.

Therefore all the facts on the intersection of H? , and H2 _ in Ly(w,T) are
equivivalent to the facts on the intersection of H2 and 2H? in L,. Going further
and recalling the definition of Toeplitz operator T, with a symbol a € L:

T.f € Piaf, vien?,

we see that the last intersection is exactly the kernel of the operator 7' .

h
Note that Helson-Szego theorem is closely related to the following fact on the
invertibility of Toeplitz operators with unimodular symbols (see for example [5,
Appendix 4)):

Theorem. Let a € Loo(T),|a| =1, a.e. on T, the Toeplitz operator T, = Pra|H?

1s wnvertible if and only if a = % for some outer function h € Hi, such that the
weight |h|? on T is the Muckenhoupt one.

In the same context the Helson-Sarason Theorem is related to the description
of those Toeplitz operators Ty,|a|] = 1 a.e on T for which the operator T,n, is
invertible for some n € N or the same for which indIl, = dimKerl, = n. Here as
usual by indA we denote the Fredholm index of the operator A, i.e. in a situation
when A-image is closed, indA = dimKerA — dimKerA*.

h

For such Toeplitz operators az™ = 3/, where h is outer function from Hi and

|h|? is the Muckenhoupt weight on T, or in terms of Helson-Sarason Theorem,
a = %, where h is an outer function from H?, and |h|? is the weight from the
Helson-Sarason Theorem with exactly n zeroes on T.

In terms of weighted Hardy spaces H, 3, 4+ and H, 5,,7 this result in particular means
that

1.the sum H_ | + H? _ is closed and

2.dim{H? ,NH, }=mn

if and only if w = |P,|?wys, where degree of P, is equal to n and all its zeroes
are lying on the unit circle, and wj; is the Muckenhoupt weight.

This last statement is exactly the particular case of the Theorem 2 from [1] for
p = 2 and the absence of the ”poles” of the weight on T (i.e. when w € L;(T)).
In the terminology of [1] the outer function h,w = |h|?, has a zero of order k at
the point ¢ € T if the function 1/h is not locally square summable at ¢, but an
expression (z — ¢)¥/h is locally square summable at ¢ and k is the smallest positive
integer with such a property. The ”pole” of h is defined as a zero of 1/h at the
point on the unit circle.

The Theorem 1 from [1] relaxes the above condition 1 on the closedness of the
sum and relates the dimension of the intersection with the number of poles and
zeroes of h on the unit circle.

In particular in a case of summable weight (absence of poles) this theorem asserts
that

1.the dimension « of the intersection {H72 , (VHZ, _} is finite if and only if the
total number n of zeroes of h on T (taking into account the multiplicities) is finite
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and that

2. = n,. (condition 5)

This is exactly the statement which is contained in the published version of that
paper (announcement), which appeared recently in Dokladi Akademii Nauk, V.353,
no. 6 (1997), pp 717—719. The author should mention that at the beginning
of 1997 he had got the draft version of this paper from one of the co-authors
(K.Kazarjan) and has informed him about the counterexample which shows that
without the assumption on the closedness of the sum of the weighted Hardy spaces
the condition (5) is not true (we will discuss this example in the next section). Later
K.Kazarjan informed the author that they had sent the letter to the editorial board
of DAN having asked to improve the miss-print: to change the sign of equality in
the condition (5) to the sign of less-or-equal, i.e. that @ < ny. After that he also
has confirmed that by having done this replacement they have managed to avoid
the closedness condition in Theorem 1 of their paper.

In what follows we intend to show that even in this modified form the Theorem
1 from [1] is not true by producing the example of the outer function h with the
infinite number of ”zeroes” on T for which « is still finite.

2.COUNTEREXAMPLE TO THE PUBLISHED VERSION OF THEOREM 1 FROM [1]

The counterexample which shows that condition (5) from [1,Theorem 1]is not
true is as follows. Let us consider the function h(z) = /1 — z. h is an outer function
from H® and has one very simple property

S| S

—R o

where c is a unimodular constant depending on a choice of the branch of the square
root, which could be produced explicitly but plays no role in our reasoning. In the
terminology of the paper [1] h has exactly one zero on T at the point 1 of degree
one. Let us show that for w = |[1—z| the dimension of the intersection H? ,, (H? ,,
is equal to zero or which is the same that the dimension of K erT% is equal to zero.

Suppose that there is a nonzero element ¢ from the last mentioned kernel. Then

by (1)

;ﬁq: q—,

where ¢ € H2. Now, since h € HS°, we have
hq = hq> (2)
q- = hq.

Note that, since h € H$®, hq_ € H2,hg € H3. Therefore (2) may hold only if hg
is equal to constant, say c. But then ¢ = ¢/v/1— 2z ¢ H3. The last contradiction
shows that KerT% = {0}.

The replacement of sign ”=" by the sign ”<” in condition (5) of [1] makes this
simple counterexample invalid but before producing the example which will show
that the first statement of Theorem 1 from [1] is not true (dimension of intersection
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is finite iff the total number of zeroes of h on T is finite), let us consider another
simple example which will show that there exists a function h which has arbitrary
many zeroes on T for which KerT: is still zero space.

This example is a simple modiﬁchation of the previous one. Consider the function
h =+1—2zF k € N. his an outer function from H$® with k ”zeroes” on T at the
k-roots of the unit, each of which is of degree one. Therefore the total number of
”zeroes” of h on T is equal to k. Let us show that dimKerTi = 0. Suppose again

h
that there exits nonzero element g from this kernel. Note that h has a property

where c is again a unimodular constant depending on a choice of the branch of the
square root. Therefore

Now .
—khq =hq_,hq € Hi,i_Lq_ c H?.
z

The last condition may hold only if hq is a polynomial in z of degree less or equal
to k — 1. But for the function ¢ to remain in Hi this polynomial should have at
least simple zeroes at all k-roots of unit and therefore should have a degree at least
k. This contradiction shows that again K erT% is a zero space.

3. THE COUNTEREXAMPLE TO THE
MODIFIED VERSION OF THEOREM 1 FROM [1].

The main operator-theoretical idea will be just the same as in the the pre-
vious counterexamples. We want to construct the function x € HS°, which is
meromorphic in C\ {—1,1}, has an infinite number of simple zeroes at the points
¢ € T\ {-1,1},j = 1,2,..., the set of which has two accumulating points 1 and
—1, and infinite number of simple poles at the points 1/)\_]',)\]' e D, =12,...
with the same accumulating points. The additional property we require from Yy is
as follows:

X 1
A — 3
<" Bx (3)
where B is a Blaschke product with the simple zeroes at A1, A2, .... Then for the
outer function h = ,/x € HY® we have
h 1h
- - 4

and just as in the previous section, if there exists a nonzero function ¢ € KerTs
h
then

q=q- € H?,

S S

1
Bp
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that is 1
—qh = (I,;L 5}
B/g ’ ( )

where the function gh is from H? and g_h is from H?. As above, (3) holds only if

1
1— A

gh € Kg, = V{ }. (6)

It is well known (see for example [5]) that all functions from Kp, are analytically
continuable through any point on T, which is not an accumulating point of the
zeroes of the Blaschke product Bj. Hence all the functions from Kp, are analytic
not only in D but also on T\ {—1,1}. This means that gh is analytic at all points
¢j»j =1,2,... and, by construction of function h, which has zeroes of degree 1/2
at all these points, gh should have at least simple zeroes at these points.

To construct the desired function x and to show that there could be at most
one function in Kp, with at least simple zeroes at all points A;,7 = 1,2,...,
we will use some facts from the theory of character-automorphic (with respect to
some discrete group of Mobius transformations of D) Hardy spaces which is closely
related to harmonic analysis in finitely connected domains (and bordered Riemann
surfaces)(see [6, 7, 8, 9]). Though in what follows we will not even mention the
connection with harmonic analysis on the bordered Riemann surfaces, some facts
we cite and use below, could be explained in the most simple way in frames of this
theory. The facts we will use are related to the simplest case of the annulus or which
is the same to the case of one parametric discrete group of Mobius transformations
in D. Note that the basis of harmonic analysis in this case for automorphic functions
has been developed in [10,11].

We should also mention here that the desired function x could be produced using
the unit disk theory only (see remarks in the concluding section) and our way of
using the theory of character-automorphic functions is motivated by the wish to
demonstrate the certain ideas of this theory which could be useful in other questions
of the unit disk situation.

We will consider the simplest discrete group % of Mobius transformations of D

generated by one transformation v = 1g:BﬂC ,0 < B < 1. This group has two limiting

points 1 and —1. If we use another conformal representation of D in a form of
an infinite strip S = {w = x + iy|0 < y < 1}, where the points 1 and —1 in D
correspond to oo and —oo in S. Then in this strip the group X has a very simple
form: it is a group of shifts on a period 7 = 7(8) > 0, 7(w) = w + 7. Let us also
agree that the point at the origin in the disk corresponds to the point 7/2 4 i1/2
in S. The rectangle Fy = {w = ¢ + iy € S|0 < z < 1} and the corresponding set
in D which contains the origin (and will also be denoted by Fp) are the so-called
fundamental domains (rectangles) of ¥. The union of the inner boundary sides
{0 <z <1l,y=0}and {{0 <z < 1,y =1} (and the corresponding subset of T)
of this rectangle will be denoted by I'g, I'; = I'g + j7 (I'; = 7/ (T9)),5 € Z. The
rectangle which in the disk-model is symmetric to Fjy with respect to the unit circle
in the strip-model is a rectangle of the strip S = {w =z +iy| — 1 <y < 0} and is
symmetric to Fy with respect to the real axis. We will denote it by J(Fp) in the
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both models (J is a reflection with respect to the unit circle in the disk-model and
is reflection with respect to the real axis in the strip-model).

The most simple and well-known subspace of Hi, related to the group X is the
subspace of all functions f € Hi which are automorphic with respect to X, i.e. for
which f(v(z)) = f(z). Note that for any two functions f and g from this subspace

1 _d¢
<f’g>_%/1rfg?_

1 3 J 3 M —
o j:z_:oo L @07 (O) 5 d
FRY PR
2mi /ro fgj:z_:oo #(Q)

which means that this subspace may be considered as a subspace of a Hilbert space

Ls(70) with respect to the measure dp = 5= > %d( on I'g. Note (see [8])
j=—0o0

that the last series converges uniformly on any compact set in C \ {1, —1}.

But there are other natural subspaces of Hi which can be reduced to the sub-
spaces of Ly(I'g,dp). For any fixed x € [0, 2] consider all the functions from H?
with the property f(v(¢)) = e f(¢). This space is called the character-automorphic
Hardy space corresponding to the character x and is denoted by H_zh,i. In these
notations the discussed above space of automorphic functions is exactly the space
H-zho- In the same way as it was done above for H?r,o, we can show that HJQF,N may
also be treated as a subspace of Ly(I'g,dp).In the same way we can consider the
character-automorphic subspaces of H? and L2?. The first one will be denoted by
H E,H and the restriction of the functions from the second one on I'y will obviously
give us Lo(T'g,dp) for any character k. Lastly note that since H?ﬁn is a functional

Hilbert space, for any ( € Fj there exist a reproducing kernel at this point, which
will be denoted by kF,

/F fREdp = £(C),Vf € H2.,.

The facts we need from the theory of character-automorphic Hardy spaces are
as follows.

(1) For any « € [0, 27|
Ly(To,dp) = H2 . ® H? , &M,

where 9)1,; is one-dimensional so-called k-automorphic defect space. The
function m, which generates 90, is meromorphic in C\ {1, —1}. The zero-
pole divisor of this function is very simple: In the rectangle Fy U J(Fp) U
0,7) = {w =2+ iyl0 < z < 7,—1 < y < 1 it has two poles and two
zeroes. The poles are at the points i1/2, —i1/2 and one of the zeroes is in
the point 7/2 —i1/2 (point at oo in the disk-model). Note that this part of
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zero-pole divisor of m,, does not depend on k. Only the second zero depends
on k, but for all k the corresponding point lies on the line z = 7/2. The
total zero-pole divisor of this function is obtained from the described one
by translation by the elements of the group X.

(2) To get the character-automorphic function, meromorphic on C \ {1, -1},
with the "minimal” zero-pole divisor in the rectangle Ry = FyUJ(Fp)U[0,7),
i.e. with only one pole p and only one zero z in Ry, one should choose z and
p in such a way, that Rez = Rep. If so, the corresponding to this function
character x will be modulo 27 equal to w(Imz — Imp).

Now if we take z € [0,7) and p = z — ir,0 < r < 1, the corresponding
function x = x., will be bounded analytic function in Fy U [0,7) and
therefore bounded analytic function in S. It will have a simple zero at the
point z and its translates by X. In what follows it will be more convenient
for us to use the disk-model and we will denote by (y the point on I'y in
the disk-model, corresponding to the point z and by Ay the point in D
corresponding to the point p = x + ir. Therefore y will the meromorphic
in C\ {1, -1}, bounded in D analytic on T \ {1,—1} and will have simple
zeroes at the points ¢; = 77((p),j € Z. Moreover the function x/x will be
the function of the same type, with the zeroes at A; = 77(\g) and poles at
/X =97 (%0) This function is unimodular on the boundary of the strip

S and in the disk-model is a Blaschke product By with the zeroes at the
points A; =7 (J(Xo)), i.e.
x 1

X Ba’

(3) Let us denote by E, the operator of orthogonal projection in Ls(T) onto
the space L§ of k-automorphic functions from Ly(T) (see [7, 8, 12, 13]).
Following [8] we will call this operator the k-automorphic conditional ex-
pectation. The following expression for E, in terms of Poincare 6-series
(averaging with respect to the group) has been obtained in [8]:

S ) e
E.f="2_ o Vf € Ls.
Y?)’

j=—o00

The series in the numerator converges in Ly (as well as in L) and if f €
HJZF, the term number j of it has only one simple pole at the point 77 (0).
Therefore for the function zf each term is analytic in D and since for the
functions from Hi the Ly convergence implies the uniform convergence
on the compact subsets of D, and the series for zf and hence for f itself
converges uniformly inside D.

The main properties of the operator E,; are as follows:
(1) For any automorphic subset X of T (y(X) = X) and f € L

/XEodeOZ/de‘P-
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(2)
1B flle, < IEIflllL,  Vf € Le
(3) For f € Ly and g € L%
Enfg = gEn—uf
(4)
E.H} = H} , ®M,.
(5) For the reproducing kernel k, = 1/(1 — 2(),z € F}

PYE k., = 7"k

Moreover, we will need the following property of this operator which, possibly
is well known, but is not contained in the classic papers on this subject. We will
present here only rather week statement on the continuous dependence of E, of &,
which is quite enough for our purposes.

Proposition 3.1. Let f(¢) € L1(T), then for almost every (with respect to Lebesguc]]
measure) point { € T the function E.f(¢) as a function of variable t = e* is con-
tinuous on the unit circle |t| = 1.

Proof. By the properties (1) and (2) of the operator Ej

[\ NGO
1Bl les = [ 32 1707 D iag = [ 1flag.

j=—oc0

This means that the series

3 et

converges in L; and hence it converges point wise for almost every point { € T.
But this implies the absolute convergence of the power series

Zf(f')”j)'tj amd Y 7))

=0 j=—o0

on the unit circle |[t| = 1 for almost every point ( € T Therefore for such ¢ the

power series Z;’i_oo f(y? )('Zy—]j)’tj is absolutely convergent on the unit circle and
defines the continuous function on the unit circle.

Now in construction of the function x we choose the point z = zr on [0,7) not
to be equal to 7/2. Thus zr is not a zero of the defect element m,, for all k. It is
well known that for the Blaschke product B, with the simple zeroes at the points
{77 (M)}, 4 € Z, the sequence {77 (Xo)}52_, satisfies the Carleson condition and
hence the system

{ VI— 0P }""
1-9()¢ ),
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forms the Riesz basis in Kp,. Therefore for any f € Kp,

f= Z c.\/l—|7j()\0)|2, Z lej]? < oo (4)

j —
j=—o0 1 _WJ(/\O)C j=—o00

Hence, by the property (5) of the operator E,
PEE,.f = c(e™)k5,,

where c(e”) = Y /1 —]v(Mo)|?cje”" and c(t) is the continuous function on
j=—o00

the unit circle || = 1. Note that P{E,f could not be identically equal to zero

for all k, since otherwise the function c(e®*) is identically equal to zero on the unit

circle but has nonzero sequence {\/1 —[y/(Xo)|?c;}32_,, of Fourier coefficients.
Now for the outer function h = ,/x let us suppose that there are at least two linear

independent elements in KerTn, then by the reasoning at the beginning of this
h

section there are two linear independent nonzero functions fi, fo € Kp, both of
which has at least simple zeroes at all points (; = 7v7((p),j € Z. Note that we can
suppose that at least one of these functions (say f1) is not vanishing at the point
¢ = 0. Indeed, if the order of the zero of f; at ( = 0 is equal to £ > 0 and is less
or equal then the order of zero of f; at ( = 0 then, since Kp, is the co-invariant
subspace of the shift operator, the function f;/¢* = P.{f1/¢*} also belongs to
Kp, and has at least the simple zeroes at the points ¢; = 7/ ({p), j € Z as well as
the functions f; and fs themselves. Moreover this function is linear independent
from f;. Therefore we can suppose that our initial function f; is not vanishing at
¢ = 0, and hence from (4) we see that the corresponding function c;(e*) is not
equal to zero at kK = 0. By the properties of E,, both functions E, f;,l = 1,2,
have the zeroes at the points 77 ({p),7 € Z and , as we have see above, the functions
cx(e),k = 1,2, are continuous on the unit circle and both are not identically equal
to zero. Therefore the function cy(e™*)E,fi — c1(e'*)E, f2 belongs to M, for all
k and has zero at the point (y € I'y. This means that this function is identically
equal to zero for all k.

But this means that

(> VI )PP elimy == =

- X falyh) e
(Y V1= o) eiim) ===

Pt 3 ()’

fy.’l
j=—o0

Using the proposition 3.1 and integrating the both sides of the last equality in «
over [0,27], we get that for almost all ( € T\ {1, -1}

Y £ VI R0R = Y 00 V=R )

v

J=—00 J=—00
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But the series in the right-hand side and the left-hand side of the last identity
converge uniformly on any compact set inside the unit disk and hence represent the
function meromorphic in the unit disk. Therefore, it follows that (5) is true also for
all ( € D. Let us compare the residues of the right-hand side and of the left-hand
side at the points ¥7(0),j € Z. The j-th terms in the both sides of (5) have at most
(in the unit disk) the simple poles at the point ( = y~7(0). Evaluating the residues
at these points with the help of (4), we get the series of identities

5 TR T -

n=—oo

S VIR VI = [V (o), e

n——oo

Since by our assumption ¢;(1) = > 1-— |Fy”()\0)|2c£,1) # 0, we see that cg-l) =

n=—o0o
const - c§2), which means that f; and fy are linearly dependent. This contradiction
with our initial assumption finishes the construction of desired counterexample.

4. FINAL REMARKS AND ACKNOWLEDGMENTS

After constructing the above described counterexample the author has given
two talks on this subject in the St.Petersburg Division of Steklov mathematical
Institute of Russian Academy of Science. The author is grateful for Professor V.I
Vasunin and Doctors D.Yakubovich and V.Kapustin for helpful discussions. The
above mentioned persons have suggested the simplification which avoids the theory
of character-automorphic Hardy spaces. The way of their reasoning was as follows:

Consider the infinite product in the unit disk

j1:111—>\j§’

with the points (j, A;,|¢;| = 1,|A;| = 1,7 = 1,... having only one point { = 1 as
an accumulation point, which represents the function x, meromorphic in C\ {1}
and bounded in D. This can be done by considering the Blaschke product for the
”shifted” disk which contains D and whose circle is tangent to T at the point { = 1.
Then the function x satisfies the condition (3), where B, is a Blaschke product with
the simple zeroes at the points A\;,7 = 1,.... Then the function h = ,/x satisfy the
condition (4) and if K erT% contains nonzero element conditions (5) and (6) hold.
Then the same reasoning as at the beginning of section 3 shows that the functions
qh and q_h are analytic on T\ {1} and have at least simple zeroes at all the points
¢j»J=1,.... Then

h h’
where the left-hand side represents the function analytic in D U T \ {1} and the
right-hand side represents the function analytic in the exterior of the unit disk plus

q9_ 49
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T\ {1}. therefore we get the function which is analytic in C\ {1} and equal to zero
at infinity by conditions (5) and (6). After that by showing the the isolated singular
point of this function at ( = 1 is removable (which itself is rather clever and tricky
reasoning) we get the desired contradiction which shows that this construction also
gives a counterexample to Theorem 1 from [1].

We want to emphasize once more that one may consider the theory of character-
automorphic functions to be a too much heavy ”weapon” used to fight the problem,
but we hope that the technique demonstrated in section 3, which actually reduced
the question about infinitely dimensional space Kp, to the finite dimensional space
(its character-automorphic projection) could be useful in another situations.

Lastly the author should mention that he is very grateful to Professor Gaven
Martin for the creative atmosphere of the conference hosted by him in Napier, New
Zealand in January 1998 when the constructions of section 3 have been finalized.
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